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Segregation of helicity in inertial wave packets
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Inertial waves are known to exist in the Earth’s rapidly rotating outer core and could be
important for the dynamo generation. It is well known that a monochromatic inertial plane
wave traveling parallel to the rotation axis (along positive z) has negative helicity while the
wave traveling antiparallel (negative z) has positive helicity. Such a helicity segregation,
north and south of the equator, is necessary for the α2-dynamo model based on inertial
waves [Davidson, Geophys. J. Int. 198, 1832 (2014)] to work. The core is likely to contain
a myriad of inertial waves of different wave numbers and frequencies. In this study, we
investigate whether this characteristic of helicity segregation also holds for an inertial wave
packet comprising waves with the same sign of Cg,z, the z component of group velocity. We
first derive the polarization relations for inertial waves and subsequently derive the resultant
helicity in wave packets forming as a result of superposition of two or more waves. We find
that the helicity segregation does hold for an inertial wave packet unless the wave numbers
of the constituent waves are widely separated. In the latter case, regions of opposite color
helicity do appear, but the mean helicity retains the expected sign. An illustration of this
observation is provided by (a) calculating the resultant helicity for a wave packet formed by
superposition of four upward-propagating inertial waves with different wave vectors and
(b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation.
Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force,
buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The
helical structure of the wave packet is likely to remain unaffected by dissipation or the
magnetic field, but can be modified by the presence of linearly stable stratification and
nonlinearity.

DOI: 10.1103/PhysRevFluids.2.033801

I. INTRODUCTION

In a rapidly rotating system such as the Earth’s liquid-iron outer core, the Coriolis force arises
to conserve angular momentum in the noninertial frame of reference. Its restoring action results
in oscillations which are called inertial waves owing their name to the rotational inertia. Out of
the several interesting characteristics of inertial waves that we will discuss in detail later on, two
important ones are as follows: (a) inertial waves are helical, i.e., each monochromatic wave has
helicity u · (∇ × u) (which strictly speaking is called helicity density) [1] of one particular sign—
either positive or negative; (b) the waves propagating parallel to the axis of rotation possess negative
helicity and those traveling antiparallel possess positive helicity [2]. It turns out that this helicity
segregation characteristic (negative above and positive below assuming the rotation rate � = �ez)
can be successfully used as a diagnostic to detect inertial waves [3,4]. Moreover, it has been proposed
recently that inertial waves can even support dynamo action in the Earth’s convective outer core
(referred to as the core henceforth) and help in sustaining the geomagnetic field against the natural
dissipative decay [5]. Obviously, any real or practical medium such as the core will contain several
inertial waves, with different frequencies and wave numbers, which will superimpose to form wave
packets. It is then natural to ask whether this helicity segregation characteristic of a monochromatic
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A. RANJAN

FIG. 1. (a) Helicity isosurfaces in a geodynamo simulation [10], (b) energy isosurfaces colored by helicity
above and below a layer of buoyant anomalies [4], and helicity on the horizontal planes (c) I, (d) II shown in
(b). Red is positive and blue is negative helicity. Images are obtained with permission from Oxford University
Press.

inertial wave also holds for a wave packet always. Indeed, this is the central question that we seek
to answer in this study.

Helicity, which physically signifies the “writhe and twist” among the streamlines and the vortex
lines, is considered to be an important ingredient in the α2-dynamo model for the core [2,6].
According to this model, the lifting and twisting of magnetic field lines by the flow (hence the role
of helicity), can create the poloidal component of the magnetic field from the toroidal (and vice
versa) thus sustaining the dynamo [7]. However, this model works only if there is a segregation of
helicity north and south of the equator outside the tangent cylinder circumscribing the inner core [8].
This is indeed observed in geodynamo simulations [9,10] [see Fig. 1(a) for example] and leads us
to ask if it could be linked to the helicity segregation characteristic of inertial waves. In a seminal
study, Moffatt [2] found that a random superposition of inertial waves can produce a self-sustaining
dynamo in a rotating conducting fluid with nonzero helicity. However, if the waves going upwards
and downwards superimpose in equal proportions, then the helicity will obviously be zero. Therefore,
the model needs a mechanism to have a preferential distribution of more waves propagating upwards
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than downwards in the northern hemisphere in order to create negative helicity (and the other way
around in the south). Interestingly, such a mechanism exists in the core in the form of a preferential
concentration of buoyant anomalies near the equator, at least in the geodynamo simulations [11],
which can act as a localized source of inertial waves. This observation was exploited by Davidson [5]
to propose a α2-dynamo cartoon based on near-zero frequency inertial waves, which was found to
work very well in a periodic box with a layer of buoyant anomalies [4] [Fig. 1(b)]. However, this
cartoon depends on whether or not the helicity segregation property of a monochromatic inertial
wave extends to wave packets, the subject of the present study.

