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Jetting of a shear banding fluid in rectangular ducts
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Non-Newtonian fluids are susceptible to flow instabilities such as shear banding, in which
the fluid may exhibit a markedly discontinuous viscosity at a critical stress. Here we report
the characteristics and causes of a jetting flow instability of shear banding wormlike micelle
solutions in microfluidic channels with rectangular cross sections over an intermediate vol-
umetric flow regime. Particle-tracking methods are used to measure the three-dimensional
flow field in channels of differing aspect ratios, sizes, and wall materials. When jetting
occurs, it is self-contained within a portion of the channel where the flow velocity is greater
than the surroundings. We observe that the instability forms in channels with aspect ratio
greater than 5, and that the location of the high-velocity jet appears to be sensitive to stress lo-
calizations. Jetting is not observed in a lower concentration solution without shear banding.
Simulations using the Johnson-Segalman viscoelastic model show a qualitatively similar
behavior to the experimental observations and indicate that compressive normal stresses in
the cross-stream directions support the development of the jetting flow. Our results show
that nonuniform flow of shear thinning fluids can develop across the wide dimension in
rectangular microfluidic channels, with implications for microfluidic rheometry.
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I. INTRODUCTION

Complex fluids are characterized by a variety of rheometric tools that measure material functions,
such as viscosity, normal stresses, viscoelastic moduli, etc. Capillary and slit rheometers have
several advantages and disadvantages for measuring these properties. Such rheometers are simple
and extremely accurate [1], and even non-Newtonian fluids are analyzed accurately with the
procedure of Rabinowitsch [2]. Microfluidic approaches to capillary and slit rheometry are especially
advantageous for a small sample volume [3] and depending on channel geometry permit access to
high shear rates at low to modest Reynolds number [4,5]. In this paper, we will explore how channel
geometry introduces complex flow behavior in strongly non-Newtonian fluids.

Wormlike micelles (WLMs), which are flexible elongated cylindrical aggregates self-assembled
from surfactants, are examples of a very complex non-Newtonian fluid [6–8]. In an applied flow,
a non-Newtonian response results in entanglement or disentanglement of these wormlike threads,
structural alignment with the flow, and reversible breaking of the micelles [9]. In the limit of fast
micelle breakage, the single-mode Maxwell model can be used to describe the linear viscoelastic
response of the fluids at low frequencies, while a more detailed model is required to understand
the full frequency response [10–13]. Above a semidilute concentration limit, a dramatic drop in
viscosity occurs at a critical applied stress, indicating a transition to a different fluid microstructure
[14]. This structural transition in the fluid accompanies a nonmonotonic stress response as a function
of applied shear rate [15], so that multiple shear rate values are stable at a given stress. Rheological
measurements provide values for the stress plateau and the shear rates that the plateau spans. These
parameters are useful for understanding shear banding in more complex flow geometries.

In a shear flow with a constant applied shear rate, a shear banding fluid can separate into two and
possibly more shear bands, where the local shear rate differs from the applied one. Shear banding
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occurs when the fluid microstructure cannot stabilize to match the applied shear rate, and instead, the
fluid responds by partitioning into shear rates with stable microstructures [16–19]. The location of the
interface between the two shear bands has been shown to scale with the applied shear rate [20]. Even in
shear flow, more complex behavior can arise; examples of this include velocity fluctuations in the vor-
ticity direction and fluctuations in the shear rates or wall slip [21–28]. The stability of the interface be-
tween the two shear bands has also shown complex behavior [21,22,29,30] that can manifest in veloc-
ity variations along the vorticity direction [31,32] and in time-dependent flows [22,23,25,26,33,34].

While simple shear flow is a useful tool for rheological measurements, the common use of WLMs
in applications that require pressure-driven flow motivates studying their behavior in capillaries and
microfluidic channels. A variety of flow measurement techniques have been used to measure flow
profiles of WLMs, including magnetic resonance imaging and fluorescent particle image velocimetry
[27,35–40]. These studies have shown a dramatic increase in the volumetric flow within the capillary
as a function of pressure, described as the “spurting” effect. The spurting flow is a consequence of the
transition to pluglike flow, characterized by a high shear rate region near the wall and a relatively low
shear rate region through the center of the channel. More complex behavior has also been observed
in pressure driven flow, including temporal flow fluctuations [38,41–43].

Rheological measurements of shear banding fluids are particularly informative when combined
with in situ structural measurements such as scattering, microscopy, birefringence, or other
spectroscopic techniques. For such measurements, a slit geometry makes a straightforward
connection to the principal directions of a rheometric flow. Rectangular microfluidic channels have
been used to gather rheological data by fitting measured flow profiles across the narrow dimension to
a one-dimensional flow model while also measuring flow-induced birefringence [40]. This approach
assumes that the flow velocity gradient along the wide dimension of the channel is negligible. While
this assumption is often valid for many fluids, non-negligible cross-stream gradients and instabilities
have been observed in rectangular channels [21,44].

In this paper, we investigate dramatic departures from flow uniformity in rectangular channels.
We show that the flow of WLM solutions can become unstable in rectangular channels and produce
a localized and persistent high-velocity jet in the channel. Recently, similar jetting behavior of
WLMs in microfluidic rectangular geometries was observed, although the origins of this behavior
were not understood [44]. The jetting behavior, in which the local wall shear rate across the channel
width varies dramatically, appears to be a complex manifestation of shear banding. Under these
conditions, the Weissenberg-Rabinowitsch-Mooney analysis breaks down. We aim to show here that
shear banding fluids produce persistent high-velocity jets in a variety of rectangular channels and
through the use of numerical simulations provide evidence that the jetting behavior results from a
redistribution of viscoelastic stresses.

