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Budgets of the turbulent kinetic energy from direct numerical simulations (DNSs) of
disperse bubbly channel flows are used to develop a model for bubble-induced turbulence in
the Euler-Euler Reynolds-averaged framework. First, an appropriate time scale is selected.
Second, links between the unclosed terms in the transport equations of the turbulence quan-
tities and the DNS data for small bubbles are established. Third, a suitably chosen iterative
procedure employing the full Reynolds-averaged model provides suitable coefficients for
the closure of the terms resulting from bubble-induced turbulence while largely removing
the influence of others. At the same time these results validate the closure, exhibiting very
good agreement with the DNS and better performance than the standard closures. The
model is now ready for use and can be employed in practical Euler-Euler simulations.
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I. INTRODUCTION

Turbulence and multiphase flows are two of the most challenging topics in fluid mechanics and
when combined they pose a formidable challenge, even in the dilute dispersed regime [1]. This
particularly holds for flows laden with disperse bubbles as these have low momentum on their own,
resulting in very strong coupling to the liquid phase. Bubbly flows can be investigated numerically
by various approaches at different levels of detail. For large-scale simulations the Euler-Euler (EE)
approach [2] coupled with steady or unsteady Reynolds-averaged Navier-Stokes (RANS) modeling
is the only viable framework. Here the bubble-induced turbulence (BIT) of the liquid phase is one
of the most important and delicate effects to model. It was represented by an algebraic viscosity
in the work of [3]. Another algebraic modeling of BIT based on potential theory [4] turned out to
be too simplistic [5]. Later on, BIT was considered by supplementing single-phase two-equation
turbulence models with specific source terms [6–12]. A different approach based on single-phase
simulation without resolving bubbles was proposed in Ref. [13].

The present work starts from the equations for two-phase flows rigorously derived in Ref. [14].
These equations are based on a single-phase representation and take the influence of bubbles into
account by including additional interfacial terms in the balance equations both for k, the turbulent
kinetic energy (TKE), and ε, the dissipation rate. When supplementing the unclosed terms in these
equations with adequate models they constitute an appropriate framework for RANS modeling of
bubbly flows. Due to the lack of reliable data for individual terms, however, the models used in the
literature are mostly based on ad hoc physical considerations.

Recently, direct numerical simulations (DNS) have become available to shed light on the details
of the physics involved [15–19]. Ilić [20] performed DNS to evaluate each term in the TKE budget
for up to eight bubbles. She demonstrated that the gain of TKE is mainly caused by the interfacial
term, while the contribution of the production term is negligible. Erdogan and Wörner [21] extended
this work to larger bubble Reynolds numbers Rep, showing that the TKE of the liquid phase increases
with Rep. Further DNS data with substantially higher Reynolds number, realistic density ratio, and
large domains have recently been provided in Refs. [22,23].
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FIG. 1. Schematic representation of the DNS configuration (not to scale). The marked region indicates the
location where the spatial energy spectra were computed.

In the present paper we propose a closure for the BIT terms in an EE RANS model on the basis
of DNS data. Two main issues are addressed: the time scale of the BIT source in the dissipation
equation and the coefficients in the BIT source expressions of the two-equation RANS model used.
The resulting model is then validated by computing the same cases with the EE model. Beyond the
resulting model itself the paper also furnishes a systematic procedure that is of general use.

II. DIRECT NUMERICAL SIMULATION DATABASE

To serve the present purpose, the DNS data have to provide information about all relevant
processes, in particular the interfacial effects. This requires that the bubble geometry is resolved,
in contrast to the point-particle approach, occasionally addressed also as DNS of a multiphase
flow [1]. In Refs. [22,23], bubble-resolving DNS with many thousands of bubbles at low Eötvös
number were conducted. In this case, a spherical shape can be safely assumed. Compared to other
simulations of this type [20,21], these simulations exhibit substantial differences so that they are
close to applications: turbulent background flow, contaminated fluid, realistic density ratio (1000
instead of 2), higher bubble Reynolds number, much larger domain, and much larger number of
bubbles. The technically involved numerical procedure to evaluate the TKE budget used as an input
for the present work was presented in detail in Ref. [24].

The DNSs were conducted for upward flow in a rectangular channel, with periodicity in the
streamwise (x) and spanwise (z) directions. The size of the domain is Lx × Ly × Lz = 4.41H ×
H × 2.21H , where H is the distance of the walls (Fig. 1). The bulk velocity Ub was kept constant
by instantaneously adjusting a volume force, equivalent to a pressure gradient, thus imposing the
bulk Reynolds number Reb = UbH/ν, where ν is the kinematic viscosity of the liquid. The DNS
data used in this work were obtained for three monodisperse cases and one bidisperse case with half
the void fraction consisting of smaller bubbles and the other half of larger bubbles, all at the same
bulk Reynolds number Reb = 5263. Table I provides an overview of all cases with the labels of the
cited references. The data available cover statistical moments of first and second order for liquid and
bubbles.