To remind the reader of the helical nature of inertial waves, let us briefly review their well-known
theory [12]. For an incompressible fluid, the momentum equation in a rotating reference frame is
written as

Du
Dt

= − 1

ρ
∇p̃ + ν

∂2u
∂x2

− 2� × u, (1)

where p̃ = p − (ρ/2)(� × x)2 incorporating the centrifugal force. If the flow is inviscid and at very
low Rossby number, Ro = u/2�l, then

∂u
∂t

= − 1

ρ
∇p̃ − 2� × u. (2)

Taking the curl of (2) and using incompressibility leads to

∂ω

∂t
= 2(� · ∇)u, (3)

where ω = ∇ × u is the vorticity. Applying ∇ × ∂/∂t to (3), using (2) and ∇ · u = 0, leads to

∂2

∂t2
(∇2u) + 4(� · ∇)2u = 0. (4)

This equation supports plane waves of the form

u = û exp[i(k · x − �t)] (5)

and is hyperbolic if � 2 � 4�2, where i2 = −1. The dispersion relation, therefore, is

� = ±2(k · �)

k
= ±2kz�

k
, (6)

where k = |k|. The group velocity of inertial waves is given by

Cg = ±2k × (� × k)

k3
. (7)

It is interesting to note that the frequency � is independent of the wave number k, but depends on
θ , the orientation between � and k. This means � = ±2� cos θ and

Cg = ±2�

k
(ê� − cos θ êk), (8)

where ê� and êk are unit vectors along � and k respectively. From (5), the vorticity can be written
as

ω = ik × û exp[i(k · x − �t)],

so that ω̂ = ik × û is the vorticity amplitude. Using (3) we can write

−i� (k × û) = 2(k · �)û. (9)

Furthermore, using the dispersion relation (6),

ω̂ = ik × û = ∓kû, (10)
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which means that the vorticity and velocity amplitudes for a monochromatic inertial wave are
aligned. The helicity of the wave is maximal with

ĥ = ∓k|û|2. (11)

If the vorticity and velocity were not aligned, then |û · ω̂| < |û||ω̂| and the wave would not be
maximally helical. More importantly, this result indicates inertial waves with negative helicity (or
positive � · Cg) travel upwards, whereas those with positive helicity travel downwards [2] [note that
the phase of a vertically propagating wave is kz(z ∓ 2�t/k)]. The low-frequency inertial waves,
with � ≈ 0, are particularly important as they travel nearly parallel to the rotation axis with group
speed Cg ≈ 2�/k [see Eq. (8)], and lead to the formation of columnar vortices [3,4,13].

With their many interesting properties, inertial waves have intrigued scientists, engineers, and
mathematicians alike. There is an oft-forgotten but important distinction between the inertial waves
in an unbounded domain and those in a confined domain, also called inertial modes [14]. There are
several studies on inertial modes in confined rotating systems such as a spherical shell or a cylindrical
annulus [15,16]. For example, in a recent study for a rotating annulus, Zhang, Liao, and Kong [16]
suggested that inertial modes excited by thermal convection interact nonlinearly to create a transition
from laminar to weakly turbulent flow. However, as we shall see later, the inertial modes in a confined
domain are not always maximally helical along ±z. Therefore, in this study, we shall restrict our
discussion to (unbounded) inertial waves, and in the linear limit of small Ro. Although the presence
of a spherical boundary may be important in the core, inertial waves can be triggered by localized
sources far from the boundaries, also known as the “far-field approximation” [17]. Examples of such
localized sources are the buoyant anomalies near the equator [11] that can radiate low-frequency
inertial waves and help maintain the columnar flow in the core, an important ingredient in maintaining
a dipolar magnetic field [9].

In a geophysical or astrophysical setting, along with the Coriolis force, there exist several others,
such as the Lorentz force due to the coupling of the magnetic field with the velocity, the force due
to buoyancy stratification and the dissipative force, all or some of which could be important. Thus
arises a curiosity to find out if these forces could influence the helical structure of inertial wave
packets. Towards the end of the paper, we will briefly discuss this point in light of the present study
and earlier research. But first, we shall derive a general form of the polarization relations for inertial
waves (Sec. II). Using these relations, we shall subsequently evaluate the helicity of a wave packet
forming as a result of linear superposition of inertial waves (Sec. III). As an illustration, in Sec. IV,
we shall compute the helicity for a Gaussian eddy under rotation using direct numerical simulation
(DNS) in a periodic box at Ro = 0.09.

II. POLARIZATION RELATIONS

In this section, we derive the relationships between the individual velocity component amplitudes,
also called the polarization relations. The equation of motion (1) can be written in Fourier space as

(−i� + νk2)ûi + ikj ûj ûi = −iki p̂ + 2εijmûj�m, (12)

where εijm is the Levi-Civita symbol and equals 1 or −1 depending on whether the order of i, j , and
m is cyclic or acyclic, respectively, and 0 otherwise. Similarly, the continuity equation in Fourier
space is

kiûi = 0. (13)

Using (13), ignoring nonlinearity (low Ro) and assuming negligible viscosity, we get

−�ûi + kip̂ + 2iεijmûj�m = 0 (14)

if we multiply by −i. Multiplying it further by ki and �i , and using (13) we get

k2p̂ + 2iεijmki ûj�m = 0, (15)