We use a combination of three-dimensional (3D) and two-dimensional (2D) particle-tracking
techniques to investigate the jetting flow behavior in rectangular microfluidic channels. Imaging
methods, device fabrication, and theoretical background of the WLM solutions are discussed in
Sec. II. In Sec. III we first present rheological measurements for the solution concentrations used in
this study. The flow measurements of WLM over a range of flow conditions and in different channels
are presented next. The results of the flow measurements are summarized in a phase diagram and
compared to scaling arguments based on the wall shear rate. In Sec. IV, the experimental results are
compared to finite volume simulations using the Johnson-Segalman viscoelastic model. The results
of these simulations and the stress field that drives jet formation are then discussed.

II. MATERIALS AND METHODS

A. Fluid system and rheology

Wormlike micellar solutions of cetylpyridinium chloride (CPyCl) (Sigma-Aldrich) and sodium
salicylate (NaSal) (Sigma-Aldrich) in Millipore water were prepared at a 5 to 3 molar ratio of
CPyCl/NaSal. Three solution concentrations are used in experiments at room temperature (21 °C),
denoted high, middle, and low concentration. Specifically, high is 100 mmol L−1CPyCl/60 mmol
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L−1NaSal; middle is 75 mmol L−1CPyCl/45 mmol L−1NaSal; and low is 33 mmol
L−1CPyCl/20 mmol L−1NaSal.

The rheological properties are measured using a stress-controlled MCR-301 (Anton Paar) with
a cup and bob geometry. Frequency sweeps using small amplitude oscillatory shear over the range
ω = (0.02 to 100) rad/s and steady shear rate ramps over the range of γ̇ = (0.001 to 2000) 1/s are
performed for each of the samples.

B. Device fabrication

Three different methods are used to construct microfluidic devices: a fabrication process using
SU-8 (an epoxy-based photoreactive polymer), which produces rigid channel geometries with well-
controlled dimensions; a more rapid process for fabricating microfluidic channels using double-sided
tape that can produce a wide range of aspect ratios; and rectangular glass capillaries used to provide
channels with smooth surfaces on all sides and a consistent cross section.

The SU-8 microfluidic channels used in this paper are fabricated through a unique process.
Multiple devices are fabricated on a single 7.62 cm, 500 μm thick, fused silica (FS) wafer, with each
device consisting of a single channel. SU-8 3050 was first spin-coated and patterned on the FS wafer
to form the walls of the channels. The SU-8 thickness was measured to be approximately 20 μm.
The FS wafer with patterned SU-8 is than waxed face down to a carrier wafer. Laser ablation is used
to etch fluid inlets and outlet ports through the backside of the wafer. The wafer is then diced into
Individual microfluidic devices and removed from the carrier wafer. A separate 150 μm thick quartz
cover slip is coated with 2 μm of SU-8 2002. The microfluidic devices are placed on a hot plate at
80 °C, above the glass transition temperature of the uncured SU-8. Cover slips are placed SU-8 side
down on the microfluidic devices. Firm pressure is applied to the coverslip while on the hotplate
forcing the uncured SU-8 to flow. The uncured SU-8 solidifies after removing the now fully enclosed
microfluidic channels from the hotplate. The device is subsequently exposed with UV light through
the coverslip side with the same pattern as the previous layer. After the exposure and a postexposure
bake, the two layers of SU-8 are chemically bonded together, and the channels are fully sealed. The
excess unexposed 2 μm of SU-8 within the channel is removed with repeated washes with SU-8
developer and isopropanol. Quick connect bond ports are then added to the inlet and outlets using a
two-component epoxy.

The optics used for the measurement restrict the working distance to less than 200 μm. The
process produces microfluidic channels that do not require a fixture to apply external pressure to
maintain the integrity of the channel, allowing for easy optical and fluidic access. In addition,
all surfaces within the channel are rigid; the channel dimensions are not expected to vary with
pressure. Both the wafer and coverslip that form the floor and ceiling of the channels respectively are
extremely flat, which both helps with uniform flow within the channel and is necessary to produce
a low-scattering optical path for the holographic microscopy method employed here.

Double-sided tape is used to make rectangular microfluidic channels by cutting either 50 μm
thick tape (3M 9628B) or 350 μm thick tape with a die cutting machine (Silhouette Cameo) and
sandwiching the tape between a microscope glass slide and a (24 × 50) mm cover glass. Holes are
drilled in the glass slide about 4 cm apart, and fluid ports are attached with epoxy. The tape is cut in
the desired channel pattern spanning the ports and placed on the glass slide. Channels constructed
with a range of widths are cut to investigate the effect of channel aspect ratio (AR) on flow behavior.

Rectangular capillaries with two different cross-section geometries are used (50 × 500) μm and
50 μm × 1 mm (Vitrocom). The capillaries are first attached with epoxy across a glass slide. Fluid
ports are then attached with epoxy to both the outside of the capillary and the side of the glass slide
for mechanical support. After the epoxy is cured, the end of the capillary is broken and filed down
to the level of the fluid port.

