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Collapse of superhydrophobicity on nanopillared surfaces
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The mechanism of the collapse of the superhydrophobic state is elucidated for submerged
nanoscale textures forming a three-dimensional interconnected vapor domain. This key
issue for the design of nanotextures poses significant simulation challenges as it is
characterized by diverse time and length scales. State-of-the-art atomistic rare events
simulations are applied for overcoming the long time scales connected with the large free
energy barriers. In such interconnected surface cavities wetting starts with the formation
of a liquid finger between two pillars. This break of symmetry induces a more gentle bend
in the rest of the liquid-vapor interface, which triggers the wetting of the neighboring
pillars. This collective mechanism, involving the wetting of several pillars at the same time,
could not be captured by previous atomistic simulations using surface models comprising
a small number of pillars (often just one). Atomistic results are interpreted in terms of a
sharp-interface continuum model which suggests that line tension, condensation, and other
nanoscale phenomena play a minor role in the simulated conditions.
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I. INTRODUCTION

Superhydrophobicity stems from the presence of a gaseous layer between a body of liquid and a
surface. This suspended “Cassie” state is fostered by surface roughness and hydrophobic coatings
[1]; the composite liquid-gas-solid interface results in important properties for submerged and “dry”
technological applications, such as self-cleaning, enhanced liquid repellency, and drag reduction
[2,3]. The superhydrophobic Cassie state is sustained by capillary forces, which can be overcome by
variations in the liquid pressure, temperature, or other external forces which trigger the transition to
the fully wet Wenzel state. Thus, the design of textured surfaces and coatings has the aim of realizing
a robust Cassie state.

The stability of the Cassie state depends not only on the thermodynamic conditions but also
on the surface geometry and chemistry, which can be engineered in order to achieve robust
superhydrophobicity. Hydrophobic textures of nanometric size [4,5] proved efficient in stabilizing
the gaseous layer over a broad range of pressures and temperatures [6]. However, the engineering
of surface nanotextures is still in its infancy: understanding the collapse mechanism, i.e., the path
followed by the liquid front during the breakdown of the Cassie state, is the key to improving the
performance and robustness of such textures. For instance, it is possible to modify surfaces in order to
destabilize the Wenzel state [7] or to achieve robust superhydrophobicity via complex nanotextures
[8]. Nucleation of gas and vapor bubbles, which is enhanced by surface textures [9], can also bring
about the breakdown of the Cassie state; superhydrophobic surfaces must be engineered to prevent
it. However, to date the collapse mechanism on experimentally and technologically relevant textures
remains largely unknown, with the theoretical approaches making a priori assumptions or often
being affected by simulation artifacts as discussed in detail below.

*alberto.giacomello@uniroma1.it

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0
International license. Further distribution of this work must maintain attribution to the author(s) and the
published article’s title, journal citation, and DOI.

2469-990X/2017/2(3)/034202(16) 034202-1 Published by the American Physical Society

https://doi.org/10.1103/PhysRevFluids.2.034202
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


AMABILI, GIACOMELLO, MELONI, AND CASCIOLA

FIG. 1. (a) Atomistic system, consisting of a LJ fluid (blue) and solid (brown). The upper solid wall serves
as a piston to impose constant pressure; the lower one is decorated with nine nanopillars. Temperature is
controlled via a Nosé-Hoover chain thermostat [37]. (b) Definition of the collective variables used in the string
method: coarse-grained density defined on M = 864 cubic cells (in yellow; top and lateral views).

Due to their simplicity, surfaces decorated with pillars are a paradigm in the study of
superhydrophobicity, both via experiments and simulations. In addition, because of the reduced
liquid-solid contact, these kind of textures favor the emergence of large slip at the walls [10], making
them attractive, e.g., for drag reduction [3]. The focus of this work is the wetting of three-dimensional
(3D) submerged nanopillars (Fig. 1): the three distinctive attributes of the textures studied in this work
are submerged, 3D, and nanoscale. Indeed, most simulations to date have restricted their attention
to drops of sizes comparable to that of the texture at the top of which they are sitting [11–17]; in this
setup the collapse mechanism is significantly influenced by the drop shape and size. At variance with
drops, the main issue for submerged surfaces is the resistance of the superhydrophobic state against
pressure variations [7,8,18–21]. Present superhydrophobic surfaces generally exhibit complex 3D
morphologies with isolated (pores) or connected (pillars, cones) cavities. Two-dimensional (2D) or
quasi-2D (limited thickness) models have been often used in simulations with the aim of reducing
their computational cost [8,14,17–19]. However, systems such as pillared surfaces cannot be reduced
to 2D without overlooking important phenomena, e.g., the simultaneous wetting of several interpillar
spacings. Concerning the methods, mainly due to the significant computational cost, most approaches
dealing with 3D structures to date considered a continuum description of the liquid (and solid)
[15–17,22–24], which necessarily introduces some assumptions concerning the structure of the
interfaces, the interaction with the wall, and other nanoscale effects such as fluctuations, line tension,
etc. Such effects are in principle relevant at the nanoscale. In order to avoid these limitations and
explore the fundamentals of wetting of experimentally relevant, 3D nanotextures, here the collapse
mechanism of a large sample containing a three-by-three array of pillars is identified via molecular
dynamics (MD) combined with the string method in collective variables. Other atomistic approaches
have been recently employed which, however, lead to a discontinuous dynamics for the collapse of
the meniscus [7] (a detailed analysis of this problem is reported elsewhere [25]).