While the DNSs were performed using a nondimensional set of parameters, the EE RANS closure
proposed in the present work is related to the bubble diameter dp, with the corresponding simulations
conducted in dimensional units. For this reason the above setup is converted to a dimensional form
using the contaminated air-water system as an example. Based on the discussion in Ref. [25] the
pivoting element is chosen to be the equality of the Archimedes number Ar = |πρ − 1|gd3

p/ν2, with
πρ denoting the bubble-to-liquid density ratio. Keeping Ar the same as in the DNSs and using all the

034301-2



DIRECT NUMERICAL SIMULATION–BASED REYNOLDS- . . .

TABLE I. Parameters of the DNS cases used for the present modeling. The labels Sm (smaller) and La
(larger) designate different bubble sizes and when used with the bidisperse case indicate averaging over the
fraction of smaller and larger bubbles, respectively. Here Np is the number of bubbles, α the void fraction, dp

the particle diameter, and Ar the Archimedes number. The values of Rep , the particle Reynolds number (based
on dp and the relative velocity ur ), and CD , the drag coefficient, are results of the simulations.

���������Parameter
Case

SmMany SmFew LaMany BiDisp(Sm) BiDisp(La)

Np 2880 384 913 1440 546
α 2.14% 0.29% 2.14% 1.07% 1.07%
dp/H 0.052 0.052 0.076 0.052 0.076
Ar 38171 38171 114528 38171 114528
Rep 236 268 475 234 464
CD 0.89 0.71 0.67 0.93 0.70

other physical dimensional parameters in the definition of Ar yields dp = 1.456 mm for the smaller
bubbles and dp = 2.127 mm for the larger bubbles. The ratio dp/H in Table I then results in the
extensions 123.6 × 28.0 × 61.8 mm3 of the channel.

III. ENERGY SPECTRA AND TIME SCALES

In the first step energy spectra are determined on the basis of the DNS data to define an appropriate
time scale for BIT. In bubbly flows, Lance and Bataille [26] were the first to find a power-law scaling
with a slope of about −8/3 and provide a scaling argument yielding −3, which was confirmed by
later studies [17,27–32]. The calculation of spectra in a bubble-laden flow is delicate, as the phase
boundaries tend to interrupt the signal. Here an approach is proposed that is ideally suited for DNS
of dilute disperse flows. It is based on a spatial selection of signals without the presence of bubbles
and the feature of periodic boundary conditions employed by the simulation anyway. For the case
SmMany, liquid velocity was recorded along grid lines in the spanwise direction within the center
region 0.45H < y < 0.55H (Fig. 1), sufficiently thin to warrant statistical equivalence of these
lines. For each line, data were recorded whenever the line was free of bubbles, resulting in 50 000
one-dimensional data sets. The velocity values were taken on the staggered grid of the simulation,
without being interpolated as in Ref. [17]. As the range in z covers the entire domain, the periodic
boundary conditions employed for the simulation result in periodic signals, so the data can be Fourier
transformed without windowing. This was performed for each velocity component with subsequent
averaging over the computed spectra. Figure 2(a) shows the resulting energy spectra. They all have a
similar shape and exhibit three different ranges: a low-wave-number range reflecting the large-scale
turbulence, a medium range with decay rate around −3 for wavelengths λ = 0.001–0.003 m, and a
higher-wave-number range with stronger decay similar to [26].

The characteristic length scale for BIT is still a subject of debate in the literature. Different length
scales on the order of dp have been proposed, located in the −3 subrange [27,31], which supports
the present result. A comparison between the different studies is complicated by the use of different
methods to calculate the spectra, but the cited works, as well as the present one show that dp is
included in the typical −3 subrange for BIT. Hence, from a modeling point of view, dp is chosen as
a starting point for a BIT length scale.

