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Properly resolved large-eddy simulations of wall-bounded high Reynolds number flows
using standard subgrid-scale (SGS) models requires high spatial and temporal resolution.
We have shown that a more elaborate SGS model taking into account the SGS Reynolds
stress anisotropies can relax the requirement for the number of grid points by at least an order
of magnitude for the same accuracy. This was shown by applying the recently developed
explicit algebraic subgrid-scale model (EAM) [Marstorp et al., J. Fluid Mech. 639, 403
(2009)] to fully developed high Reynolds number channel flows with friction Reynolds
numbers of 550, 2000, and 5200. The near-wall region is fully resolved, i.e., no explicit
wall modeling or wall functions are applied. A dynamic procedure adjusts the model at the
wall for both low and high Reynolds numbers. The resolution is reduced, from the typically
recommended 50 and 15 wall units in the stream- and spanwise directions respectively, by
up to a factor of 5 in each direction. It was shown by comparison with direct numerical
simulations that the EAM is much less sensitive to reduced resolution than the dynamic
Smagorinsky model. Skin friction coefficients, mean flow profiles, and Reynolds stresses
are better predicted by the EAM for a given resolution. Even the notorious overprediction
of the streamwise fluctuation intensity typically seen in poorly resolved LES is significantly
reduced when EAM is used on coarse grids. The improved prediction is due to the capability
of the EAM to capture the SGS anisotropy, which becomes significant close to the wall.
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I. INTRODUCTION

Large-eddy simulation (LES) is nowadays regularly applied in academic research and more
and more in engineering. However, LES of moderate or high Reynolds number turbulent wall-
bounded flows still poses strong modeling and computational challenges stemming mainly from the
representation of the strongly anisotropic near-wall structures that are fundamental for momentum
transfer. The simplest approach is to largely resolve these structures, but the computational costs
of such a wall-resolved LES tend to become extreme at high Reynolds numbers since near-wall
structures scale in viscous wall units [1]. For example, a wall-resolved LES of fully developed
turbulent channel flow, at a friction Reynolds number Reτ = uτh/ν = 5200 and the same domain
size and wall-normal resolution as those of the LES presented later, would require 1.8 billion grid
points if the recommended streamwise and spanwise grid spacings in viscous wall units of �x+ = 50
and �z+ = 15, respectively, given by [2] are used. Here, uτ is the friction velocity and h the channel
half-height. Such a large-scale LES would evidently be impractical for engineering.

To reduce computational costs of wall-bounded flow, alternatives to wall-resolved LES have been
proposed. Common alternatives used in engineering circumvent the need of resolving wall structures
or even all boundary layer structures by using a Reynolds-averaged Navier-Stokes (RANS) model for
these, as in hybrid RANS/LES and detached-eddy simulation (DES), or solving simplified governing
equations near the wall, as in wall-modeled LES (WMLES). Such approaches, that only resolve large
eddies away from the wall and consequently have greatly reduced computational demands, have
been reviewed in Refs. [3–8]. A wide classification of the different hybrid RANS/LES techniques,
with additional test cases, has been also provided in Ref. [9]. Basically, the resolution requirement
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for WMLES in the stream- and spanwise directions scales with the boundary layer thickness. The
improved delayed detached-eddy simulation (IDDES) [10,11] acts as a WMLES, if the large scale
wall turbulence is sufficiently resolved, and can predict turbulent channel flow on a very coarse
grid (no more than a million grid points) with Reτ ranging from 400 to 18 000. The resolution
requirement is almost independent of the Reynolds number, and WMLES cannot be replaced by
wall-resolved LES for high Reynolds number boundary layers in the near future.

However, these methods have disadvantages; for instance, coupling the wall-modeled and LES
parts with the interface within the boundary layer poses problems, and occasionally there is a
mismatch between the mean velocity in these two parts [5,8]. Using different numerical methods
for stability reasons and turbulence models for the inner and outer parts as done in some hybrid and
DES methods adds to their complexity.