In brief, the objective of this work is addressing two open questions: (1) finding the most probable
collapse mechanism for submerged nanopillars and computing the associated free energy profile;
and (2) validating simple continuum models for nanoscale wetting, identifying which bulk, interface,
and line terms are relevant.
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Two challenges are inherent to these problems: (1) employ a model which captures the physics
at the nanoscale, including fluctuations, evaporation and condensation, and line tension; and (2)
interpret the results in simple terms, which can be used for developing design criteria. In this
work, a Lennard-Jones (LJ) fluid and solid are used to tackle the first challenge. This approach
is computationally expensive but includes all the relevant physics with minimal assumptions [26].
Concerning the second, a sharp-interface continuum model is used to interpret the atomistic results,
which yields a simple and informative picture of the phenomena and allows us to shed light on
the nanoscale effects. Results show that, differently from previous studies focusing on independent
cavities [25,27], the collapse mechanism for pillars is characterized by the combination of local
and collective effects. In particular, the meniscus breaks the symmetry imposed by the confining
geometry and the collapse happens via the local formation of a single liquid finger followed by the
correlated, collective wetting of the interpillar space of points far apart on the surface.

In interconnected geometries the meniscus is expected to assume complex morphologies during
the collapse. In the present study the (atomistic) density field ρ(x) is used in order to monitor the
process: this choice allows one to track any changes in the meniscus shape and, at the same time,
is straightforward to compute in atomistic simulations (Fig. 1). The most probable wetting path is
identified via the string method by using the density field to characterize the system configuration.
The identified path corresponds to a sequence of density fields ρ(x) at discrete steps along the
collapse process. The string method also allows for computing the free energy along the most
probable path �[ρ(x)] and, thus, the free energy barrier determining the kinetics of the process.
Indeed, we show that, even at relatively large liquid pressures, wetting requires that the system
climbs a sizable free energy barrier, which is possible only because of thermal fluctuations [28,29].

The paper is organized in a methodological section (Sec. II), in which the main conceptual aspects
of the string method are described, and a second, self-contained section in which the results on the
collapse of the superhydrophobic state are discussed in depth. Thus, the reader interested only in the
physical results can go directly to this Sec. III. The final section is left for conclusions.

II. METHODS

Typically, large free energy barriers separate the Cassie and Wenzel states. This means that, even
if thermodynamics might favor the process, i.e., the final is state more stable than the initial one, the
system still has to climb the free energy up to a saddle point (barrier) for the wetting transition to
take place. This is different from barrierless processes; in the presence of a barrier wetting is possible
only because of thermal fluctuations, which determine the time scale for observing a transition event.
This time scale is too long to be accessed by brute force MD: this is the problem of rare events
[28]. To cope with this issue, here the string method in collective variables (CVs) is used [30]. This
method allows one to follow the infrequent process at fixed thermodynamics conditions (i.e., without
increasing pressure and temperature), which implies visiting configurations characterized by high
free energies and a corresponding, exponentially low probability.

CVs at the basis of the string method are a (restricted) set of observables {θi(r)}i=1,M function of
r , the 3nf -dimensional vector of the fluid particles positions. CVs should correspond to the degrees
of freedom which are able to characterize the system along the transition from the initial to the
final state. Here we employ the coarse-grained density field, which has been used in recent works
on wetting transitions [18,25] and other hydrophobicity-related phenomena [31]. Moreover, the
density field is the cornerstone of most of meso- and macroscopic descriptions of homogeneous and
heterogeneous fluids, e.g., the classical Density Functional Theory [32,33]. Thus, the coarse-grained
density is a natural CV to study the collapse of the Cassie state.

The coarse-grained density field is defined as

θi(r) ≡ θ (r,xi) = 1

�V

nf∑
j=1

χ̃ (rj ,xi), (1)
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where θ (r,xi) is the density at the point xi of the discretized (or coarse-grained) ordinary space
[Fig. 1(b)] and χ̃ (rj ,xi) is a smoothed approximation to the characteristic function of the volume
�V around the point xi , with the sum at the right-hand side (RHS) running over the nf fluid particles.
In practice, these functions count the number of atoms in each cell in Fig. 1(b). In the following,
whenever possible, θi(r) = θ (r,xi) is replaced by the lighter notation θ (r,x), which denotes the CV
at all points xi of the discretized space, and ρ(x) a realization of this CV. Although θ (r,x), and
analogously ρ(x), is interpreted as a coarse-grained density field, we find it sometimes convenient
to consider it as an M-dimensional vector with components θi(r) (ρi , respectively).

Our aim is to find and characterize the most probable path ρ(x; τ ) followed by the system along
the Cassie-Wenzel transition. This path represents a curve in the space of the coarse-grained density
or, more visually, a series of snapshots taken at successive times τ along the wetting process. The
parametrization of this curve with the time τ of the transition is unpractical in actual calculations [34].
A more convenient but equivalent parametrization is the normalized arc-length parametrization, i.e.,
the parametrization according to the length of the curve ρ(x; τ ) at a given time τ , divided by the total
length of the curve: λ = ∫ ρ(τ )

ρC
dρ/

∫ ρW

ρC
dρ, where ρC and ρW are the density fields corresponding to

the Cassie and Wenzel states, respectively, and dρ =
√∑

i=1,M [∂ρ(xi ,τ )/∂τ ]2 dτ .
An infinite number of paths exists that bring the system from the Cassie to the Wenzel state.