−�ui�i + p̂ki�i = 0, (16)
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respectively. With rotation parallel to vertical, i.e., � = (0,0,�), these become

k2p̂ + 2i(kxûy� − kyûx�) = 0, (17)

−�ûz + kzp̂ = 0. (18)

[Note that Chandrasekhar [18] had derived the polarization relations assuming k = (0,0,k). Of
course, there is no loss of generality if a coordinate axis is assumed to be along the wave vector for a
monochromatic wave. Our assumption k = (kx,ky,kz) is more general and will be useful in the next
section where we will consider a wave packet.] Eliminating p̂, and using (13) we can get

ûx

ûz

= −−k2ky� + 2i�k2
z kx

2i�kz

(
k2
x + k2

y

) ,

ûy

ûz

= −k2kykx� + 2i�k2
z k

2
y

2i�kzky

(
k2
x + k2

y

) . (19)

Using the dispersion relation for inertial waves, which is � = ±2�kz/k,

ûx

ûz

= ±kyk − ikxkz

i
(
k2
x + k2

y

) ,

ûy

ûz

= ∓kxk − ikykz

i
(
k2
x + k2

y

) . (20)

Therefore,

ûx

ûy

= ±kyk − ikxkz

∓kxk − ikykz

. (21)

In a complex representation, the polarization relations can be written as

ûx

ûz

= − kxkz

k2
x + k2

y

∓ i
kyk

k2
x + k2

y

,

ûy

ûz

= − kykz

k2
x + k2

y

± i
kxk

k2
x + k2

y

, (22)

ûx

ûy

= − kxky

k2
x + k2

z

± i
kzk

k2
x + k2

z

,

so that their magnitudes are∣∣∣∣ ûx

ûz

∣∣∣∣
2

= k2
z + k2

y

k2
x + k2

y

,

∣∣∣∣ ûy

ûz

∣∣∣∣
2

= k2
z + k2

x

k2
x + k2

y

,

∣∣∣∣ ûx

ûy

∣∣∣∣
2

= k2
z + k2

y

k2
x + k2

z

. (23)

The velocity amplitude can, therefore, be written in terms of component amplitudes as

|û|2 = û2
x + û2

y + û2
z =

{
k2
xk

2
z + k2

yk
2 + k2

yk
2
z + k2

xk
2(

k2
x + k2

y

)2 + 1

}
û2

z,

= 2
k2

k2
x + k2

y

û2
z. (24)

As we will soon find out in Sec. III, Eq. (24) is very useful as it helps relate |û| with ûz. If the angle
between k and � is θ , and if (kx,ky,kz) = (k sin θ,0,k cos θ ), the equations become

ûz = − tan θûx, ûz = ∓i sin θûy, ûx = ±i cos θûy. (25)
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(i) If θ = 0, the amplitudes û = ûx(1,±i,0).
(ii) If θ = π/2, the amplitudes û = ûz(0,∓i,1).
Under these conditions, inertial waves are circularly polarized, i.e., the velocity field rotates with

a constant amplitude in a direction perpendicular to the rotation axis. As a validation, using the
polarization relations (22), we can derive the vorticity amplitudes using

[ω̂x,ω̂y,ω̂z] = [i(kyûz − kzûy),i(kzûx − kxûz),i(kxûy − kyûx)] (26)

and we find that we once again arrive at (10), i.e., ω̂ = ∓kû.

III. LINEAR SUPERPOSITION OF INERTIAL WAVES AND THE RESULTANT HELICITY

In this section, we consider the superposition of inertial wave modes and the resultant sign
of helicity. To start with, let us consider the most general form of two inertial waves with the
wave-number vectors kn = (kn;x,kn;y,kn;z), and velocities given by un = ûn exp(iϕn), where n = 1,2
for the first and the second wave respectively and ϕn = (kn · x − �nt) are their phases. The amplitude
ûn = ∑

û(n;x) êx , so that the complex component amplitudes û(n;x) = û[n;(x,y,z)] are related by the
polarization relations derived earlier (22). Similarly, the vorticity can be written as ωn = ω̂n exp(iϕn),
so that the amplitudes for inertial waves are ω̂n = ∓kûn (10). Considering at first the contribution
from only the x components of the velocity and vorticity to the helicity, i.e., hx = Re[ux]Re[ωx],

hx = Re[û1;x exp(iϕ1) + û2;x exp(iϕ2)]Re[∓k1û1;x exp(iϕ1) ∓ k2û2;x exp(iϕ2)]. (27)

If û1;(x,r) and û1;(x,i) are the real and imaginary parts of û1;x respectively (and similarly for û2;x),
then rearranging the above terms after a little algebra, we can write

hx = ∓k1(û1;(x,r) cos ϕ1 − û1;(x,i) sin ϕ1)2 ∓ k2(û2;(x,r) cos ϕ2 − û2;(x,i) sin ϕ2)2