These drawbacks are mostly avoided in wall-resolved LES, simply called LES from now on,
which therefore still has a clear appeal. The question addressed in this paper is whether a more
physically correct SGS stress model can reduce computational demands of LES of wall-bounded
flows. To this end, we perform LES of quite high Reτ fully developed turbulent channel flow at
reasonably fine to coarse resolutions with the popular dynamic Smagorinsky model (DSM) [12]
and the more advanced explicit algebraic SGS stress model (EAM). The recent availability of
high-quality direct numerical simulation (DNS) data of turbulent channel flow at high Reτ [13]
makes a careful validation of the LES possible.

The EAM is based on algebraic approximations of the modeled transport equations of SGS
stresses [14] and aims to better describe SGS anisotropy, which is strong near the walls, than
standard eddy viscosity models through a more complete description of the SGS physics. LES with
the EAM has been applied to channel flow and more complex flows with separation with good
results [14,15], and recently it was extended to SGS passive scalar transport [16].

Rasam et al. [17] validated the EAM, the dynamic Smagorinsky model, and a high-pass filtered
model in LES of channel flow at Reτ = 934 at five resolutions ranging from reasonable to coarse, and
found that LES with the EAM is much less sensitive to grid resolutions and agrees better with DNS
than LES with the other models. This motivated us to use the EAM also in the present study. Kremer
and Bogey [18] recently validated LES of channel flow using relaxation filtering at Reτ = 300 and
various resolutions and at Reτ = 600 and 960 at one resolution, but in all cases the resolution was
�x+ � 45 and �z+ � 15. Piomelli, Rouhi, and Geurts [19] proposed a SGS model in which the
model length scale is related to the turbulence activity instead of the grid and applied it in LES of
channel flow at Reτ = 950 and 2000. Even at a coarse resolution of �x+ � 120 and �z+ � 60 fair
agreement with DNS was observed.

In this paper, we present LES of channel flow at Reτ = 550, 2000, and 5200 at various resolutions,
and show that LES with the EAM gives fair to good results for, e.g., the mean velocity profiles and
skin friction coefficient for resolutions as low as �x+ � 250 and �z+ � 100, while the LES with
the dynamic Smagorinsky model then gives worse results. The LES with coarse resolution has 53
million grid points at Reτ = 5200, which is much more acceptable than the 1.8 billion mentioned
above. This shows that by improving SGS stress models we can drastically reduce computational
costs of wall flow LES and make it a more attractive option for research and design.

The main goal of this work is to present a comparison between a standard model used for LES
applications, i.e., the DSM, and the novel EAM, at significantly high Reynolds numbers using a
(very) coarse resolution. The importance and the contribution of the SGS anisotropy-resolving part
will be analyzed in detail.

In the next sections some LES notations will be presented, together with the description of the
EAM. Thereafter, we present LES results for one-point statistics and spectra.

II. LARGE-EDDY SIMULATION (LES) AND SGS MODELS

The governing equations in Large-eddy simulation (LES) are here represented by the filtered,
nondimensional Navier-Stokes equations, which for an incompressible flow read (where .̃ denotes
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filtered quantity) [20]

∂ũi

∂xi

= 0,
∂ũi

∂t
+ ∂ũi ũj

∂xj

= − ∂p̃

∂xi

+ 1

Re

∂2ũi

∂xj ∂xj

− ∂τij

∂xj

. (1)

Here τij is the subgrid-scale stress tensor, defined as

τij = ũiuj − ũi ũj , (2)

and it represents an unknown part in the filtered equations that needs to be modeled.

A. Explicit algebraic SGS model (EAM)

Anisotropic effects of turbulence persist down to relatively small scales in many flow situations,
notably in the near-wall region, near flow separation, and in flows subject to rotation or strong
curvature. For typical resolutions used in LES this will also influence the subgrid scales. The
dynamic Smagorinsky model is an isotropic model, in the sense that the SGS viscosity νSGS is
direction independent. In the same spirit as Reynolds stress-based models for RANS, the model
here discussed is called the explicit algebraic SGS stress model (EAM). The EAM was developed
by Marstorp [14] and is similar to the explicit algebraic Reynolds stress model (EARSM) by Wallin
and Johansson [21]. The EAM is based on a modeled transport equation of the SGS stresses and
on the assumption that the advection and diffusion of the SGS stress anisotropy are negligible. The
model formulation is given by