The objective of the string method is to find the most probable one, which, under the assumptions
explained in the Appendix, must satisfy the condition [30]

{ĝ[ρ(x; λ)]∇ρ�[ρ(x; λ)]}⊥ = 0, (2)

where ∇ρ is the vector of derivatives with respect to the different components of the collective variable
ρ, namely, the vector whose components are ∂/∂ρi with i = 1, . . . ,M . Here the symbol ⊥ denotes
“orthogonal to the path ρ(x; λ)”; �[ρ(x; λ)] is the Landau free energy of the coarse-grained density
field ρ(x; λ) along the string. This free energy is in general related to the probability of observing
the realization ρ(x) of the coarse-grained density under the atomistic probability distribution m(r):

�[ρ(x)] ≡ −kBT ln p[ρ(x)] = −kBT ln

{∫
d r m(r)

M∏
i=1

δ[θ (r,xi) − ρ(xi)]

}
. (3)

The i-j components of the metric tensor ĝ[ρ(x)] in Eq. (2) read

gij [ρ(x)] =
∫

d r ∇rθ (r,xi) · ∇rθ (r,xj ) m(r)
∏M

l=1 δ[θ (r,xl) − ρ(xl)]∫
d r m(r)

∏M
l=1 δ[θ (r,xl) − ρ(xl)]

, (4)

where ∇r denotes the 3nf -dimensional vector of the derivatives with respect to the components of
the particle positions, ∂/∂rl

α , with α = 1, . . . ,nf and l = x,y,z.
The intuitive meaning of Eq. (2) is that the component of the force ĝ(ρ(x; λ)]∇ρ�[ρ(x; λ)]

orthogonal to the path is zero. To give a visual interpretation, �[ρ(x)] should be imagined as a rough
free energy landscape; a path satisfying condition (2) lies at the bottom of a valley connecting the
initial and final states (free energy minima) and passes through a mountain pass (free energy saddle
point).

In atomistic simulations, ĝ[ρ(x; λ)] and ∇ρ�[ρ(x; λ)] can be estimated, for each point λ

constituting the string, by an MD governed by the following equations of motion [35]:

mα r̈α = −∇rα
V (r) − k

M∑
i=1

[θ (r,xi) − ρ(xi ; λ)]∇rα
θ (r,xi) + thermo(T ) + baro(P ), (5)

where mα is the mass of the αth particle, α = 1, . . . ,nf , V (r) is the interparticle potential, and
k

∑M
i=1[θ (r,xi) − ρ(xi ; λ)]∇rα

θ (r,xi) is a biasing force which allows the system to visit regions
of the phase space around the condition θ (r,x) = ρ(x; λ). The biasing force makes it possible to
estimate the gradient of the free energy and the metric matrix of points having a very low probability
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(high free energy), such those near the transition state. In practice, ĝ[ρ(x; λ)] and ∇ρ�[ρ(x; λ)] are
computed as time averages along the MD of Eq. (5):

gij [ρ(x; λ)] = 1

tMD

∫ tMD

0
ds ∇rθ [r(s),xi] · ∇rθ [r(s),xj ],

∂�[ρ(x; λ)]

∂ρi

= − 1

tMD

∫ tMD

0
ds k{θ [r(s),xi] − ρ(xi ; λ)},

with tMD the duration of the MD simulation and the indices i and j running over the M coarse-
graining cells.

The (improved) string method [34] is an iterative algorithm that, starting from a first-guess path,
produces the most probable path ρ(x; λ) satisfying Eq. (2). Here we refrain from describing the
algorithm in detail, summarizing only the main steps of the method. For further details the interested
reader is referred to the Appendix, to the original article [34], or to reviews [28]. In the string method,
the continuum path ρ(x; λ), with 0 � λ � 1, is replaced by its discrete counterpart {ρ(x; λn)}n=1,L,
with L the number of snapshots used to discretize the path. The algorithm starts from a first guess of
the wetting path, {ρ0(x; λn)}n=1,L, and performs an iterative minimization procedure, which yields a
path with zero orthogonal component of the force: ({ĝ[ρ(x; λn)]∇ρ�[ρ(x; λn)]}⊥ = 0)n=1,L. At each
iteration, {ĝ[ρ(x; λn)]}n=1,L and {∇ρ�[ρ(x; λn)]}n=1,L are computed by the biased MD in Eq. (5)
and are used to generate a new path. The procedure is performed until convergence is reached,
i.e., when the difference in the free energy of each image between two string iterations is below a
prescribed threshold (see the Supplemental Material for convergence plots [36]).

Along the path of maximum probability one can compute the free energy profile and the associated
barrier �†, which can in turn be related to the wetting and (dewetting) transition time tCW (tWC) via
the transition state theory: tCW = t0

CW exp[�†
CW/kBT ] [tWC = t0

WC exp(�†
WC/kBT )]. In the present

article, the free energy profile along the most probable wetting path is reported against the filling
fraction �(λn) = [N (λn) − NC]/(NW − NC), where N (λn) ≡ �V

∑M
i ρ(xi ; λn) is the number of

liquid particles in the yellow region of Fig. 1(b) at the string point λn and NC and NW are the number
of particles in the Cassie and Wenzel states, respectively. In the present calculations, N and � are
nondecreasing functions of λ along the wetting path; thus, the filling fraction can be used as an
a posteriori parametrization of the most probable wetting path ρ(x; �). It is important to remark
that this does not imply that � is a good CV for the wetting transition in interconnected textured
surfaces of the type studied in this article. In fact, as shortly discussed in the next section, and more
extensively in a forthcoming article, using � or θ as CVs leads to qualitatively different results, with
those of the first CV characterized by an unphysically discontinuous path.

Summarizing, the aim of the string method in CVs is to compute the most probable path in a
complex high-dimensional free energy landscape. This is different from the objective and approach of
other techniques (e.g., umbrella sampling, restrained MD, boxed MD, etc.), which entail reconstruct-
ing the entire landscape within a predefined volume of the CV space. The advantage of the string
method is that it scales linearly with the number of CVs, while more standard methods scale
exponentially. This allowed us to investigate the collapse mechanism in the high-dimensional space
(864 degrees of freedom) of the coarse-grained density field, which would have been impossible
with other approaches.