C. Flow control

Flow is generated using a pneumatic pressure flow system (Fluigent MFCS) or a syringe pump
(Harvard Apparatus). The volumetric flow control is analogous to a rate-controlled shear rheometer
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FIG. 1. Schematic of a rectangular microfluidic channel.

and a pressure-driven system comparable to a stress-controlled shear rheometer. Here the pressure
drop is measured across the entire microfluidic circuit. With non-Newtonian fluids, it is difficult then
to determine the pressure drop across a particular microfluidic component. The fluid resistance of
each component changes as a function of shear rate, which depends on the component geometry.
For the flow system used in this study, the microfluidic channel has the highest resistance of any
flow component, such as tubing and connectors. Nevertheless, when a shear banding occurs in the
microfluidic channel, the pressure drop across the channel can remain constant even as the total
pressure across the flow system is increased. The pressure drop across each component in the flow
system is estimated from the stress curve (see Supplemental Material [45]). This analysis is relevant
for understanding the behavior of shear banding fluids in microfluidic devices and implies that both
pressure-controlled flow and volumetric-controlled flow can produce the same flow behavior.

For all measurements, we record images after at least 10 minutes, for the flow field to reach steady
state. The time to reach steady state varies with volumetric flow. At low flow rates, the fluid may
take more than 10 minutes to reach a flow field that no longer varies with time. To test if the flow
has reached a steady state, we compare two video recordings over a 10 minute period until there is
no change in the mean velocity field measured with velocimetry.

D. Imaging

Images are generated using in-line digital holographic microscopy on an Olympus IX71 inverted
microscope using a 60 × water (1.2NA) objective; see Fig. 1. The channel is illuminated with a
collimated beam from a 635 nm laser diode source (Thorlabs LDM635) mounted in the microscope
lamphouse. Images are recorded using an Andor Zyla 5.5 sCMOS camera with 4 × 4 binning.
A running median filter over the time sequence is used to make a background image, which is
then used to normalize the entire sequence. The WLM solutions are seeded with 1 μm diameter
fluorescent polystyrene particles at approximately 0.01 volume percent. The Rayleigh-Sommerfeld
back-propagation method is used to reconstruct the 3D scattered light field, where the peaks in
the scattered light field are related to the position of the particles [46]. The particle positions
are determined by first applying an intensity threshold to the image, and then a Gaussian peak
finding algorithm determines the particle location to a resolution of approximately 50 nm. The
image-processing and particle-tracking operations are computed on a Tesla K20 GPU. The particle
positions gathered over (500 to 1000) frames are processed using a particle-tracking velocimetry
(PTV) algorithm that determines position-dependent velocities [47]. The uncertainty from the PTV
algorithm are estimated from the standard deviation of velocity measurements made at the channel
center. This measurement was repeated over a range of volumetric flows. The relative uncertainty in
the velocity is estimated to be ±5.4%.

The velocity field was examined also at lower resolution and wider field of view using epi-
fluorescent imaging of the same polystyrene particles. The 2D flow field, i.e., without measuring the
z position of a particle, is analyzed using an open-source particle image velocimetry (PIV) software
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FIG. 2. (a) Schematic of the shear stress as a function of shear rate for a shear banding fluid. (b) Example
of flow curves in a shear rate-controlled Couette flow. If the average shear rate is below the critical shear rate,
γ̇ 1, or above the critical shear rate, γ̇2, there is a constant shear rate across the gap. When the average shear
rate is between the two critical shear rates, γ̇1 < γ̇app < γ̇2, depicted by the dashed line, the fluid shear bands.
(c) Schematic of Poiseuille flow showing parabolic flow when the wall shear stress is below the critical stress
and pluglike flow when the wall shear stress exceeds the critical stress. Red lines indicate shear rates on the
low shear rate branch, and green lines indicate shear rates on the high shear rate branch.

(PIVlab) [48,49]. In situations where there is no significant variation in the velocity field in the flow
direction, PIV measurements are used to produce velocity profiles, U(y), averaged along the flow
direction. We estimate the uncertainty in the PIV measurements from the standard deviation of the
velocity profile along the flow direction. PIV measurements are also used to measure the flow field,
including its temporal development, at channel entrances.

E. Theory

Shear banding arises in fluids that possess different microstructural states and drastically different
viscosities. The appearance of shear banding in these fluids is dependent on the applied stress. From
this simplified view, the stress curve has a low and high shear rate branch corresponding to high or
low viscosity states, respectively [Fig. 2(a)]. As the stress is increased past some critical stress, τc,

in a stress-controlled Couette flow, the entire shear rate transitions from the low shear rate branch
to a high shear rate branch. The two shear rates that correspond the the critical stress on each
branch are defined as the critical shear rates, γ̇1 and γ̇2; see Fig. 2(a). The flow behavior differs in
a rate-controlled Couette flow. If a shear rate, γ̇app, is applied between the two critical rates, the
velocity field will become unstable and separate into shear bands. The two bands fill a fraction of the
channel such that the two shear rates equal the applied average shear rate, γ̇avg = γ̇1β + γ̇2(1 − β),
where β is the fraction of fluid at γ̇1 [Fig. 2(b)]. The stress remains constant at all shear rate between
these the two critical shear rates [Fig. 2(a)].

While real systems exhibit more complex behavior, for example, shear thinning in the upper
branch, the simplied description is useful for understanding flow of shear banding fluids in Poiseuille
flow. In contrast to Couette flow, which at first order has a constant stress across the gap, planar
Poiseuille flow results in a linear stress across the channel gap. Shear banding occurs when the
wall shear stress exceeds the critical stress and the position of the interface between the low and
high shear rate branch corresponds to the position of critical stress [Fig. 2(c)]. The transition of the
wall shear rate from the low to high shear rate branch results in a continuous but sharp increase in
volumetric flow, described as the spurting effect.