τij = 2

3
δijKSGS + β1KSGS︸ ︷︷ ︸

eddy viscosity

S̃∗
ij + β4KSGS(S̃∗

ik�̃
∗
kj − �̃∗

ikS̃
∗
kj )︸ ︷︷ ︸

nonlinear contribution

. (3)

where S̃∗
ij and �̃∗

ij are the filtered strain and rotation-rate tensors normalized by 1/τ ∗, the inverse
of the SGS turbulence time scale. The second term on the right-hand side is an eddy viscosity term
responsible for SGS dissipation, whereas the third term accounts for anisotropic effects of SGS
stresses and models the disalignment of the SGS stress and resolved strain-rate tensor. The β1 and
β4 coefficients are given by

β1 = −33

20

9c1/4

[(9c1/4)2 + |�̃∗|2]
, β4 = −33

20

1

[(9c1/4)2 + |�̃∗|2]
, (4)

where |�̃∗| = (2τ ∗2
�̃ij �̃ij )1/2 and �̃ij is the filtered rotation-rate tensor. The unknown quantities

KSGS and τ ∗ can be dynamically or nondynamically computed. The dynamic version of the EAM
involves Germano’s dynamic procedure. Here the SGS kinetic energy is modeled in terms of the
squared Smagorinsky velocity scale �|S̃| [22],

KSGS = c�̃2|S̃|2, (5)

where �̃ = 3
√

� is the filter scale based on �, the volume of a computational cell, |S̃| = (2S̃ij S̃ij )1/2,
and c is a dynamic parameter, computed in the following way:

c = 1

2

〈̂̃uiũi − ̂̃ui
̂̃ui〉

〈̂̃�2̂̃Sij
̂̃Sij − �̃2 ̂S̃ij S̃ij 〉

. (6)

The quantities with ·̂ are test-filtered quantities and 〈·〉 denotes a spanwise average. Here we will
use ̂̃� = 2�̃.

The expression for c is a direct consequence of EAM SGS formulation. In contrast to EAM, the
expression comes from the scale similarity of the SGS stress tensor. As a consequence in the EAM
one needs to compute fewer terms in the dynamic procedure.
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Once c is computed, it is possible to obtain the coefficient c1 and the SGS time scale τ ∗, which
according to [14] are given by

c1 = c′
1

√
c′

3

c1.25

(2Cs)2.5
, τ ∗ = c′

3
1.5C1.5

k

√
c

2Cs

|S̃|−1, (7)

where c′
1 = 3.12, c′

3 = 0.91, Ck = 1.5 is the Kolmogorov constant and Cs = 0.1.
In addition to [14], the SGS timescale value has been locally bounded from below with the

Kolmogorov timescale near the wall, τη, which reads

τη ≈ 2
ν

u2
τ

= τ ∗
min. (8)

The model is not sensitive to the exact choice of τ ∗
min.

Furthermore, c1 has been limited to larger values than 0.27 and the wall-normal SGS stress
component has been limited to non-negative values, i.e., τ22 � 0.

1. The role of anisotropy in EAM

In this section, we investigate the impact of the anisotropic contribution to the SGS stress tensor,
τij , in turbulent channel flow at friction Reynolds numbers of 550, 2000, and 5200. Details of
the LESs are presented in the next section. We denote the third term of equation (3), τij,nlin, and
the sum of the two first ones,τij,lin. As seen from expression (3), the nonlinear part, τij,nlin, gives the
largest contribution to the streamwise and wall-normal diagonal components of the Reynolds stress
tensor, with a maximum peak in proximity of the wall [see Figs. 1(a) and 1(b)]. For the streamwise
component, τ11,nlin increases the peak close to the wall, to about twice its value obtained with τ11,lin

only. This results in a total Reynolds stress, Ruu, with a peak that is very close to DNS values, as
we will see later. For the wall-normal component, instead, τ22,nlin counteracts τ22,lin near the wall,
which otherwise would be largely overpredicted. τ12,nlin also modifies the shear stress [Fig. 1(c)]
component of the SGS stress, and improves the resulting prediction. For all components τij,nlin is
concentrated much closer to the wall than τij,lin. This is natural since the anisotropy of the stresses
becomes very large there. Moreover, since the range of scales decreases near the wall, more of the
anisotropy must be captured by the SGS model. The dynamic Smagorinsky SGS contribution to the
shear stress is usually not sufficiently large in order to predict a correct Reynolds shear stress peak.
The contribution of anisotropy is negligible for the third diagonal term and the other deviatoric terms.