MD simulations for computing {ĝ[ρ(x; λn)]}n=1,L and {∇ρ�[ρ(x; λn)]}n=1,L are performed at
constant pressure, temperature, and number of particles [36]. The LJ fluid is characterized by a
potential well of depth ε and a length scale σ . The (modified) attractive term of the LJ potential
between the fluid and solid particles is scaled by a constant to yield a Young contact angle on a flat
surface θY = 113◦. The pressure is close to the liquid-vapor bulk coexistence, �P ≡ Pl − Pv � 0,
while the temperature is T = 0.8 εk−1

B . Free energy profiles at different pressures can be obtained
by simply adding an analytical bulk term of the form (Pl − Pv) Vv , with Vv the volume of the vapor
bubble [7,20,24,38,39], which can be obtained from the number of fluid particles in the cavity
region (the yellow framework in Fig. 1). The first guess for the string calculation is obtained by
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running an MD simulation at high pressure. In this condition the wetting barrier is small enough
that the transition occurs on the time scale accessible by brute-force MD. We remark that the rest
of simulations for the iterative string calculations are not run at such high pressure but close to
coexistence, as said above. The simulations are run via a modified version of the LAMMPS software
[40].

III. RESULTS AND DISCUSSION

A. Mechanism of collapse

The Cassie-Wenzel transition can take place following different wetting paths; here we analyze
the one having the highest probability. At the pressures and temperatures of interest for technological
applications (e.g., drag reduction), the Cassie and Wenzel states are separated by large free energy
barriers that the system has to overcome. Thus, even if thermodynamics might favor the collapse,
the system still has to climb the free energy barrier separating the initial and final state. This
apparently nonspontaneous process can take place only because of thermal fluctuations [28,29].
This implies infrequent transition events or, which is equivalent, long transition times, much
longer than the typical time scale accessible to brute force (standard) MD. Thus, here the most
probable wetting path is computed using a special technique: the string method in collective
variables [30], which is described in detail in Sec. II. It is important to remark that in the string
method the pressure and temperature are kept constant at the prescribed values; in other words,
the path obtained via the string method is representative of the transition at constant pressure and
temperature.

The path is constituted by a sequence of atomistic coarse-grained density fields ρ(x) [Eq. (1)];
i.e., the path can be seen as a series of snapshots of the density field taken at different times
along the transition from the Cassie to the Wenzel state. It is important to remark that each
ρ(x) is obtained by performing the ensemble average over atomistic configurations consistent
with the state of the system along the path; thus, ρ(x) contains all the nanoscale information. The
morphology of the interface between the liquid and the vapor domains, the meniscus, is a simpler
and more visual observable to follow the collapse mechanism. Thus, in the following the meniscus,
which can be computed from ρ(x), will be used to describe the change of morphologies of the
liquid along the collapse process, and its effect on the free energy. These morphologies will be
discussed in detail, with particular attention to clarify the role of nanoscale aspects such as line
tension.

Figure 2 shows the collapse mechanism of the superhydrophobic state and the related free energy
profile �(�) along the most probable wetting path at a pressure and temperature close to the
Cassie-Wenzel coexistence (i.e., where the Cassie and Wenzel states have approximatively the same
free energy, T = 0.8 εk−1

B and �P = 0.011 εσ−3). � denotes the filling fraction defined as � ≡
(N − NC)/(NW − NC), with N the total number of liquid particles in the yellow regions of Fig. 1(b)
and NC and NW the number of particles in the Cassie and Wenzel states, respectively. Here and in
the following, notations of the type �(�) are used as a shorthand for the more complete notation
�(ρ(x; �)]. The wetting path is divided into five parts (I–V), corresponding to different regimes.

In I, the meniscus is pinned at the top corners of the pillars, with its curvature increasing with �.
The free energy minimum corresponds to the Cassie state, which is characterized by an almost flat
meniscus.

In II, the meniscus depins from the corners and progressively slides along the pillars filling the
interpillar space. The liquid-vapor interface has a small curvature which is sufficient to meet the
pillars with the Young contact angle. Configurations in II correspond to a linear increase of the free
energy. Given the large ratio between the height of the pillars and the spacing among them, the “sag”
mechanism [27,41], in which the meniscus remains pinned at the pillars corner along the entire
process, cannot be realized.

The transition state (TS, free energy maximum) is found in III and corresponds to the liquid
touching the bottom wall. In this part of the transition, the shape of the liquid-vapor interface
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FIG. 2. (a) Collapse mechanism of the superhydrophobic Cassie state, shown by the density isosurface
ρ∗ = 0.5 ρl , where ρl is the bulk liquid density at the simulated pressure. Images I–V illustrate typical
interface shapes corresponding to the different regimes discussed in the text. Black isolines identify the region
where the liquid is in contact with the bottom wall (III–IV); color code indicates the meniscus elevation over
the pillars bottom; the hand symbol identifies the liquid finger. The bottom images show the meniscus shape at
the transition state, where a liquid finger is formed. (b) Free energy profile as a function of the filling fraction
at �P = 0.011 εσ−3 as computed via the string method in collective variables (green) and via the macroscopic
theory in Eq. (6) (black). The absolute value of the deviation between the two estimates is shown in red dotted
line. (c) Continuum analysis of the atomistic results based on Eq. (6): the solid-vapor, liquid-vapor, and volume
contributions to the free energy are shown in dashed, dot-dashed, and solid lines, respectively. The volume of
vapor is related to the vapor filling via Vv = �(NC − NW )/(ρl − ρv).