In constrast to planar Poiseuille flow, which ignores the channel sides and assumes no variation
across the width of the channel, the flow behavior of shear banding fluids in rectangular channels
presents additional complexity. Rectangular channels have variation in wall stress. Specifically, the
wall stress is highest on the wide faces and smaller on the sides and corners. For example, for a
Newtonian fluid in a high aspect ratio rectagular channel, the maximum wall stress at the sides is
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approx 70% of the maximum along the top and bottom channel walls. Therefore, when stress in
regions near the top and bottom surfaces of the channel exceeds the critical value for shear banding
and the stress at the sides remains below this value, we anticipate a conundrum that might lead to
more siginficant variations of flow across the width of the channel. We explore this conundrum with
experiments and simulations.

It is essential to describe any deviations from planar Poiseuille flow, because planar Poiseuille
flow is the basis of slit rheometry. Volumetric flow and pressure drop in a channel determine the
relationship between shear rate and shear stress. Assuming an incompressible fluid, the flow in a
rectangular channel is a function of the volumetric flow rate, Q, and the channel dimensions. The
apparent shear rate in such case is

γ̇ z
a = 6Q

wh2
. (1)

This equation assumes a parabolic flow profile and therefore cannot be used for a non-Newtonian
fluid with shear rate-dependent viscosity. In the latter case, the wall shear rate can be determined with
knowledge of the dependence of apparent shear rate γ̇a on stress with the Weissenberg-Rabinowitsch-
Mooney (WRM) equation:

γ̇w = γ̇a

3

[
2 + d ln γ̇a

d ln τw

]
. (2)

This model is applicable even when shear banding occurs. The non-Newtonian response is
captured by bracketed term in Eq. (2). The apparent shear rate is related to the wall shear stress by

γ̇a = 3I

τ 2
w

, (3)

where

I =
∫ τw

0
γ̇ τ dτ. (4)

The rheological results give a relationship between stress and shear rate. Here we use a smoothing
spline to fit the shear rate as a function of stress, which can then be used to numerically integrate
Eq. (4). The wall shear rate is to be compared to the critical shear rates defined in the previous section.

III. RESULTS

A. Rheology

The frequency sweeps from small-amplitude oscillatory shear measurements, shown in Fig. 3,
provide a number of important values that describe the viscoelastic fluid characteristics. The storage
and loss moduli, G′ and G′′, demonstrate Maxwellian behavior at low frequencies. There is good
agreement with a single-mode Maxwell model for the high and middle concentration systems,
demonstrated by matching the ideal half-circle in Cole-Cole plot [Fig. 3(b)], signaling that chain
breakage and recombination is faster than its relaxation by reptation [8].

The elastic modulus, G0, and relaxation times, λM , are determined from fits to the Maxwell fluid
model. The minimum value of G′′/G0 provides an inverse measure of entanglements. Specifically,
the reciprocal G0/G′′ ≈ L/le, where average contour length is L and entanglement length is
le [50]. Accordingly, entanglements per chain are approximately 5 for the middle concentration
system and approximately 16 for the high concentration system. The entanglement length can be
estimated from le ≈ (kbT /G0)5/9/lp

2/3, where lp is the persistence length, which is usually taken
to be 15 nm [51]. We find entanglement lengths of le = 0.13 μm and le = 0.19 μm for the high and
middle concentrations, respectively. From these values, the average contour length is approximately
2.0 μm for the high concentration system and 0.9 μm for the middle concentration system. The
low concentration system is unentangled.
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FIG. 3. (a) Measured storage and loss modulus for the three CPyCl/NaSal solution concentrations from
small amplitude oscillatory measurements. Fits to a single-mode Maxwell model are shown for the high
concentration system (G′: black solid line and G′′: black dashed line). (b) Cole-Cole plots for the three system
concentrations.

A stress plateau indicative of shear banding is evident in steady flow curves (Fig. 4) for the high
and middle concentration systems while the low concentration system is monotonically increasing.
The extent of the plateau region provides a definition for the lower and upper critical shear rates, γ̇1

and γ̇2, which serve as a basis of comparison for the channel flow behavior. As discussed, the
first critical shear rate corresponds to the onset of shear thinning behavior. This onset is related
to the characteristic relaxation time of the fluid determined previously, γ̇1 ≈ λ−1

M , above which
elastic stresses become relevant [4,11,16]. The upper critical shear rate is determined by finding the
largest shear rate corresponding to the plateau stress. Increasing entanglements causes a reduction
of γ̇2/γ̇1 when chains are linear [52]. As a result, the largest relative jump in shear rate for a shear
banding fluid occur just above the critical concentration where shear banding occurs. The middle
concentration system has indeed a wider plateau region than the high concentration system. The
rheometer progresses steadily through this plateau in part because the cup and bob geometry has a
modest stress gradient from the outer to inner cylinder, according to differences in circumferences.
The low concentration system does not exhibit a stress plateau, but the power-law shear thinning
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FIG. 4. (a) Viscosity and (b) shear stress plots for CPCl/NaSal solutions at different concentrations from
steady shear measurements. The stress plateau and lower critical shear rates are shown for the high concentration
system. Solid lines are fits to the Carreau-Yasuda model.
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TABLE I. Table of parameter values determined from small amplitude oscillatory shear measurements.

Name CPyCl/NaSal System [mmol/L] G0[Pa] λM (s) G0/G
′′
min

High 100/66 27 4.6 16
Middle 75/45 12 2.0 5
Low 33/20 0.6 0.1 –

behavior initiates at a critical shear rate, approximately γ̇1 = 50 s−1. While this critical shear rate
does not correspond to a stress plateau, it is a useful reference for the onset of shear thinning. The
properties from the Maxwell model fit for the three fluid systems are given in Table I.