∓(k1 + k2)[û1;(x,r)û2;(x,r) cos ϕ1 cos ϕ2 + û1;(x,i)û2;(x,i) sin ϕ1 sin ϕ2

−û1;(x,r)û2;(x,i) cos ϕ1 sin ϕ2 − û1;(x,i)û2;(x,r) sin ϕ1 cos ϕ2], (28)

which, put simply, is

hx = ∓k1Re[u1;x]2 ∓ k2Re[u2;x]2 ∓ (k1 + k2)Re[u1;x]Re[u2;x]. (29)

It may be noted that the first term, a perfect square, results from the first wave and hence the helicity
is of a particular sign, as expected. However, with two waves superimposed, the net helicity depends
on the sign of the third term corresponding to the cross multiplication of amplitudes. To further
investigate this, the above expression can be modified as

hx = ∓k1 + k2

2
(Re[u1;x] + Re[u2;x])2 ∓ k1 − k2

2
(Re[u1;x])2 ± k1 − k2

2
(Re[u2;x])2. (30)

It is now evident that either of the last two terms can contribute to an opposite sign helicity depending
on whether k1 < k2 or otherwise. Repeating the procedure to obtain (28) for other velocity and
vorticity components, the total helicity can be expressed as

h = ∓
( ∑

x=x,y,z

k1(Re[u1;x])2 + k2(Re[u2;x])2

)
∓ (k1 + k2)

( ∑
x=x,y,z

Re[u1;x]Re[u2;x]

)
. (31)

Since the terms due to the cross multiplication of amplitudes occur in pairs, a general expression for
the helicity due to the superposition of n inertial waves can be written as

h = ∓
(∑

n

∑
x=x,y,z

kn(Re[un;x])2

)
∓

⎡
⎣ i �=j∑

i,j=1,...,n

(ki + kj )

( ∑
x=x,y,z

Re[ui;x]Re[uj ;x]

)⎤
⎦. (32)

For example, let us now compute the total helicity due to the superposition of four waves propagating
along +z assuming the same vertical velocity amplitudes ui;(z,r) = 0.1 and ui;(z,i) = 0.01. The x,y

033801-6



SEGREGATION OF HELICITY IN INERTIAL WAVE PACKETS

TABLE I. Various wave vector combinations superimposed for the helicity field in Figure 2.

Case Wave vector (kx,ky,kz) combinationsa Mean h

A (1,−1,1), (1,−1,1), (−1,15,1), (−1,1,1) −0.27
B (15,−1,1), (1,−1,1), (−1,15,1), (−1,1,1) −0.35
C (15,−1,1), (1,−15,1), (−1,15,1), (−1,1,1) −0.45
D (15,−1,1), (1,−15,1), (−1,15,1), (−15,1,1) −0.52

aThe Cg,z, calculated using Eq. (7), comes out to be 4�/3
√

3 ≈ 0.77� for the wave vectors with k = √
3, and

452�/(227)3/2 ≈ 0.13� for those with k = √
227.

amplitudes of velocity can be calculated from the polarization relations (22). Four wave vector
combinations (A–D) each comprising four waves with the same sign of Cg,z, listed in Table I, are
considered for illustration. We find that for all combinations, the helicity is primarily negative evident
from Figs. 2(a)–2(d). However, for the first two combinations (A,B) shown in Figs. 2(a) and 2(b), for

FIG. 2. Helicity h in a horizontal (XY ) plane as a result of superposition of four inertial waves at z = π/4
with wave-vector combinations (a) A, (b) B, (c) C, and (d) D listed in Table I. If we take Ro = 0.1 and l = π/k,
we can find � = kzû/0.1π if Ro = û/(2l�) and � = 2�kz/k. Note the contour threshold is different for the
combination A-B to highlight the opposite helicity color.
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which ki is (1,−1,1),(1,−1,1),(−1,15,1),(−1,1,1), and (15,−1,1),(1,−1,1),(−1,15,1),(−1,1,1)
respectively, there are periodic regions of opposite sign (i.e., positive) helicity albeit with much lower
magnitude. These regions disappear if the wave-number magnitude ki is the same or nearly the same
for all four modes as is evident from Figs. 2(c) and 2(d). Thus, regions of opposite helicity may
result if wave modes with a large difference in their wave-number magnitudes are superimposed.
Moreover, as a quantitative evidence in support of the above observation, the values of mean helicity
listed in Table I show that the magnitude increases from 0.27 for the combination A to 0.52 for D.

For the combinations, if we assume different wave amplitudes, the net effect is to increase or
decrease the helicity magnitude without affecting the pattern. Moreover, a phase difference between
the superimposed waves alters the locations of the positive and negative helicity but the pattern
and the magnitudes remain the same. If waves are superimposed such that some are propagating
upwards (positive Cg,z, negative helicity) and some downwards (negative Cg,z, positive helicity)
then, obviously, helicities of both signs will result. Then, if the wave amplitudes are comparable and
there are equal number of upward-propagating and downward-propagating waves, the mean helicity
will be close to zero. An example of this situation is homogeneous turbulence in a periodic box
under rapid rotation, which will remain nonhelical even though inertial waves may exist locally [19].
The example with four upward-propagating waves considered above is relevant in nonhomogeneous
situations, for example in the case of a localized layer of turbulence or buoyancy radiating inertial
waves [3,4].