changes dramatically: starting from an almost flat interface a liquid finger forms between two
pillars and then touches the bottom wall [see Fig. 2(a) and Ref. [42]]. The free energy barrier
for collapse is very high for the considered pressure �P = 0.011 εσ−3,��

†
CW = 670 kBT . From

this contact point, the liquid progressively fills the surrounding interpillar spaces. In the regions in
which the liquid touches the bottom, the double liquid-vapor–vapor-solid interface is replaced by
the liquid-solid interface, causing the free energy to decrease. It is clear that identifying correctly
the most probable TS is especially important because this configuration determines the free energy
barrier and, with exponential sensitivity, the collapse kinetics. In Sec. III C comparison with other
mechanisms proposed in the literature [7,41] shows how seemingly small morphological changes
are reflected in radically different estimates of these quantities.

A closer look to the configurations around the TS shows that the finger formation involves
both quasi-2D and collective wetting of the pillars (Fig. 3). In one direction (green line in Fig. 3),
the liquid finger is strongly confined between pillars. Confinement renders the wetting mechanism
effectively 2D close to the pillars centers, as demonstrated by comparing the second cut of the
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FIG. 3. Two-dimensional cuts of the number density at the transition state: the liquid finger (identified by
the hand symbol) forms at the intersection of the red and green planes. Bulk liquid density is represented in
blue and vapor in white; black isolines identify the liquid-vapor interface. The density field at the top right is
taken from the string simulations of Ref. [25], where a quasi-2D groove is considered.

density field in Fig. 3 with the 2D mechanisms of previous works [25]: the wetting of the bottom
wall happens via the formation of two asymmetric bubbles at the pillars lower corners with the
smaller bubble disappearing faster. In the orthogonal direction (red line in Fig. 3) and far from
the confined finger (blue line) the liquid-vapor interface must bend in order to recover the flat shape;
the ensuing curvature of the interface is gentle because of surface tension. This collective, large-scale
mechanism triggers the wetting of the interpillar spaces surrounding the initial finger, causing the
final collapse of the vapor domain.

Figures 2(a) and 3 show that the collapse is asymmetric and involves many interpillars spacings;
this fact suggests that assuming a symmetric mechanism [41] or simulating a single elementary cell
is insufficient to capture correctly the mechanism and the related free energy since it imposes an
unphysical symmetry to the problem. Even for the large domain simulated here, the effect of periodic
boundary conditions becomes apparent at large filling levels beyond the TS; this, however, does not
affect the estimation of the free energy barriers.

The present simulations can also help understanding the mechanism of the opposite process,
i.e., the dewetting transition from Wenzel to Cassie. Indeed, under the hypothesis of a quasistatic
transformation implicit in the string method, the forward and backward processes happen reversibly
along the same path [43]. Thus, here we describe the Wenzel-Cassie process associated to the path
in Fig. 2 paying particular attention to the aspects relevant to dewetting. In order to do that, in Fig. 4
we report the free energy profile at conditions close to bulk liquid vapor coexistence, �P ≈ 0.
Dewetting, which corresponds to the nucleation of a vapor domain in the textured surface, starts
with the formation of two low-density, flat domains at the bottom of two facing pillars. These
domains grow and merge, forming a single depleted region between the pillars. This region then
percolates to the neighboring pillars, forming a connected network. While the string identifies only
one percolating network, the texture geometry suggests that many such networks are possible, all of
which involve multiple pillars. It must be stressed that this initial “collective” nucleation process,
which corresponds to part V of Fig. 2, cannot be captured by simulating a single pillar or an
elementary cell in one or two directions [7,14,19,24]. Further moving toward the Cassie state, the
percolating, depleted domain starts to form also in the spaces among four pillars and detaches from
the bottom forming a proper bubble. This part of the path corresponds to domain IV, where the
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FIG. 4. (Top) Free energy profile at bulk liquid-vapor coexistence, �P ≈ 0, computed via the atomistic
string. (Bottom) Formation of density-depleted region between the pillars and percolation thereof (part V of
the collapse). Same color code as in Fig. 2.

free energy shows a descending trend with different slope. This branch of the process is completed
when the liquid finger finally detaches from the bottom of the surface in a point between two pillars,
domain III. The free energy barrier for dewetting at �P ≈ 0 is 480 kBT .

B. A sharp-interface interpretation of the atomistic mechanism

In order to rationalize the atomistic results in simple energetic terms, a macroscopic, sharp-
interface model of capillarity is used in connection with the data summarized in Fig. 2. For this
model the (excess) free energy reads [44]

�macro ≡ � − �ref = �PVv + γlv(Alv + cos θY Asv), (6)

where the Wenzel free energy �ref = PlVtot + γslAtot is taken as a reference and Vtot and Atot are
the total volume of the interpillar space and its internal surface area, respectively. It is important to
remark that �macro actually depends on the shape of the liquid-vapor interface �lv , which, in turn,
determines the solid-vapor one �sv and the vapor volume Vv . Since �macro defined in Eq. (6) is
a functional of the complete �lv , it can be computed for arbitrarily complex configurations of the
capillary system, e.g., along wetting paths which may or may not contain collective effects. The
first term on the RHS corresponds to the bulk energy of a system containing a vapor bubble of
volume Vv: at �P > 0 vapor bubbles are energetically hindered while at negative pressures they are
favored. This term is the driving force for the liquid-vapor transition. The second terms on the RHS
are the energy costs of the liquid-vapor and solid-vapor interfaces, respectively; both are multiplied
by the liquid-vapor surface tension γlv . The cost of Asv is modulated by the Young contact angle
cos θY ≡ (γsv − γsl)/γlv where γsv and γsl are the solid-vapor and the solid-liquid surface tensions,
respectively. In the hydrophobic case considered here (θY > π/2), it is energetically favorable to
increase Asv , e.g., by dewetting the pillars: this is why at the liquid-vapor bulk coexistence (�P ≈ 0)
the Cassie state is thermodynamically stable.