In a similar manner, the choice of a suitable time scale τ is based on temporal spectra. Here these
are obtained in two steps. According to [29,31], the spatial spectra in the streamwise direction are
the same as those in the spanwise direction. Second, Taylor’s hypothesis is employed to convert
streamwise spatial spectra into temporal spectra, resulting in Fig. 2(b). Two candidates for a time
scale, (

√
k/dp)−1 [10] and (ur/dp)−1 [8], are included along with the single-phase RANS time scale

(ε/k)−1 used in Ref. [9] for comparison. The result in Fig. 2(b) suggests that τ = dp/ur is a good
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FIG. 2. Spectra of liquid velocity from DNS and experiment of bubbly flow, with vertical lines illustrating
the reference scales indicated. (a) Spatial spectra from DNS SmMany. (b) Temporal spectra from DNS SmMany.
(c) Temporal spectra from the experiment of [27] and DNS of [17], labeled Expt. and DNS, respectively. Here
- - - - - - - denotes ur/dp from experiment and – · – · – denotes ur/dp from DNS.

starting point for a time scale characterizing BIT since this frequency is in the typical −3 BIT range,
while the others are not. This is consistent with the requirement that a model for ε has to account
for the turbulence scales as well as for the different length scales and the fast energy decay due to
the presence of bubbles [33]. Figure 2(c) confirms the suitability of dp/ur by the experiment of [27]
with ur/dp ∼ 40 Hz and the DNS of [17] with ur/dp ∼ 50 Hz.

IV. TURBULENCE MODELING

For incompressible two-phase flow, the governing equations of the Euler-Euler approach are

∂(αKρK )

∂t
+ ∇ · (αKρK uK ) = 0, (1)

D(αKρK uK )

Dt
= −∇ · (αKμK SK ) − αK∇p + αKρK g + MK − ∇ · (αKτK

t

)
, (2)

where all quantities are mean values. The superscript K denotes the phases (L denotes liquid and
G gas), with μ, u, and S being the molecular viscosity, the mean velocity, and the mean strain rate
tensor, respectively. The unresolved stress tensor τ t and the sum of all interfacial forces M acting
on phase K have to be modeled. Established models for the different nondrag interfacial forces
are employed here, based on an extensive literature study: the model of [34] for lift, the model of
[35] for the wall force, and the model of [36] for turbulent dispersion. Details on how the various
coefficients of the models were determined are given in Sec. V below.
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According to [14], the TKE k of the liquid phase in a turbulent bubbly flow is governed by the
budget equation

Dφk

Dt
= �k + Dk + εk− 1

ρ
p′

Lu′
L,iniI + 1

ρ
τ ′
L,ij u

′
L,inj I︸ ︷︷ ︸

Sk

, (3)

with φ an indicator for the liquid phase and the overbar denoting statistical averaging. The production
term �k , the diffusion term Dk , and the dissipation term εk are the same as with single-phase flow
[37]. The term Sk represents the interfacial energy transfer between bubbles and liquid and is an
additional source term created by the presence of the bubbles. Here p′

L, u′
L,i , and τ ′

L,ij are the
fluctuations of pressure, the ith velocity component, and the stress tensor at the liquid side of the
phase boundary, respectively. Finally, ni is the normal vector at the phase boundary directed toward
the gas phase and I is the interfacial area concentration with ∂φ/∂xi = −Ini .

To close the single-phase terms in Eq. (3) the shear stress transport (SST) model [38] is employed,
supplemented with a source term SRANS

k accounting for production of BIT

D(αLρLk)

Dt
= �RANS

k + DRANS
k −αLCμρLωk︸ ︷︷ ︸

εRANS
k

+CI FD · (uG − uL)︸ ︷︷ ︸
SRANS

k

, (4)

where k and ω are given without the upper index L for simplicity. Further modeling now focuses on
the interfacial term Sk , which in the considered cases is balanced by the dissipation [24], so these
two terms are the dominant ones in the center region of the channel, which is the focus of the present
work. The total energy input by the bubbles is equal to the work done by the buoyancy force FB · uG.
In a steady state, this is equal to the work done by the drag FD · uG, which can be decomposed into
FD · uL + FD · (uG − uL). The equation for the mean kinetic energy of the liquid is obtained from
(2) by multiplying with the liquid mean velocity uL. The contribution FD · uL to the term ML · uL

in the mean kinetic energy equation drives the mean flow, so the energy converted into turbulence is

SRANS
k = CI FD · (uG − uL), (5)

with the parameter CI � 1 and FD = 3
4dp

CDρLαG|uG − uL|(uG − uL). Figure 3 compares the

expression FD · (uG − uL), based on a priori tests, to Sk from (3). Remarkably, the shape of these
curves is very similar. Hence, adjusting the coefficient CI bears the potential of successful modeling.