IV. HELICITY OF A GAUSSIAN EDDY UNDER ROTATION

In order to test the results in Secs. II and III, we conduct the DNS of a Gaussian eddy under
rapid rotation at Ro = 0.09. The pseudospectral DNS code [20] used for our purpose solves the full
governing equations (1) with very low viscosity (initial Re = 26 400 based on the mean velocity and
eddy diameter). The time advancement is carried out using the second-order Runge-Kutta (predictor-
corrector) scheme, and the viscous terms are evaluated exactly using an integrating factor [21] which
is modified to include the rotation [20]. The initial condition is the Gaussian eddy

u = � × x exp

(
−|x|2

δ2

)
, (33)

at the center of a 5123 periodic box, where δ is the characteristic size, and � is the characteristic
angular rotation rate of the eddy. The temporal evolution of the eddy is shown in Fig. 3. The first and
second rows show the XZ planes for the velocity components uy and uz respectively, while the last
row shows the helicity. It is evident that the eddy transforms into inertial wave packets which travel
along ±z. Moreover, the dominant radiation is parallel to z as expected from theory [13], although
there is significant off-axis radiation as well. From the plots of uy , it is evident that the radiation
pattern is in the form of alternating cyclones and anticyclones, with the innermost lobes belonging
to the cyclone. (A cyclone has the same sense of rotation as the background, whereas an anticyclone
has the opposite.) More importantly, as evident from the last row in Fig. 3, the helicity segregation
is in accordance with our predictions in Sec. III, also showing that both cyclones and anticyclones
have negative helicity above and positive below. If each lobe is thought of as a slowly modulated
wave packet, in which the wave number varies around a peak k0, the helicity will be primarily of
one sign as the difference in wave numbers of the constituent monochromatic waves is likely to be
small.

To test the result (24) derived from polarization relations in Sec. II, we plot u2/u2
z at �t = 8 in

Fig. 4. In the case of a monochromatic wave, this ratio is expected to be equal to 2k2/(k2
x + k2

y).
For the vertically propagating waves, k2 ≈ k2

x + k2
y since kz ≈ 0, which means the ratio is expected

to be ≈2. Interestingly, this is also the ratio seen in Fig. 4 indicating that the relationship (24)
approximately holds even for wave packets, which is somewhat surprising given that the constituent
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FIG. 3. A Gaussian eddy under rotation for �t = (a) 0, (b) 2, (c) 4, (d) 6, (e) 8. The top, middle, and bottom
rows show the XZ planes of uy , uz, and helicity, respectively. δ = 0.125,� = 300.

FIG. 4. Plot of u2/u2
z at �t = 8. Most regions with u2

z ≈ 0 have been filtered out but some remain and lead
to the dark edges around the lobes.
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waves can have different amplitudes and phases. Moreover, this ratio is also ∼2 for the off-axis wave
packets with a large Cg,z but much larger for other off-axis waves.

V. DISCUSSION

Having found that the helicity segregation characteristic of a monochromatic wave holds for
inertial wave packets, we now turn to the effect of the various forces and physical boundaries
on their helical structure. Note that each of these effects merits a stand-alone investigation, and
has inspired several expositions [8,12,22,23]. For example, Tilgner [23] investigated the effect of
stratification and magnetic field on the inertial wave packets radiating from localized sources and
found that the magnetic field does not affect the orientation of the wave packets relative to the rotation
axis whereas stratification does. However, here we focus specifically on their helical structure and
the segregation characteristic.

A. Effect of other forces on helicity

1. Viscous dissipation

The effect of viscosity is to damp the inertial waves but the helical structure remains unchanged.
This follows easily if the viscosity of the fluid is included in the governing equations. The resulting
vorticity equation is written as

∂ω

∂t
= 2(� · ∇)u + ν∇2ω, (34)

which in turn can be used to write

−i(� + iνk2)(k × û) = 2(k · �)û (35)

in Fourier space indicating that velocity and vorticity are still aligned. The modified dispersion
relation is

� = ±2(k · �)

k
− iνk2, (36)

which was obtained by Moffatt [8] for a monochromatic wave. Interestingly, the damping does not
affect the polarization relations between wave amplitudes. To see how this holds, if the procedure
in Sec. II is repeated with viscosity included, we get Eqs. (19) but with (� + iνk2) instead of � .
Moreover, using the modified dispersion relation (36), we can also obtain Eqs. (20) once again. In
other words, the damped waves can be written in the form u = {û exp[i(k · x − �t)]} exp(−νk2t).
It may be noted that the short-wavelength waves are damped the most with (νk2)−1 as the
damping time scale. For a damped wave packet, if the procedure in Sec. III is repeated with
the damping term included, it is easy to see that the three terms in Eq. (31) will occur multiplied
with “exp[−ν(k2

i + k2
j )t],” where (i,j ) = [(1,1); (2,2); (1,2)] for the first, second, and third terms

respectively. Clearly, this is unlikely to affect the helicity sign for a wave packet.