034202-9



AMABILI, GIACOMELLO, MELONI, AND CASCIOLA

The terms in Eq. (6), which are needed in order to make a connection with the atomistic
simulations, are consistent with the properties of the atomistic system and can be computed as follows
(see Supplemental Material for details on the calculations of the contact angle, surface tension, and
areas [36]). �P = 0.011 εσ−3 is fixed, while γlv = 0.57 εσ−2 and θY = 113◦ are computed via
independent MD simulations. The liquid-vapor and solid-liquid areas are computed by applying
the marching cube method [45] on the 1 × 1 × 1 σ 3 coarse-grained density field obtained from the
string calculations. The volume of vapor is computed as Vv ≡ (NW − N )/(ρl − ρv), where NW and
N are the number of particles within the yellow region of Fig. 1 in the Wenzel and in a generic
state, respectively, and ρl and ρv are the bulk liquid and vapor densities. It is important to remark
that all the physical quantities are computed independently; i.e., they are not fitted to reproduce the
atomistic free energy profile of wetting.

Figure 2(b) shows a fair agreement between the atomistic free energy and Eq. (6). In particular,
the model in Eq. (6) does not include line tension, which is often invoked to explain in macroscopic
terms nanoscale wetting phenomena [46,47]. One notices that the energetic difference between the
atomistic and macroscopic models [dotted red curve of Fig. 2(b)] is a small fraction of the wetting
barrier, ≈10%. This suggests that nanoscale effects, which include line tension, dependence of the
surface tension on the curvature of the meniscus, width of the interfaces, etc., play a minor role
in the transition path and kinetics of the wetting of the present system. In particular, considering
that the contact line changes significantly in regimes III–V, the present results indicate that line
tension does not change dramatically the free energy profile for hydrophobic pillars on the 3 nm
scale, pushing further down the limit where line effects might be relevant (recent experimental
work on superhydrophobicity [6] showed the same for textures down to 10 nm). More precisely,
the combination of atomistic simulations with the continuum analysis entailed in Eq. (6) shows
that the contribution of line tension to the intrusion or nucleation free energy barriers is negligible
for the present system. It will be interesting to use a similar approach to explore extreme confinement
(of the order of a nanometer or less), where a major contribution of line tension is expected [46].
The differences observed in the pinning region might be ascribed to the increased thickness of the
liquid-vapor interface. In terms of macroscopic theories, the latter are associated to finite temperature
effects, such as capillary waves. These effects, neglected in Eq. (6), are sizable at depinning and
seem to make the sharp-interface model less reliable there.

Apart from these minor limitations, Eq. (6) provides a simple interpretation of the atomistic
collapse mechanism shown in Fig. 2(a). In I, the area Alv of the liquid-vapor interface slightly
increases, reflecting the increasing curvature due to pinning.

In II, Alv remains constant, while Asv linearly decreases, which corresponds to an increase of the
interface area between the liquid and the hydrophobic solid. This surface term more than balances
the decreasing bulk term �PVv , resulting in a linear increase of the free energy. If the interface
were to keep this “flat” configuration until the bottom surface is fully wet, as assumed in classical
works [41,48], the linear trend would continue, determining a much larger free energy barrier
��

†
CW = 920 kBT . This figure would lead, in turn, to estimate a lifetime of superhydrophobicity

exponentially longer than for the mechanism shown in Fig. 2 (10108 times). Instead, at variance with
the classical mechanism, at a distance hT S ≈ 6 σ from the bottom surface (part III), it is energetically
more convenient to bend the liquid-vapor interface between two pillars. The free energy of formation
of this finger is seen to be negligible, while it allows the liquid to wet the bottom surface. Thus,
the two liquid-vapor and vapor-solid interfaces are replaced by a single liquid-solid one, which
decreases the total free energy by �dry − �wet = γlv(Alv,dry + cos θY Asv,dry) > 0 [Fig. 2(c)].

C. Comparison with results in the literature

It is now possible to compare the path in Fig. 2 obtained via the atomistic string with those
available in the literature and computed via continuum [15,22] and atomistic [7,14] simulations.
Pashos et al. [22] considered a sharp interface model for the liquid-vapor interface with an empirical
diffuse liquid-solid potential, which was introduced in order to simplify the numerical treatment of
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complex textures and topological changes of the meniscus (for a similar approach, see Ref. [25]; see
also the Supplemental Material for the effective diffuse liquid-solid potential computed via MD for
the present solid-liquid interactions [36]). The pillar height-to-width ratio is very low, such that the
surface is physically reminiscent of a naturally rough one rather than the artificial textures used for
superhydrophobicity [6]. In particular, the interaction length of the liquid-solid potential is roughly
half the pillar height. The path obtained with this model is still characterized by the formation
of a liquid finger touching the bottom wall in a single point with the liquid front then moving
to neighboring pillars. However, the free energy profile is very different from the present, with a
number of intermediate transition states. This discrepancy is not unexpected, given the different
pillars height and the different range of potentials employed.