A sharp decrease in viscosity is observed when viscosity is plotted as a function of stress
[Fig. 4(a)]. The Carreau-Yasuda (CY) model is used to describe the shear-rate–dependent viscosity,

η(γ̇ ) = η∞ + (η∞ − η0)

[
1 −

(
γ̇

γ̇1

)a] n−1
a

, (5)

where η0 is the zero shear rate viscosity, η∞ is the infinite shear rate viscosity, n is the power-law
index, and a is a shape parameter. All three systems are described fairly well by the CY model
over the range of shear rates measured, with the fitting parameters given in Table II. The steady
shear rheology shown in Fig. 4(b) is used to determine the plateau stress and the critical shear rates,
also given in Table II. The largest deviation from the CY model occurs for the low concentration
system, which exhibits shear thickening at τ = (3 − 7) Pa. This has been attributed to shear induced
structures that form at dilute concentration of WLM systems including the CPyCl/NaSal system
[53]. For Poiseuille flow in a capillary, the shear-induced structures have been shown to result in
lower shear rates near the wall where the shear-induced structures form and the highest shear rates
are located at an intermediate radial position [41].

In contrast to simple shear flow, where the stress can be considered constant, Poiseuille flow in
a rectangular duct has a linear stress profile across the channel height. The highest stress regions
in channel are at the walls, and therefore as the volumetric flow is increased, the near wall region
is the first to reach the critical stress, τc. If the wall shear stress is below the critical value, the
rheological results suggest quasi-Newtonian behavior. As the wall shear stress exceeds the critical
value, a sharp increase in the wall shear rate leads to an abrupt transition to pluglike flow and a
particularly blunted flow profile for shear banding fluids. We compare the flow profiles obtained
from holographic microscopy to flow profile predictions using the CY model.

B. Flow profile measurements

The rheological measurements for the low concentration system does not show a stress plateau,
and therefore shear banding is not expected. Nevertheless, for shear rates that exceed the critical shear
rate defined by the onset of strong shear thinning, we expect a transition from a quasi-Newtonian to
pluglike flow. Figure 5 shows two representative flow cross sections in the (20 × 200) μm channel
(note the aspect ratio is not to scale). Numerically computed flow profiles are computed in MATLAB

TABLE II. Table of parameters from steady shear measurements.

System τp [Pa] η0[Pa-s] η∞ [Pa-s] γ̇1[s−1] γ̇2[s−1] a n

High 16 121.8 0.057 0.12 50 4.3 0.02
Middle 8 28.4 0.015 0.25 200 2.8 0.02
Low – 0.044 0.008 36.9 – 1.7 0.05
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FIG. 5. Channel cross section velocity profiles for low concentration system in the (a) quasi-Newtonian,
(b) pluglike regimes. Flow profiles in the y and z directions (red circles) are compared to numerically computed
flow profiles using the CY model (black lines). (a) Parabolic flow across in the z direction and uniform flow in
the y direction for volumetric flow Q = 0.14 nl/s with estimated wall shear rate from Eq. (2) γ̇ z

w = 11.0 s−1.
(b) A more pluglike flow is observed across the channel height and small gradients across the channel width
for volumetric flow for Q = 0.77 nl/s with estimated wall shear rate from Eq. (2) γ̇ z

w = 68.4 s−1.

using the CY model parameters to match the same volumetric flow in the channel. The experimental
(shown in red circles) and numerical flow profiles (shown in black lines) are compared across the
middle of the channel in z and y directions.

Figure 5(a) shows a flow profile of the low concentration system in the quasi-Newtonian regime.
As expected from Newtonian flow behavior, a parabolic flow is observed across the channel height,
and significant gradients in the y direction are limited to a distance of approximately 1h from
the side walls. There are no substantial flow gradients in the y direction across the center of the
channel.

When the z-direction wall shear rate exceeds the critical shear rate, γ̇ z
w > γ̇1, we observe a more

blunted velocity profile across the channel height [see Fig. 5(b)] and velocity gradients that extend
slightly further across the channel width. This effect is relatively minor for the low concentration
system, which has a change in viscosity of η0/η∞ ≈ 5. A fluid with a larger decrease in viscosity
will produce a more blunted z-direction profile than that shown in Fig. 5, and the flow profile across
the y direction may become nearly parabolic across the channel width.

When the flow is pluglike in the z direction, it will be useful to consider an apparent shear rate
metric across the channel width as

γ̇ y
a = 6Q

hw2
. (6)

This apparent shear rate is used to estimate a wall shear rate in the y direction, γ̇
y
w , using Eq. (2).

By analogy to the z-direction behavior, we expect that the flow profile across the channel width will
be nearly parabolic when γ̇

y
w < γ̇1 and transition from parabolic to pluglike occurs when γ̇

y
w > γ̇1.

Indeed, this behavior is predicted by the CY model (see Fig. 6). While this metric [Eq. (6)] is limited
in applicability, it does provide some intuition for how aspect ratio influences flow in strongly shear
thinning fluids.