Figure 2 shows that the influence of the Reynolds number on τij,nlin is quite small. The influence
of τij,nlin is essentially restricted to the viscous sublayer and the buffer region for all Reτ with a
slightly increasing amplitude with increasing Reτ .

III. NUMERICAL SETUP OF THE LES

To perform LES of fully developed turbulent channel flow, the SIMSON code [23] was used. The
homogeneous streamwise x and spanwise z directions were discretized using Fourier series and the
wall-normal y direction using Chebyshev polynomials. The solution is dealiased in the wall-parallel
directions. The EAM and the DSM were used.

The computational box is Lx = 5πδ and Lz = 2πδ in streamwise and spanwise directions
respectively, where δ is the channel half-width. DNS reference data were used from [24] for box
size Lx = 8πδ, Lz = 4πδ and Reτ ≈ 550, box size Lx = 8πδ, Lz = 3πδ and Reτ ≈ 2000; and
from [13] for box size Lx = 8πδ, Lz = 3πδ and Reτ ≈ 5200.

The computational domain of the LES is somewhat smaller than that of the DNS to reduce com-
putational costs, but it is still large enough to capture the large-scale structures, as will be shown later.

The LESs are run with a constant mass flow rate. We enforce the LESs to have the same bulk
Reynolds number as the reference DNS. This implies that in general Reτ and the skin friction
coefficient of the LESs deviate from these of the corresponding DNS.
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FIG. 1. Non-linear (nlin) and linear (lin) parts of τ11 (a), τ22 (b), τ12 (c) as a function of the wall-normal
direction in wall units. Reτ = 550 and resolution according to EA550 in Table I.

The simulation parameters such as the resolution and the grid spacings �x+, �y+, �z+ in
streamwise, wall-normal, and spanwise directions, respectively, in wall units, are shown in Table I.
The LESs at the lowest Reynolds number are carried out at three different resolutions while the
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FIG. 2. Non-linear (nlin) parts of τ11, τ22 (a), τ12 (b) as a function of the wall-normal direction in wall
units, for Reτ = 550 (dashed-dotted lines), Reτ = 2000 (dashed lines) and Reτ = 5200 (full lines). Resolution
according to EA550, EA2000 and EA5200 in Table I.

LESs at the higher Reynolds numbers are carried out at two resolutions. We will call the LESs with
the coarse resolution of �x+ ≈ 150 and �z+ ≈ 60 (cases DS/EA550, DS/EA2000, DS/EA5200)
cLES and LESs with the very coarse resolution of �x+ ≈ 250 and �z+ ≈ 100 (cases DS/EA550lr,
DS/EA2000lr, DS/EA5200lr) vcLES. The LESs at the lowest Reynolds number and �x+ ≈ 67 and
�z+ ≈ 27 are called fLES.

IV. RESULTS

In the following section we will assess the performance of the EAM and DSM in LES at resolutions
that go from the normal/fine resolutions to very coarse resolutions (see Table I). We start with basic
quantities such as skin friction coefficient, mean velocity profiles, and Reynolds stresses. Anisotropy
invariants are also used to compare the LESs. Finally, an analysis of the prediction of large-scale
structures has been performed using energy spectra.
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TABLE I. Channel flow simulations, from Reτ ≈ 550 up to Reτ ≈ 5200. Nx , Ny , Nz are the numbers
of Fourier modes and Chebychev polynomials in the streamwise, wall-normal, and spanwise directions,
respectively. �y+

w and �y+
c are the grid spacings in wall-normal direction at the wall and at the channel

flow centreline (∗ and ∗∗ by [24] and ∗ ∗ ∗ from [13]).