FIG. 3. Comparison between the interfacial term Sk according to (3) and the a priori evaluation of SRANS
k /CI

(5) for all cases, both normalized with U 3
b /H .
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The ω equation of the two-phase SST model is

D(αLρLω)

Dt
= DRANS

ω + �RANS
ω + CRANS

ω −αLCωDρLω2︸ ︷︷ ︸
εRANS
ω

+
(

1

Cμk
SRANS

ε − ω

k
SRANS

k

)
︸ ︷︷ ︸

SRANS
ω

, (6)

where all single-phase terms are given in Ref. [38]. The term

SRANS
ε = Cε

SRANS
k

τ
(7)

in Eq. (6) is the BIT source in the ε equation transformed to an equivalent source in the ω equation
using the same time scale τ , with Cε a model parameter. In single-phase flow τ = k/ε represents the
large-scale eddy turnover time for shear-induced turbulence, but this is far away from the physics
of BIT [Fig. 2(b)]. An essential step now is to replace this time scale with τ = dp/ur characterizing
BIT according to Sec. III for use in the following.

V. MODEL PARAMETERS FOR THE DIFFERENT CASES

Euler-Euler RANS simulations were run in the same domain as the DNSs and discretized with
56 × 60 × 51 grid points in the x, y, and z directions, respectively. Boundary conditions were
identical to those of the DNS.

Based on the promising results of Fig. 3, the idea now is to determine the coefficients CI and
Cε in Eqs. (5) and (7) for each DNS data set, which later on should reveal the general trend. If,
however, the relative velocity or the void fraction is different, the BIT model cannot be assessed.

Ref. [8]
Ref. [9]

FIG. 4. One-point statistics from the present EE RANS model and DNS data for SmMany. (a) Gas void
fraction. (b) Liquid streamwise velocity and gas streamwise velocity. (c) Liquid TKE and comparison with
standard models.

034301-6



DIRECT NUMERICAL SIMULATION–BASED REYNOLDS- . . .

-120
-90
-60
-30

0
30
60
90

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y/H

Present S( )
es�mated DNS S( )
Present ( )
es�mated DNS ( )

Gain

Loss

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
y/H

Present (k) DNS (k)
Present (k) DNS (k)
Present D(k) DNS D(k)
Present S(K) DNS S(k)Gain

Loss

FIG. 5. Comparison of the present EE RANS model with the DNS data for the case of SmMany for (a) the
k budget with all terms normalized by U 3

b /H and (b) the ω budget with all terms normalized by U 2
b /H 2.

Hence, a prerequisite is that the uncertainty created by the other submodels is removed as much as
possible. To accomplish this, the drag coefficient was determined from the DNS data directly, i.e.,
from ur = |uG − uL|. Then an iterative process was carried out by running EE RANS simulations
simultaneously optimizing CI , Cε, and the lift coefficient CL, while the other interfacial forces
models were employed as they are. It turns out that the resulting value of CL = 0.06 indeed yields
the correct void fraction distribution [Fig. 4(a)]. The resulting values of CI = 0.64 and Cε = 0.27
provide very good matches of the DNS data for SmMany (Figs. 4 and 5). Here Fig. 4(b) shows the
mean liquid and gas velocity obtained with these parameters. Both velocity profiles fit the DNS data
very well. As expected, with CD based on the DNS data, excellent agreement is obtained for the gas
velocity. The TKE of the liquid phase is largely augmented due to bubbles in SmMany compared
to the same situation without bubbles [22]. This is very well reproduced by the present EE RANS
data in the channel remote from the walls. The performance of the model is substantially better
than with the models from [8,9] under exactly the same conditions [Fig. 4(c)]. The budgets for k

and ω are shown in Fig. 5. The originality of this process is that the targets of the iteration are not

TABLE II. Values of CI , Cε , and CL obtained by the iterative process for all cases.

���������Parameter
Case

SmMany SmFew LaMany BiDisp(Sm) BiDisp(La)

CI 0.64 0.66 0.75 0.64 0.75
Cε 0.27 0.15 0.2 0.27 0.2
CL 0.06 0.0055 −0.03 0.08 −0.04
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FIG. 6. (a) Comparison of k from simulations with the present model to DNS data for LaMany, SmFew,
and BiDisp. (b) Values of CI as a function of Rep for all cases considered. The dashed line shows the fit.
(c) Values of Cε/CD as a function of CD for all cases considered. The dashed line shows the fit.

statistics of the mean flow but rather the values of the particular terms to be closed, resulting directly
or indirectly from the DNS data, such as εk , Sk , εω, and Sω.