We compare the cross-section flow profile measurements for the high concentration system to
predictions from the CY model at the same volumetric flow. At low volumetric flow, we observe a
parabolic velocity profile across the channel height and a somewhat uniform flow across the channel
width except for a slight increase in velocity near the side walls; see Fig. 6(a). The slight asymmetry
in the flow profile across the channel width is likely a precursor to unstable flow in the channel.
Despite this, the measured flow profiles match the quasi-Newtonian behavior predicted by the CY
fairly well at this volumetric flow.
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FIG. 6. Measured channel cross section velocity profiles for the high concentration system in the
(a) quasi-Newtonian, (b) jetting, and (c) pluglike flow regimes. Flow profiles in the y and z directions (red
circles) are compared to flow fields numerically computed using the CY model. (a) The quasi-Newtonian flow
regime shows some variation in velocity across the channel width but predominantly parabolic flow across
in the z direction Q = 0.002 nl/s with estimated wall shear rate, γ̇ z

w = 0.18 s−1, from Eq. (2). (b) A jet in
the middle of the channel is observed at intermediate volumetric flows, Q = 0.015 nl/s with estimated wall
shear rate, γ̇ z

w = 12.3 s−1, from Eq. (2). Pluglike flow is observed in the z direction, but jetting flow does not
match the parabolic flow across the channel width predicted by the CY model. (c) At high volumetric flow,
pluglike flow is observed across the entire channel cross-section Q = 0.160 nl/s with estimated wall shear rate,
γ̇ z

w = 50.5 s−1, from Eq. (2).

As the flow is increased, we observe that a stable high-velocity jet forms in the channel. This
jet is characterized by a very sharp gradient in z near the top and bottom wall and near uniform
velocity across the thin gap of the channel [Fig. 6(b)]. We observe the jetting behavior only in the
high and middle concentration solutions, both of which show a stress plateau [Fig. 3(b)] indicative
of shear banding. This suggests that the top and bottom wall bordering the jet are at the high stable
shear rate branch, γ̇w > γ̇2 [cf. direct measure of γ̇ z

w; Fig. 6(b)], while the remaining portion of
the channel is in the low stable shear rate, γ̇w < γ̇1. The jet behavior is a clear deviation from the
flow profile predicted from the CY model shown at the same volumetric flow in Fig. 6(b). The CY
model predicts a blunted profile across the z direction and a parabolic profile across the y direction,
as discussed above for the situation where γ̇

y
w < γ̇1 and γ̇ z

w > γ̇1. The CY model’s inability to fit
the data exposes a need to model more than viscous effects alone. In a later section, we show that
the Johnson-Segalman viscoelastic model provides a necessary description of the fluid stresses to
replicate the jetting behavior.
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FIG. 7. Velocity profiles from PIV images of jetting flow in tape channels, SU-8 channels, and rectangular
capillaries. The y position is normalized by the channel width and the velocity is normalized by the mean
velocity. The jet forms along the side of the channels made from tape, both 50 μm tape (AR = 8) and 350 μm
tape (AR = 7) and one SU-8 channel (SU-8 A) with sidewall defects. The jet forms in middle of channel in
a rectangular capillary (Rect Cap) and another SU-8 channel (SU-8 B) without wall defects, shown for both
high and middle concentrations. Error bars show the standard deviation of the velocity determined from PIV
measurements.

At a higher volumetric flow, the width of jet increases until it fills the entire channel [Fig. 6(c)].
The flow profile is characterized as pluglike across both the channel height and width, and the flow
profile returns to fitting the CY model. This suggests that the wall stress in both y and z directions is
above the critical value, and the wall shear rates at all channel boundaries are in the high shear rate
branch, γ̇ z

w > γ̇2 and γ̇
y
w > γ̇2, at stable single-valued shear rates.

The jetting behavior appears distinct from the “spurting” flow observed in round capillaries and
has been observed only in rectangular channels. We investigate the effect of channel construction
and geometry on the jetting behavior in the following sections.

C. Jetting characterization

Since jetting here accompanies the onset of shear banding, the jet is likely to form at the location
of the largest stress in the channel. For a Newtonian fluid in a rectangular channel, this location is
at the wall in the center of the channel, which suggests that the jet will always form there. In our
experiments, however, the jet can form either near the channel center [as shown in Fig. 6(b)] or at the
side walls, but the jet will repeatedly form in the same location for a given channel. We investigate
how the location of the jet depends on the materials and construction of the channel.

Figure 7 compares the velocity profiles across the channel width for jetting flow in various
channels using PIV. In SU-8 channels, the jets formed either in the center or at the side walls.
The velocity profile shown for channel SU-8 A demonstrates a jet that forms along the side wall.
Another SU-8 channel, denoted SU-8 B, produces jetting flow in the in the center of the channel
(shown for both high and middle concentrations in Fig. 7). Any defects along the side wall may
introduce an increase in the local stress at the sidewall. A slight misalignment of the SU-8 layers
was observable in the SU-8 A channel but absent in the SU-8 B channel. The misalignment likely
induces a stress concentration that triggers the jump to higher shear rates and jet formation. The
effect of surface roughness and defects on the flow behavior of shear banding fluids has been shown
to alter flow profiles in both Poiseuille and Couette flows [36,54]. In the case of pressure-driven flow
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in rectangular capillaries, any irregularities at the side walls will cause a localized stress and jump
in shear rate.

The effect of defects is more evident in channels constructed with tape, which have rough side
walls as a result of cutting the tape. In all tape channels used for this study, the jets form along one or
both walls in the tape channels. The flow in an AR = 8 tape channel made using 50 μm thick tape
shows jets on both sides of the channel (Fig. 7), although the jet along one side is faster than the jet
along the other. Similar behavior was observed by Haward et al. in channels constructed from glass
separated by metal spacers [44]. They observed a single jet located in the center of the channel that
eventually split into two jets close to the side walls after approximately 1 hour.