Case SGS model Nx × Ny × Nz �x+ �z+ �y+
w –�y+

c Reτ

DS550lr DSM 32 × 65 × 32 270 108 0.66–26.99 461
EA550lr EAM 32 × 65 × 32 270 108 0.66–26.99 516
DS550 DSM 60 × 65 × 60 144 58 0.66–26.99 503
EA550 EAM 60 × 65 × 60 144 58 0.66–26.99 541
DS550hr DSM 128 × 65 × 128 67 27 0.66–26.99 528
EA550hr EAM 128 × 65 × 128 67 27 0.66–26.99 549
DS2000lr DSM 128 × 193 × 128 245 98 0.29–32.72 1784
EA2000lr EAM 128 × 193 × 128 245 98 0.29–32.72 1935
DS2000 DSM 200 × 193 × 200 157 63 0.29–32.72 1873
EA2000 EAM 200 × 193 × 200 157 63 0.29–32.72 1991
DS5200lr DSM 320 × 513 × 320 255 102 0.1–31.91 4693
EA5200lr EAM 320 × 513 × 320 255 102 0.1–31.91 5129
DS5200 DSM 512 × 513 × 512 159 64 0.1–31.91 4914
EA5200 EAM 512 × 513 × 512 159 64 0.1–31.91 5231
DNS550∗ DNS 1024 × 257 × 1024 13.4 6.7 �y+

max = 6.7 547
DNS2000∗∗ DNS 4096 × 633 × 3072 12.3 6.1 �y+

max = 8.9 2003
DNS5200∗∗∗ DNS 10240 × 1536 × 7680 12.7 6.4 0.498–10.3 5186

A. Skin friction coefficient

A proper estimation of the pressure gradient and related skin friction in a channel flow is an
important and basic requirement for the LESs. In Fig. 3 the skin friction coefficient is shown as a
function of the friction Reynolds number and is scaled with the corresponding DNS value. Note that
the skin friction coefficient is based on the bulk velocity ub.

The Cf of cLES with the EAM are within 98% of the DNS while the vcLES deviates 10% at
Reτ = 550 but this deviation decreases to 2% at Reτ = 5200. The simulations with the DSM show
much larger differences. In the cLES the differences with the DNS are 10% or larger and in the vcLES
the differences are more than 20%. Only in the fLES does it come closer, although the difference

550 2000 5200
Reτ

0.7

0.8

0.9

1

1.1

C
f
/
C

f
,D

N
S

FIG. 3. Friction coefficient ratio between LES and DNS. Blue dashed line values refer to DSM, red straight
line to EAM. 	: vcLESs. ©: cLESs. ∗: fLES-DSM. ♦: fLES-EAM.
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FIG. 4. Mean streamwise velocity in wall units, as a function of the viscous-scaled wall-normal direction.
The three Reτ cases are shifted by a factor of 102 viscous units, along the wall-normal coordinate.

with the DNS is still 7% whereas the fLES with the EAM agrees almost exactly with DNS. Except
for the cLES with the EAM, we see that in general the agreement with the DNS becomes better at
higher Reτ , as previously shown in Ref. [17].

A possible explanation is that the large-scale turbulent structures become more important with
Reτ [25] and contribute more to the skin friction, while the smaller near-wall structures, which are
likely less well represented in the cLES and vcLES, become less important. The implication is that
the resolution requirements become less severe at higher Reynolds numbers.

B. Mean velocity

Velocity profiles in wall units, for Reτ = 550, 2000, and 5200, are shown in Fig. 4. Very close
to the wall, the behavior of LES with both models is mostly dominated by viscous effects, which
require a wall-normal resolution in the order of y+ = 1.

Differences between the LESs with the two models are substantial and are illustrated by the
shift in the logarithmic layer. The cLES with the EAM gives an accurate description of the velocity
profile, while the vcLES has a slight overprediction of the velocity in the outer layer, which becomes
less with increasing Reynolds number. This overprediction is much smaller than the one given by
the LES with DSM at the same resolution. Only in the fLES with the DSM is the agreement with
DNS fairly good (not shown here).