Ren and coworkers [15,16] combined the string method with a mesoscale diffuse interface model
in order to study the impalement of a drop on 3D surfaces with (slender) pillars. Although the system
is rather different from the present one, the finger mechanism was found to be always energetically
favorable. The finite lateral extent of the drop, however, significantly alters the latter stage of the
Cassie-Wenzel transition.

Savoy and Escobedo [14] studied the Cassie-Wenzel transition of a nanodroplet on quasi-2D
pillars. In their atomistic trajectories obtained via forward flux sampling (FFS) [49] the formation
of a liquid finger can also be identified in some atomistic configurations. However, it is difficult to
compare other details of the path and the energetics, because the FFS method only gives access to
independent atomistic trajectories and not to the most probable density field as for the string.

Patel and coworkers [7] used umbrella sampling to study the collapse of the submerged
superhydrophobic state on pillars. This geometry is very close to the present one, the main difference
being that there a single elementary cell was studied, which, due to the periodic boundary conditions,
corresponds to the wetting of a single pillar. While a sort of finger formation is observed in
correspondence of the transition state, the subsequent wetting process substantially differs from
that in Fig. 2 in two respects. The first one is that the wetting process is discontinuous, with jumps
in the density field between neighboring configurations. This is a known artifact ensuing from the
use of a single collective variable [25] that cannot distinguish among bubble shapes enclosing the
same volume Vv; a detailed analysis on the choice of the CVs will be object of an upcoming work.
The second difference is the shape of the vapor bubbles during the later stage of the transition: the
use of a single elementary cell imposes a symmetry to them which does not necessarily correspond
to the most probable one.

Summarizing this analysis of available simulations, the formation of a liquid finger has been
reported in a number of previous works dealing with both drops and submerged surfaces, tall and
short posts [7,11,12,14,15,22,24]. There are, however, also relevant differences in the configuration of
this transition state. Here the liquid finger forms between two pillars; in such a way the liquid-vapor
interface bends only on two sides of the pillars, while the remaining sides become wet. This is
energetically favorable because the cost of replacing a portion of the two liquid-vapor and solid-
vapor interfaces with a solid-liquid interface is lower than that of increasing Alv,−γlv cos θY < γlv .
Therefore it seems that the exact point where the finger forms and, consequently, where the transition
state occurs, depends on the details of the confining geometry (in particular on the height-to-spacing
ratio of the pillars) and on the chemistry of the surface.

In general terms, the presence of the bottom surface breaks the translational symmetry of the
meniscus sliding along the pillars and thus imposes a change of topology to the vapor bubble.
The local formation of a single, relatively narrow liquid finger is the energetically favored way to
accomplish this transition. It is still an open question whether the finger should touch the bottom
surface symmetrically or not, i.e., if two equivalent vapor bubbles are formed at the bottom of the
two pillars confining the finger. For the 2D groove geometry, simulations have suggested that the
asymmetric pathway is energetically favored because it allows the formation of a single vapor bubble
in a corner [25,38]. However, this finding does not exclude that other pathways are possible and might
also be favored for other reasons (e.g., kinetic or inertial reasons). Indeed, recent experiments [50] on
a similar geometry suggest that both pathways are possible. Moreover, recent string calculations [24]
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underscore that in 2D grooves pathways with both symmetric and asymmetric bubbles are possible,
with the latter having a slightly lower free energy barrier.

On pillared surfaces, careful analysis of the collapse of the superhydrophobic state by confocal
microscopy [51] revealed the (abrupt) formation of vapor bubbles at one of the pillars’ lower corners,
after the first contact with the bottom wall. This asymmetry in the last stage of the wetting process
possibly indicates that the finger formation, which is too fast to be experimentally observed, was
asymmetric too.

IV. CONCLUSIONS

In summary, rare-event atomistic simulations have provided a detailed description of the collapse
of the superhydrophobic Cassie state on a nanopillared surface. This system is often encountered in
experiments and serves as a prototype for wetting of interconnected cavities. Results have showed
that the collapse proceeds in five stages: depinning of the liquid-vapor interface from the pillars’
corners; progressive wetting of the pillars via an almost flat, horizontal meniscus; formation of a
liquid finger between two pillars which touches the bottom wall; progressive filling by a nonflat
meniscus; absorption of a percolating network of low-density domains connecting pairs of pillars.
This mechanism is very different from 2D grooves [25,27,48] and also from other 3D simulations
[7] and could be captured only with state-of-the-art simulation techniques. On the one hand,
results indicate that the system should be large enough to capture the local formation of a liquid
finger and the progressive filling of the surrounding spaces. On the other hand, the number and
choice of collective variables should allow one to resolve density changes in between the pillars.
These caveats should be borne in mind for simulations of wetting: artifacts can conceal the actual
collapse mechanism, affect the estimation of the free energy barriers and, with exponential sensitivity,
of the collapse kinetics. The continuum analysis of the MD results entailed in Eq. (6) has allowed us
to identify the different area and volume contributions to the free energy along the collapse, showing
that line tension, evaporation and condensation, and other nanoscale effects are negligible in the
present conditions. These results shed light on the wetting process of interconnected gas reservoirs
which can open new perspectives in the design of nanotextures.
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APPENDIX: THE STRING METHOD IN COLLECTIVE VARIABLES

Referring to the specialized literature for a complete derivation [30], a brief summary of the steps
needed to obtain Eq. (2) is given below to provide the uninitiated reader with the basic conceptual
framework of the string method in collective variables:

(1) A system of stochastic differential equations in the phase space of the original microscopic
system (the 6nf -dimensional space given by the vector of coordinates r and velocities, momenta
expressed in mass reduced coordinates, v = ṙ) is devised whose statistically-steady solution
follows the equilibrium probability distribution m(r,v) specified by the given ensemble [30]. Its
configurational part is the distribution m(r) = ∫

dv m(r,v) in Eqs. (3) and (4).
(2) The backward Kolmogorov equation (BKE) Lq = 0 associated with the system of stochastic

differential equations is identified. BKE is a partial differential equation for the scalar quantity q in
the 6nf -dimensional phase space of the system. L is a linear partial differential operator involving
derivatives with respect to both r and v, L = Lr,v . When BKE is solved with boundary conditions
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q(r,v) = 0 for (r,v) ∈ A and q(r,v) = 1 for (r,v) ∈ B, where A and B are the two sets in phase
space corresponding to the two metastable macroscopic states (Cassie and Wenzel, respectively) to
be addressed, its solution provides the committor q(r,v). q gives the probability that the state (r,v)
will reach B (the products, in the chemical nomenclature) before reaching A (the reactants). The
solution of the BKE satisfies a minimum principle for the functional I = ∫

m(r,v)|Lq|2 d r dv under
the given boundary conditions. The committor is the actual reaction coordinate of the transition from
A to B, and its level surfaces q(r,v) = q0 are the loci of the microstates with the same progress of
the reaction.

(3) It is assumed that the selected collective variable, namely, the coarse-grained density field
θ (r,x), provides a good description of the transition. As a consequence the transition is described
as well by minimizing the restriction Ĩ of I to the space of functions f (ρ1, . . . ,ρM ) defined on
the coarse-grained density field. This is tantamount to assuming q � f [θ (r,x)]. Two aspects are
worth being noted: (a) the minimum of Ĩ is now searched in the space of functions of M variables,
f (ρ1, . . . ,ρM ), rather than in that of functions q defined on the 6nf -dimensional phase space.
(b) The CVs are taken to depend only on the configuration of the particles and not on their velocities
v. As we shall immediately see, upon minimizing Ĩ with respect to θ , certain averages naturally
emerge. The functional

Ĩ =
∫

d r dv m(r,v)Lf [θ (r,x)]Lf [θ (r,x)]

=
∫

dv mv(v)
∫

d r mr (r)Lrf [θ (r,x)]Lrf [θ (r,x)],

where the pdf of the relevant ensemble is typically factorized, m(r,v) = mv(v)mr (r), and Lr is
the part of Lr,v , involves only derivatives with respect to the configuration r . To proceed further,
the explicit expression of Lr is needed. For the system we are considering it turns out to be
Lr = vi · ∂/∂ r i (sum is implied on repeated indices). It follows

Ĩ =
∫

dv mv(v)vp ⊗ vl :
∫

d r mr (r)
∂f

∂θi

∂θi

∂ rp

⊗ ∂θj

∂ r l

∂f

∂θj

= C

∫
d r mr (r)

∂f

∂θi

∂θi

∂ rp

· ∂θj

∂ rp

∂f

∂θj

= C

∫
d r mr (r)

∂θi

∂ rp

· ∂θj

∂ rp

∫
dρ1 · · · dρM

∂f

∂ρi

∂f

∂ρj

δ[ρ1 − θ1(r)] · · · δ[ρM − θM (r)]

= C

∫
dρ1 · · · dρM e−β�(ρ1,...,ρM ) ∂f

∂ρi

∂f

∂ρj

∫
d r mr (r) ∂θi

∂ rp
· ∂θj

∂ rp
δ[ρ1 − θ1(r)] · · · δ[ρM − θM (r)]∫

d r mr (r)δ[ρ1 − θ1(r)] · · · δ[ρM − θM (r)]

= C

∫
dρ1 · · · ρm e−β�(ρ1,...,ρM ) ∂f

∂ρi

∂f

∂ρj

gij (ρ1, . . . ,ρM ),

where � (ρ1, . . . ,ρM ) and gij (ρ1, . . . ,ρM ) have been defined in Eqs. (3) and (4), respectively. Note
that

∫
dv mv(v)vp ⊗ vl = Cδpl since the velocity of particle p is independent from particle l.

(4) The Euler-Lagrange equations for the restricted functional Ĩ are easily derived as

∂

∂ρi

(
e−β�(ρ1,...,ρM )gij

∂f

∂ρj

)
= 0

and can be interpreted as the backward Kolmogorov equation of the stochastic differential equation

dρi

dτ
= −gij

∂�

∂ρj

− 1

β

∂gij

∂ρj

+
√

2

β
g

1/2
ij ξj ,

where ξs is a white noise, 〈ξs〉 = 0, 〈ξs(τ )ξr (τ ′)〉 = δsrδ(τ − τ ′).
(5) When the thermal energy 1/β = kBT is small with respect to the typical free energy variation

along the path (of the order of the free energy barrier the system has to overcome to undergo the
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transition which, for rare events, is always much larger than kBT ) the leading term in kBT is
negligible and one is left with a stochastic dynamics in which the probability of a discrete path
connecting the initial and final state is a product of Gaussian terms. One can, thus, search for the
most probable among these paths, i.e., the path that the transition almost certainly follows:

dρi

dτ
= −gij

∂�

∂ρj

,

with boundary conditions ρa ∈ a and ρb ∈ b, being a and b the two sets in the space of coarse-grained
density distributions which corresponds to the Cassie and the Wenzel state, respectively. The problem,
as stated in the main text, cannot be easily solved by direct integration. Reparametrization of the
curve ρ(x) in terms of the arc length λ yields Eq. (2) and the problem can be reinterpreted as the
relaxation of a string ρ(x; λ) joining the two metastable states ρ(x,0) = ρa ∈ a and ρ(x,1) = ρb ∈ b

towards the most probable path.
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