The target is defined in the core region of the channel, since matching this is a prerequisite to
all modeling. Figure 5(a) shows that in the region the k equation (3) reduces to 0 ≈ εk + Sk , with
both terms available from the DNS. For ω, however, no budget is available from the DNS data, but
again 0 ≈ εω + Sω in the center for the same reasons as with the k equation. Hence, εω has to be
determined indirectly from the DNS data. For this purpose, it is represented here by the expression
for εRANS

ω from (6), where αL, ε, and k are determined by the DNS data

εω = −αL
DNSCωD,2 ρL(ωDNS)2, ωDNS = εDNS

CμkDNS
, (8)

using the standard coefficients CωD,2 = 0.0828 and Cμ = 0.09 [38]. The same procedure is then
employed for the other three bubble-laden cases, yielding the corresponding values of CI , Cε, and
CL (Table II), each achieving good agreement for the TKE [Fig. 6(a)] and the other terms (shown in
Ref. [39]).

VI. MODEL FOR BUBBLE-INDUCED TURBULENCE

The final step is to propose a general model for the BIT terms. Based on the previous experience,
this is done by providing a functional relation for the coefficients CI and Cε. The importance of
Rep for BIT and the observation in Ref. [21] that the TKE increases with Rep for the same number
of bubbles suggest to model CI as a function of Rep. The couples of the discrete values of CI and
Rep are displayed in Fig. 6(b). For the case BiDisp, two data points are plotted for the smaller
bubbles and the larger bubbles, respectively, with the assumption that the contributions from the two
bubble sizes sum up to the total contribution. Obviously, CI increases with Rep. This supports the

034301-8



DIRECT NUMERICAL SIMULATION–BASED REYNOLDS- . . .

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.2 0.4 0.6 0.8 1
y/H

RANS2 S(K) RANS2 (k)

DNS S(k) DNS (k)

-120
-90
-60
-30

0
30
60
90

120

0 0.2 0.4 0.6 0.8 1
y/H

RANS2 S( ) RANS2 ( )
ted DNS S( ) ted DNS ( )

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

<k
>/

U
b2

y/H

RANS2 DNS

FIG. 7. Comparison of the simulation RANS2 (CI = 0.4 and Cε = 0.17) with DNS data for the case of
SmMany for (a) liquid TKE, (b) the k budget normalized by U 3

b /H , and (c) the ω budget normalized by U 2
b /H 2.

hypothesis that bubbles with larger Rep have stronger wake effects than bubbles with small Rep and
for even smaller Rep the wake eventually disappears [40]. Hence, an Rep-dependent expression for
CI seems suitable for SRANS

k . Curve fitting of CI by a power law [Fig. 6(b)] yields

SRANS
k = min

(
0.18 Re0.23

p ,1
)

︸ ︷︷ ︸
CI

FD(uG − uL). (9)

Here CI � 1 is imposed to fulfill the energy balance discussed regarding (5).
The value of Cε could be formulated as a function of SRANS

ε , of the BIT time scale, or of the
BIT length scale, depending on the problem considered. Inspired by Riboux et al. [29], who found
the characteristic length scale of BIT being related to dp and the drag coefficient, the values of Cε

are plotted over CD in Fig. 6(c). The relation Cε = 0.3CD provides a very good match for the data
points, except in the case of SmFew. This may be due to the very low void fraction (0.29%), so
the influence of the background flow in this case is not negligible. Hence, the following closure is
proposed:

SRANS
ε = 0.3CD︸ ︷︷ ︸

Cε

SRANS
k

τ
, (10)

with τ = dp/ur .

VII. CONCLUSION

Equations (9) and (10) constitute a proposal for closing the BIT terms in a typical RANS model.
This closure employs Rep and CD , which are available in any EE RANS simulation.

Using DNS data with iterations to obtain term-by-term match in the model equations avoids
pitfalls of ad hoc models targeting the TKE only, as illustrated in Fig. 7. In a simulation labeled
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RANS2 for the situation of SmMany, the values CI = 0.4 and Cε = 0.17 were employed instead of
the values in Table II. The result for k fits well, but is related to an underprediction of the source
terms in both the k and ω equations. This can yield further errors and does not solve the modeling
problem. The present approach is exempt from this issue. This procedure can be employed in a
similar way to well-resolved DNSs of many deformable bubbles at higher Reynolds number once
these are available. The difference between the present proposal for CI and the corresponding values
of Cn in Ref. [24] are due to the fact that in Ref. [24] a slightly different procedure to evaluate the
relative velocity was employed and that a kind of a priori test for the BIT term in the k equation was
conducted, while here the complete EE RANS model as a whole is addressed.

The proposed BIT model is ready for use now. The procedure can as well be employed for any
similar two-equation RANS model. As such, the model is valid for small bubbles in contaminated
fluid, which is highly relevant for practical applications. Further tests should focus on the performance
of the model over a wider range of bubble Reynolds numbers and in more complex flow fields.
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