2. Lorentz force

If rotation exists in an electrically conducting fluid, then it is natural to ask whether the helicity
of inertial waves is modified by the Lorentz force. First Lehnert [24] and later Moffatt [8] observed
that the linearized governing equations

∂u
∂t

= − 1

ρ
∇p̃ − 2� × u + 1

ρμ
(B · ∇)b, (37)

∂b
∂t

= (B · ∇)u, (38)
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which include the Lorentz force, support two classes of waves: fast inertial waves whose frequency
is mildly modified by the magnetic field and slow magnetostrophic waves. It is interesting to note
that both types of waves are helical as their vorticity and velocity amplitudes are aligned,(

� − (B · k)2

�ρμ

)
ω̂ = −(2� · k)û, (39)

where B is the mean magnetic field with b as the fluctuating part, μ is the magnetic permeability,
and � is defined by the dispersion relation

� 2 − B · k/(ρμ) = ±� (2� · k/k). (40)

Thus, for both waves, we can write ω̂ = ∓k′û, where k′ is an effective wave number. Once again,
if the steps in Sec. III are followed, a superposition of these waves is also likely to result in a similar
pattern of helicity segregation that is observed for a monochromatic inertial wave. Moreover, if the
magnetic diffusion (also called Ohmic dissipation) is included in the governing equations, we can
see that once again it only dampens the wave amplitudes without affecting their helical structure.
These observations agree with those in geodynamo simulations in the presence of strong magnetic
field [Fig. 1(a) [10] for example] wherein there is a clear segregation of helicity. As the magnetic
field in the core is not uniform, the low-frequency inertial wave packets which are triggered near the
equator may be damped before they reach the mantle, depending on the rotation versus damping time
scales. Perhaps, they could be transformed into hybrid magnetic-inertial waves which also retain the
helicity segregation characteristic of inertial waves [25,26].

3. Buoyancy

In several geophysical settings, such as in the atmosphere and the oceans, the buoyancy force is
also important apart from the Coriolis force. Often, a stable stratification is present which supports
internal gravity waves [27] that are analogous to inertial waves in rotating fluids [28]. Even in the
core, the outermost part is reported to be stably stratified [29]. To study such a flow, let us now
consider the governing equations in the rotating frame with the Boussinesq approximation (small
density perturbations)

∂u
∂t

= − 1

ρ
∇p̃ − 2� × u + cg, (41)

∂c

∂t
= N2

g
uz, (42)

where c = ρ ′/ρ, ρ ′ is the density perturbation, g = −g êz, and N = [−(g/ρ)(dρ0/dz)]1/2 is the
buoyancy frequency. The vorticity equation, therefore, is

∂ω

∂t
= 2(� · ∇)u + ∇c × g. (43)

Let us now find the helicity of a monochromatic inertia-gravity wave, the analog of inertial waves
in a rotating-stratified system. Assume c = ĉ exp[i(k · x − �t + φ)], where φ is the phase difference
with the velocity and vorticity wave vectors which vary according to the form (5). Using (42), we
find

c = iN2ûx

g�
exp[i(k · x − �t)], (44)

which implies φ = π/2, and ĉ = N2ûx/g� . We can, therefore, write

∇c × g = icg(kx êy − ky êx). (45)
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Using (45) and (43), we can write the vorticity amplitudes as

ω̂x = −2�kz

�
ûx + i

N2ky

� 2
ûz,

ω̂y = −2�kz

�
ûy − i

N2kx

� 2
ûz, (46)

ω̂z = −2�kz

�
ûz,

where � is now defined by the dispersion relation

� 2 = 4�2 k2
z

k2
+ N2

k2
x + k2

y

k2
. (47)

Note that these reduce to the corresponding relationships for inertial waves when N = 0. The
polarization relations for these waves can be found using (26) and the dispersion relation. The
helicity of a monochromatic wave can, therefore, be obtained:

h = −2�kz

�
(Re[ux]2 + Re[uy]2 + Re[uz]

2) − N2

� 2
(kyRe[ux] − kxRe[uy])Im[uz]. (48)

The first term is reminiscent of the helicity of inertial waves, but does not equal ∓k|û|2 as the
frequency is now defined by (47). When rotation is absent, the helicity is zero (as would be expected
for internal gravity waves) since ω̂z = i(kxûy − kyûx) = 0 from (46). Moreover, this estimate for
helicity suggests that for a monochromatic inertia-gravity wave, the segregation now depends not
only on the values of kx,ky,kz but also on the strength of stratification relative to rotation (N/2�).
Thus, inertia-gravity waves traveling along +z could have both positive or negative helicity. Similar
amplitude and helicity relationships can be obtained and similar observations can be made for the
cases when the direction of gravity is not parallel to rotation, as is the case in the core. Recently,
Duarte et al. [30] found an inverted sign of (azimuthally averaged) helicity, i.e., positive in the north
and negative in the south, in their solar dynamo simulations with mild stratification in the interior.
The “inversion mechanism” proposed by them relies on the generation of positive radial vorticity
in upwelling flows due to the action of the density gradient and the Coriolis force. This can be
understood if we consider a quasisteady version of Eq. (43), ∂ω/∂t ≈ 0, in which a balance exists
between the Coriolis and the buoyancy terms. However, in a dynamic system, the inertia-gravity
waves, which are essentially oscillations about the equilibrium, and wave packets could play an
important role in the helicity inversion.