The high degree of independence of resolution and Reynolds number in the LES with EAM for
the mean velocity profiles can probably be explained by the better description of anisotropy near the
wall, which is substantial at coarse resolutions.

C. Reynolds stresses

The Reynolds stresses are the sum of the resolved and SGS stresses which are available from the
EAM. In case of the DSM, the normal SGS stresses are basically isotropic and directly related to
KSGS, but since KSGS is not available, for DSM the Reynolds stresses are only the resolved stresses.

Figures 5(a) and 5(b) show profiles of the streamwise component of the Reynolds stress tensor
for Reτ = 550 and Reτ = 5200, respectively.

The difference between the LESs with the two models is noticeable, particularly in the buffer
layer. The high Reynolds stress, given by the vcLES with DSM, illustrates how the DSM largely
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FIG. 5. Total streamwise Reynolds stress components at (a) Reτ = 550 and (b) Reτ = 5200.

overestimates the streamwise Reynolds stress component if the mesh is not sufficiently fine. LES
with DSM, in fact, achieves a similar solution as with EAM only when the resolution is doubled.
Using a fine resolution [Fig. 5(a)], the DNS peak is well captured by fLES with EAM and with
15% error with cLES. Hence, in order to get reliable results, LES with EAM requires a substantially
lower number of grid points than LES with DSM.

In Figs. 6 and 7 we show the SGS contribution to the Reynolds stresses by cLESs at Reτ = 550
and Reτ = 5200, respectively. Both the total Reynolds stress tensor components and their SGS
parts are shown.

In Fig. 6 we note that the cLES with DSM overpredicts the streamwise component and
underpredicts the wall-normal component of Reynolds stress (with about 40% in peak magnitude).
Also the spanwise component is substantially underpredicted with DSM. The underprediction to
some extent can be explained by the missing SGS part, although the overpredicted streamwise
component will be even higher if this part is included. cLES with the EAM, on the other hand, gives
a much more realistic distribution of the energy among the different normal components reasonably
close to the DNS results for both Reynolds numbers. In particular the prediction in the inner layer
is substantially improved. Note also the difference in magnitude of the SGS contribution for the
different components [26].

Reynolds shear stress is well computed by cLES with the both models. However, a close-up of
the inner layer peak reveals a slight underestimation by cLES with DSM. With a two times larger
magnitude of the SGS contribution, cLES with EAM comes closer to the DNS. It has been observed
that this misprediction decreases in LES as the Reynolds number is increased. This is visible in the
near-wall close-up, shown in Fig. 8. We here see the Reynolds shear stress behavior for the two
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FIG. 6. Total and SGS parts of (a) streamwise, (b) wall-normal, (c) spanwise Reynolds stress components
and (d) Reynolds shear stress by cLES at Reτ = 550. In (a)–(c) DSM represents the resolved part only.
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FIG. 7. Total and SGS parts of (a) streamwise, (b) wall-normal, (c) spanwise Reynolds stress components
and (d) Reynolds shear stress by cLES at Reτ = 5200 with a close-up of the SGS contributions. In (a)–(c) DSM
represents the resolved part only.
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FIG. 8. Close-up of the Reynolds shear stress peaks by cLES, for Reτ = 550, 2000, and 5200 as a function
of the wall-normal direction. The arrow points in the increasing Reτ direction.

(a)

0.1 1 10 100 1000 5200
0

0.2

0.4

0.6

0.8

1

(b)

1 100 1000 5200
0

0.5

1

1.5

2 EA550
DS550
DNS550
EA2000
DS2000
DNS2000
EA5200
DS5200
DNS5200

FIG. 9. (a) II SGS
a and (b) IIa for cLES with EAM (red lines), cLES with DSM (blue lines), and DNS (black

lines), at Reτ = 550, 2000, and 5200.
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FIG. 10. Premultiplied spanwise energy spectra kzE
1D
uu /u2

τ of the streamwise velocity as a function of the
spanwise wavelength λ+

z and wall distance y+. cLES with DSM (· · · , green), cLES with EAM (–, red), and
DNS (– –, black) data, at Reτ = 550 (a) and Reτ = 5200 (b). DNS contour plot in the background.

models for three friction Reynolds numbers. Regardless of the Reynolds number, cLES with the
DSM is not able to predict the peaks in an accurate way. On the other hand, cLES with EAM has its
maximum SGS contribution in the region near the wall, and that gives a more correct behavior of the
peaks near the wall. In addition, it has been seen that EAM’s accuracy increases with Reτ . A possible
reason was discussed above. For high Reynolds numbers, large scale motions will contribute more
to the total kinetic energy.