To determine whether asymmetry in channel wall material drives the jetting behavior, we observed
the flow of the high concentration solution through rectangular capillaries with dimensions 50 μm
by 1 mm. In contrast to the tape or SU-8 channels, we anticipate the rectangular capillaries have
the same chemistry and roughness on all channel surfaces. In contrast with the tape channels, the
capillaries have no obvious local defects that may trigger the jet to form from a stress concentration.
As a result of the homogenous and smooth surface of the glass capillaries, we observe that the jet
always formed in the center (see Fig. 7). Slight variations in the jet position throughout the central
region of the channel were evident, but we do not observe that the jet moves to the side of the channel
as is the case with tape and some SU-8 channels.

We note that the observations discussed above are in channels with a height of 50 μm or less.
Previous measurements of flow profiles without jetting of CPyCl/NaSal solutions [40] or other
surfactant solutions were conducted in channels with a height of 200 μm and larger. This suggests
that the absolute size of the channel might play a role in the formation of the jet, even though
inertia is still negligible for these geometries. Results from flow stability analyses report that the
channel height plays a role in the flow stability due to the relative size of the micelles to the channel
dimension [29,32].

To see if the channel size has any influence on jetting, channels are constructed from 350 μm
thick double-sided tape with a channel width of 2.3 mm. We observe similar jetting behavior in
the larger channels as well, and the jet is also located near the tape side walls. Channel size will
become relevant at larger length scales than investigated here, particularly when the Reynolds
number (Re) approaches unity and inertia becomes important. The flow in the 350 μm channel
remains at negligible Reynolds number, Re ≈ 10−5. We conclude that channel size does not appear
to significantly alter the jetting behavior over the range of channel heights we have investigated.

D. Channel aspect ratio

While we observe that the location of the jet and character of unstable flow depends on channel
size, geometry, and wall roughness, the absence of observations in round capillaries suggest that
channel aspect ratio is an important factor in the jetting behavior. Previous measurements of the
same CPyCl/NaSal system in pressure-driven capillary flow demonstrated temporal oscillations in
the local flow rate. Pressure-driven flow measurements of WLMs have used round capillaries [37],
while only a limited number of groups have used rectangular cross-section geometries [35,44,55,56].
“Spurting” flow, which is characterized by a rapid jump in volumetric flow as pressure increases
and often accompanied by temporal oscillations in the flow velocity, has been observed in round
capillaries by a number of different groups [37,57].

For the round capillary or a square channel, there is no preferred cross-stream dimension for a
spatially isolated high shear rate region. If volumetric flow is controlled in a round capillary, the stress
across the capillary cross section adjusts in order to access shear rates that satisfy the volumetric
flow constraint. While this is also possible for a 2D planar Poiseuille flow profile, our observations
shown above demonstrate that the finite width channel results in jetting. The distribution of stress in
the channel allows for stable and spatially distinct separation of wall shear rates, because a jet can
form and self-constrict (as will be shown below with flow simulations) and therefore adjust to the
applied volumetric flow.
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FIG. 8. Phase diagram for flow behavior as a function of aspect ratio and wall shear rate. Data are shown for
channels constructed from 350 μm thick tape (o), 100 μm tape (�), and rectangular capillaries with h = 50 μm
(x). As noted in the legend, quasi-Newtonian, jet and pluglike flow are represented by green, red, and blue
colors respectively.

We investigated the effect of channel aspect ratio on flow behavior by constructing channels from
different thickness tape, 100 μm and 350 μm, and then cutting channels of varying width to produce
channels with aspect ratio in the range of 2–10. We also plot data from the rectangular capillary
with AR = 10 and AR = 20, and SU-8 channels, AR = 10 (Fig. 8). We define the unstable flow as
any flow that has a significant and persistent flow gradient across the channel width. The pluglike
flow is characterized by a uniform flow across the channel width. We observe that the crossover
between pluglike flow and jetting is around AR ∼= 4–5. We note that the AR ∼= 3–4 show transient
asymmetries in the flow immediately after the volumetric flow is adjusted. This transient behavior
has been recently described by Kim et al. 2016 [58] for sodium lauryl ether 3 sulfate sodium lauryl
sulfate system in a channel with AR = 5.

We note that the pluglike flow at low AR exhibits temporal velocity fluctuations with increasing
frequency as flow is increased. We also observe velocity fluctuations in pluglike flow in high aspect
ratio channels. The observation is consistent with previous measurements of flow through round
capillaries above the threshold for pluglike flow [42,57].

Similar to the low concentration solution, the apparent or approximate shear rate across the channel
width Eq. (6) becomes an important parameter in understanding the flow of shear thinning fluids in
rectangular microfluidic channels. Aspect ratio adjusts the relative magnitude of the characteristic
shear rates in the two principal cross stream directions. While the apparent shear rates in both the
y and z directions will vary linearly with volumetric flow, the wall shear rate computed will vary
nonlinearly with flow according to Eq. (2).