Of course, if N = 0 there are no inertia-gravity waves but there can still be a “local” generation
of helicity through vorticity (43). To see how, consider the evolution equation for helicity which can
be derived using (41) and (43):

∂h

∂t
= − 1

ρ
(ω · ∇p̃) − 2ω · (� × u) + 2u · (� · ∇)u + ω · cg + u · ∇c × g. (49)

Using appropriate vector identities and zero divergence of velocity and vorticity, the first three terms
on the right-hand side can be combined as ∇ · [−(ωp̃/ρ) + 2(u · �)u)]. Under geostrophic balance,
the divergence of these terms should be zero, so that the other terms represent the ageostrophic
helicity sources due to the combined action of buoyancy and rotation, which can be computed in
numerical simulations. Indeed, both positive and negative helicity can be created by the buoyancy
field as was observed by Davidson and Ranjan [4] [see Fig. 1(c)].

4. Nonlinearity

The discussion below is about the nonlinearity due to the advection term in Eq. (1) which is often
called the “inertial term,” a nomenclature that we avoid so as to prevent confusion with inertial
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waves. So far in this study, we have considered the linear limit when the Coriolis forces dominate,
i.e., when the Ro 	 1. Recent studies have shown that inertial waves dominate the dynamics up to
Ro = 0.4 both in the context of rotating turbulence [31] and for geophysical vortices [32]. However,
in the regime 0.4 < Ro < 1, when both Coriolis and nonlinear terms may be important, inertial
waves may not only exist but may even interact nonlinearly. Note that this (strong) interaction
is different from the weakly nonlinear resonant-triad interactions [33,34] in the low Ro 	 1 but
high Re limit. Using numerical simulations, Zhang, Yi, and Wang [35] investigated the nonlinear
evolution of an internal gravity wave packet and found that the temporal variation of the amplitudes
and phases was as would be expected according to the linear gravity theory. If we speculate that this
would also apply to inertial waves, we might then ask whether the inertial wave packets retain their
helicity characteristic when they interact. According to Kraichnan [36], for a wave triad such that
their wave numbers are related as k = p + q, the wave k does not necessarily have the helicity of the
same sign as that of the other two waves p,q which are of maximal helicity. This observation agrees
well with the experiments of Bordes et al. [34] where the helicity of the two secondary waves arising
due to subharmonic instability was neither maximal nor was it necessarily of the same sign as that
of the primary inertial wave with maximal helicity. Thus, it is possible that several such (nonlinear)
interactions between inertial waves may indeed lead to the production of helicity of opposite sign.
A similar behavior might be expected if the waves exist along with a significant mean flow [37].
However, since the Ro in the core is believed to be rather small [12] (∼10−6), the nonlinear term in
the momentum equation is unlikely to be important.

B. Presence of boundaries

In many geophysical situations such as the core, the presence of a physical boundary can affect
the helicity of inertial waves. Incorporating the correct boundary conditions leads to normal-mode
solutions of the wave equation (4) which have been described at length by Greenspan [14]. These
are inertial modes which share some characteristics with their unbounded twin—the inertial waves,
such as the dispersion relation, the range of frequency [−2�,2�]—and have even been detected
in the core [38]. But are the monochromatic inertial modes maximally helical? Not necessarily.
This is because on reflection from the boundary, the sign of helicity reverses since the frequency
(2� · k/k) and the sense of rotation are conserved [39]. To illustrate this quantitatively, if we consider
the solutions of the boundary-value problem obtained for a rotating cylindrical annulus by Zhang
et al. [15] and calculate the helicity of a monochromatic inertial mode, we will find that its sign
can be both positive or negative for ±z (see details in the Appendix). One may speculate that this
argument can be extended to inertial modes in a spherical shell [15] and also to those modes that
are excited by thermal instabilities [16]. Moreover, although the inertial mode is not a (stationary)
standing wave [14], their frequency is determined by the boundary unlike that in the case of waves
where it is mostly determined by the initial wave-number distribution of the fluid disturbance. Since
the helicity of inertial waves could be an important ingredient for the α2 geodynamo model [5],
perhaps it is wise to distinguish the modes from the waves, particularly in the context of an enormous
and vigorously convective system such as the core where both may coexist. This distinction will
also apply to the family of Rossby waves [22] which can exist in confined systems and are reported
to be special type of low-frequency inertial modes [14].