D. Anisotropy invariants

The main feature of the EAM is to properly reproduce anisotropy of wall-bounded flows. An
important question is how much the modeled SGS anisotropy varies with Reynolds numbers. In order
to evaluate the SGS model influence, we use the SGS anisotropy and total anisotropy defined as

aSGS
ij = 〈τij 〉

〈KSGS〉 − 2

3
δij , aij = 〈ũi ũj 〉 + 〈τij 〉

KRES + 〈KSGS〉 − 2

3
δij (9)

where KSGS = τkk/2 and KRES = 〈ũkũk〉/2 are the SGS and resolved parts of the turbulence kinetic
energy, respectively, and 〈·〉 is the plane and time average. In order to quantify the anisotropy, we
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FIG. 11. Premultiplied spanwise energy spectra kzE
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uu /u2

τ of the streamwise velocity as a function of the
spanwise wave length λ+

z at y+ ≈ 15, for Reτ = 5200. cLES with DSM (green), cLES with EAM (red), and
DNS (black) data.

focus on the magnitude given by the second invariant of anisotropy,

II SGS
a = aSGS

ij aSGS
ji , I Ia = aij aji (10)

for the corresponding SGS and total parts. The SGS anisotropy invariant can only be obtained for the
EAM. In Fig. 9(a) we note that II SGS

a is significant only in the viscous sublayer and buffer region,
and decreases rapidly outside this region. It signifies a SGS state that is close to a two-component
limit in the near-wall region. Here, the range of scales decreases, thus anisotropy persists down to
the subgrid scales. The SGS anisotropy is sensitive to Reynolds numbers only in the buffer layer,
with high anisotropy being restricted to a smaller region (in wall units) for higher Reynolds number.
The reason for the Re dependency is not completely clear, but is likely due to the difference in
resolution in the y direction in this region (due to clustering of points near the wall related to the
use of Chebychev polynomials) which will influence the filter width (� = 3

√
�x�y�z ).

The second invariants based on the total Reynolds stress, IIa , for the EAM and the DSM are
compared to DNS data in Fig. 9(b). DNS shows a small decrease of IIa with increasing Reynolds
number in the inner layer. In the buffer layer, a Reynolds number dependency is noticeable only in the
inner peak region. Going further from the wall, the extension of the logarithmic region grows with
increasing Reynolds number, and there the anisotropy establishes a plateau. Note that the interval at
which the SGS anisotropy [Fig. 9(a)] shows a dependency with the Reynolds number, corresponds
to the inner peak location of IIa . Except for the inner sublayer with y+ � 1 where the intensity
levels are very low, EAM gives a correct level of SGS anisotropy, unlike the DSM.

For the resolved part, the cLES with the DSM gives a large overprediction in the inner part and
a substantial misprediction also in the outer region. The DSM exhibits a large overprediction of
anisotropy of y+ at least up to 100.

The cLES with the EAM gives results close to DNS from the buffer layer up to the outer region,
for all Reynolds numbers. The magnitude of the inner peak is very near to that for the DNS.

E. Energy spectra

In order to assess the influence of the SGS models on the description of large scale turbulent
structures we consider spanwise one-dimensional premultipled energy spectra of the streamwise
velocity as function of the wall-distance at Reτ = 550 and 5200; see Fig. 10. At higher Reτ we see
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FIG. 12. Horizontal snapshots of the streamwise velocity fluctuations, normalized with the friction velocity
uτ . (a), (b) Planes at y+ ≈ 10 showing only a fraction (2%) of the computational domain, and (c) at y+ ≈ 750
showing the complete domain. (a) vcLES-EAM; (b), (c) cLES-EAM.
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clearly more energetic large-scale structures in the cLES and a larger scale separation between the
near-wall and outer structures.