VI. CONCLUSIONS

In this study, we have investigated the helicity of inertial wave packets formed by linear
superposition of monochromatic waves propagating in a particular direction. For this purpose,
we first derive a general form of the polarization relations for inertial waves (22). We find that
the helicity of an inertial wave packet is likely to possess the segregation characteristic (negative
above and positive below) of monochromatic waves unless the wave-number magnitudes are widely
separated in which case helicity of the opposite sign may result. This has been illustrated using a
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linear superposition of four monochromatic inertial waves. The DNS of a Gaussian eddy under rapid
rotation reveals that for slowly modulated wave packets the segregation characteristic is likely to
hold. This segregation is also seen in several geodynamo simulations and is an important ingredient
in the α2-dynamo models, particularly in the model based on inertial waves [5]. Furthermore, the
polarization relations derived in this study can be used to estimate other interesting quantities such
as the kinetic energy transport, wave action, and the wave-induced mean flow for inertial waves, as
has already been done for internal gravity waves [27].

We also discuss the change (if any) in this segregation characteristic due to the dissipative,
Lorentz, buoyancy, and nonlinear forces. The helical structure of the wave packet is likely to be
unchanged in the presence of the Lorentz force or viscous dissipation [8]. However, a dominance of
(stable) stratification is likely to modify this characteristic and so is the presence of nonlinearity. To
be more conclusive, these findings need to be tested using model problems such as a Gaussian eddy
or a buoyant blob for different (relative) strengths of the dominant forces. In the core, the Coriolis
and the Lorentz force are said to be the most important forces. This indicates that the dynamics in
the core could support weakly modified inertial waves and hybrid magnetic-inertial waves [25,26]
which retain their helicity segregation characteristic in the presence of the magnetic field. However,
there could be other local sources of helicity apart from the waves which may be present in the
core, such as the Ekman layers or localized buoyancy sources. Work is underway to test these ideas
using model problems and spherical geodynamo simulations. Lastly, the results derived in this study
for inertial wave packets can be readily extended to magnetostrophic wave packets and used for
computing the total helicity estimates equivalent to (32) for the cross helicity (u · B) or the magnetic
helicity [6] (A · B, where ∇ × A = B).
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APPENDIX

Here we calculate the helicity of inertial modes. Following are the velocity solutions of the
boundary-value problem in a rotating cylindrical annulus which were obtained by Zhang et al. [15]
(see Appendix of his paper). We follow his notation, so that σ = �/2� where |σ | < 1. The velocity
components of inertial modes in cylindrical coordinates (s,φ,z) are

us = −i

(
σf ′(s) + mf (s)

s

)
cos(nπz) exp i(mφ + 2σ t),

uφ =
(

f ′(s) + mσf (s)

s

)
cos(nπz) exp i(mφ + 2σ t), (A1)

uz = −i
(1 − σ 2)

σ
nπf (s) sin(nπz) exp i(mφ + 2σ t),

where m is the azimuthal wave number, n is the number of zeros along z, the superscript ′ denotes
the derivative with respect to s, and

f (s) = [m(1 − σ )1/2Km(ξo) + nπso(1 + σ )1/2Km−1(ξo)]Jm(ξ )

−[m(1 − σ )1/2Jm(ξo) + nπso(1 + σ )1/2Jm−1(ξo)]Km(ξ ) (A2)

so that the subscript “o” denotes the outer radius of the cylinder,

ξ = nπ

σ
(1 − σ 2)1/2,
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and Jm, Km are the Bessel functions of the first and second kind, respectively. The helicity of the
mode can be written as

h = usωs + uφωφ + uzωz, (A3)

where

ωs =
(

1

s

∂uz

∂φ
− ∂uφ

∂z

)
,

ωφ =
(

∂us

∂z
− ∂uz

∂s

)
, (A4)

ωz = 1

s

(
∂suφ

∂s
− ∂us

∂φ

)
.

After some algebra, we find the vorticity components and helicity to be

ωs =
(

mf (s)

sσ
+ f ′(s)

)
(nπ ) sin(nπz) exp i(mφ + 2σ t),

ωφ = i

(
mf (s)

s
+ f ′(s)

σ

)
(nπ ) sin(nπz) exp i(mφ + 2σ t), (A5)

ωz =
(

f ′′(s) + f ′(s)

s
− m2f (s)

s2

)
cos(nπz) exp i(mφ + 2σ t),

h = iH exp i(mφ + 2σ t), (A6)

FIG. 5. H (left) and hr (right) for inertial modes in a cylindrical annulus.
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where

H =
(

[f ′(s)]2 − f (s)f ′′(s) − f (s)f ′(s)

s

)(
1

σ
− σ

)
(nπ ) sin(2nπz)

2

and the superscript ′′ denotes the second derivative with respect to s. The relative helicity can be
calculated as hr = h/|u||ω|. For illustration, we choose m = 5, n = 1, σ = 0.05, for a cylindrical
annulus in which 0.5 < s < 1.0 and −2.0 < z < 2.0. The plots of H and hr are shown in Fig. 5. It
is evident that the helicity sign of the inertial modes changes sinusoidally in z so that the modes vary
from being maximally helical to nonhelical for both positive and negative z. However, the modes
are close to being maximally helical in the s direction. This holds for other values of m,n,σ as well,
not shown here. This result is not surprising given that the velocity and vorticity amplitudes in s,φ

are aligned whereas those in z are not.
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