For the outer scales at Reτ = 550 the are some differences between DNS and both cLES, but at the
higher Reynolds number the cLES with the EAM accurately captures the peak in the outer layer. The
magnitude of the outer peak estimated by the cLES with DSM is slightly lower but also agrees quite
well with DNS. The cLESs naturally gives inner layer structures that are wider than those obtained
with DNS, since with a spanwise resolution of �z+ ≈ 60 the streaks cannot be resolved. It follows
that the cLES with EAM and DSM correctly predicts the scale and energy of the large-scale outer
structures at higher Reτ even if the near-wall structures are not completely correctly represented.

Figure 11 shows the premultiplied spanwise energy spectrum at Reτ = 5200 at a position in the
proximity of the inner peak, i.e., y+ ≈ 15. This once more illustrates that the streaks in the cLES
are wider than in the DNS, but also shows that the near wall energy peak is close to the filter cutoff.
In cLES both with the EAM and the DSM the energy peak is higher than in the DNS but in the case
with the DSM the overprediction of energy is significantly larger than for the spectrum obtained
with the EAM, which is directly related to the overprediction of urms with DSM.

F. Plane visualisations

Visualisations of the instantaneous streamwise fluctuations u′+ along the xz plane near the wall,
taken from vcLES-EAM and cLES-EAM are provided in Figs. 12(a) and 12(b). Note that only a
small part (about 2%) of the domain is shown in the figure.

As expected, we observe that the resolution of the smallest near-wall structures improves moving
from the very coarse to the coarse grid. In the cLES the streaks near the wall are more qualitatively
captured, and are closer to the correct characteristic length scales of these structures, which are
around λ+

x ≈ 1000 and λ+
z ≈ 100 [Fig. 12(b)] [27].

Figure 12(c) shows a horizontal snapshot of the streamwise fluctuations u′+ in the entire xz

plane, in proximity of the outer layer peak, using the coarse grid. In this visualisation we can see the
imprints of the large-scale structures with a spanwise scale of ∼ h [see Fig. 10(b)]. The computation
of the outer layer large-scale structures is less sensitive to the grid resolution. A very similar result
is achieved using the very coarse resolution, resulting in essentially the same figure as 12(c).

V. CONCLUSIONS

The accuracy of LES with the EAM in prediction of wall-bounded flow has been investigated
by performing a series of LESs of fully developed turbulent channel flow at three friction Reynolds
numbers using three different resolutions ranging from quite fine to very coarse.

Skin friction coefficients are reasonably well captured by LES with EAM at all resolutions
used, showing that the EAM gives much more resolution-independent results than the DSM, in
agreement with [17]. Mean velocity profiles computed by LES with EAM exhibit a substantially
better agreement with DNS than LES with DSM, for all the Reynolds number investigated, especially
for coarse grids. The prediction of the Reynolds stress tensor components by LES with EAM are
substantially improved compared to LES with DSM, and the peaks near the wall are substantially
better predicted. In particular, the severe overprediction of the streamwise fluctuation intensity by
LES with DSM has been considerably reduced using the EAM.

An analysis of the contributions to the stresses from the different parts of the SGS model reveals
that the EAM prediction capability is strongly coupled to its ability of capturing anisotropy. The
second invariant of the SGS anisotropy shows that the magnitude of the SGS anisotropy is large at all
Reynolds numbers in the near-wall region. Near-wall physics are better reproduced if this anisotropy
is accounted for in the SGS model.

As the Reynolds number increases, large-scale turbulent structures become a more dominant
feature in the outer layer turbulence. Energy spectra show that LES both with EAM and DSM
accurately predict the large-scale outer layer structures at higher Reynolds numbers even when the
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resolution is not sufficient to predict near-wall structures correctly. In the buffer region the DSM
gives a larger overprediction of the energy of the scales typical of streaks than the EAM.

The ability of EAM to substantially improve LES predictions at coarse resolutions indicates that
LES with EAM can take LES of wall-bounded turbulent flows to substantially higher Reynolds num-
bers and can possibly (with further improvements) be an alternative to wall-modeled LES (WMLES).
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