To show the relative magnitude of the two wall shear rates we plot the y-direction wall shear
rate metric, γ̇

y
w(Q), as a function of the z-direction wall shear rate, γ̇ z

w(Q), for various aspect ratios
(Fig. 9). We compare both wall shear rates to the critical shear rates, γ̇1 and γ̇2. Intuitively, small
aspect ratio channels have similar wall shear rates in the y and z directions, therefore the flow
profile both directions will transition to a pluglike state at nearly the same volumetric flow. As the
aspect ratio is increased, the difference in shear rates leads to a range of volumetric flow values
where γ̇ z

w > γ̇1 and γ̇
y
w < γ̇1 and jetting occurs. While this analysis shows that jetting may occur for

AR = 2 and AR = 4, other factors in experiments such as wall roughness will alter the stress field
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FIG. 9. Comparison of y- and z-direction wall shear rates for different aspect ratios as a function of
volumetric flow. Wall shear rates calculated from Eq. (3) using the y- and z-direction average wall shear rates.

in the channel. We cannot therefore define a critical aspect ratio for jetting from this analysis, but it
does show that volumetric flows where jetting is expected increases with aspect ratio.

An interesting situation arises at high aspect ratios (AR � 10) where the average wall shear rate
in the z-direction exceeds the upper critical value γ̇ z

w > γ̇2 and the y-direction wall shear rate remains
less than the lower critical shear rate, γ̇

y
w < γ̇1. In this situation, the entire top and bottom walls are

in the upper shear rate branch while the side walls are still stable in the low shear rate branch. We
distinguish this from jetting because there is a uniform shear rate in the upper shear rate branch
along the top and bottom walls and categorize it as parabolic-Y. While we do not investigate channel
aspect ratios greater than AR = 20, and thus do not access parabolic-Y experimentally, this analysis
provides insight into the possible flow fields for shear banding fluids. We do show an example of the
parabolic-Y flow profile across the channel width using simulations.

E. Entrance effects

Entrance regions present a particular challenge for viscoelastic fluids in microfluidic channels.
Stresses initiated at the entrance can lead to unusual downstream flow profiles [59–61]. We next
examine the channel entrance region during the onset and development of jetting using PIV. Channels
from SU-8 were made with either a hyperbolic or a 45° angle entrance. Two hyperbolic entrances
constrict the flow from a width of 2 mm to 200 μm in width; one channel has an entrance length of
200 μm while the other of these has an entrance length of 2 mm. The 45° angle entrance tapers from
1 mm to 200 μm width. All channels have a main channel section of 20 μm height and 200 μm
width.

The hyperbolic entrance was chosen because it produces a constant extensional strain rate along
the centerline of the channel [62]. The flow at steady state in the hyperbolic 200 μm entrance length
channel demonstrates the flow in the quasi-Newtonian and jetting (Fig. 10). In the quasi-Newtonian
regime, the flow is fairly uniform across the channel width, but spatial variations in the flow are
clearly present. This is consistent with the cross-stream profile shown in Fig. 6(a), which also showed
slight deviations from a Newtonian flow. The presence of spatial variations and flow near the wall
shows that even when all wall shear rates are below the critical value, a precursor to jetting may be
present.
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FIG. 10. The steady state flow field of the high concentration system measured with PIV at the entrance
of a 200 μm channel showing (a) quasi-Newtonian flow and (b) jetting flow. (a) Quasi-Newtonian behavior
is shown at steady state at a flow rate Q = 0.002 nl/s and γ̇ z

w = 0.18 s−1 determined from Eq. (2). While the
flow is mostly uniform across the channel, the flow fields shows some velocity variations, indicating that the
wall shear rate is close to the critical shear rate, γ̇1. (b) Jetting behavior is shown at steady state at a flow rate
Q = 0.017 nl/s and γ̇ z

w = 15.7 s−1 determined from Eq. (2). At the channel entrance, two high-velocity regions
along the sides of the entrance converge into one jet located in the center of the channel.

Figure 10(b) shows the jet forming near each of the channel entrance walls and merging into a
single jet in the center of the channel [63]. This is the entrance for the SU-8 B channel discussed
above. A symmetric contribution to the jet from both sides of the channel entrance indicates that
there are similar stresses experienced by the fluid along each side of the channel entrance. The jet
remains in the same position farther downstream; the cross-section measurements shown in Fig. 6
using this channel were performed about 500 mm downstream from the channel entrance.

In Fig. 11 we show the temporal development from an initially quiescent flow to a steady state in
the pluglike flow regime. After 20 s, the flow field that develops is qualitatively similar to the jetting
flow shown in Fig. 10(b), i.e., two high-velocity regions near the entrance sidewalls merging into
a centrally located jet. This jet grows until it fills the entire channel as shown at t = 30 s. The two
jets that form along the sides of the channel entrance extend back into the upstream channel section.
Subsequently, the two jets merge into one jet that, as a result of the larger width of the upstream
section, is stable in the upstream section of the channel. We note that the development of a stable jet
upstream of a hyperbolic entrance has been previously observed for a CPyCl/NaSal solution [63].

FIG. 11. A sequence of PIV images showing the temporal evolution of the flow field for the high
concentration system at the entrance of a 200 μm channel in the pluglike regime. The flow reaches a steady
state flow rate of Q = 0.44 nl/s and γ̇ z

w = 90.5 s−1 determined from Eq. (2). At 20 s, two jets form along the
sides of the entrance and merge to form a single jet in the main channel, similar to the behavior shown in
Figure 10(b). At 30 s, uniform pluglike flow develops in the main channel and the two jets along the sides of the
entrance extend upstream. At t = 60 s, the flow reaches a steady state, the two jets have merged into a single
stable jet upstream of the entrance.
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The evolution of jet formation is influenced by normal forces, which is discussed in a later section
on flow simulations.

The two other entrance geometries tested show similar transitions from quasi-Newtonian to
jetting and finally to pluglike flow. The main difference between different channels was where the
jet initiated. The 45 degree and 2 mm hyperbolic channels showed a jet forming on only one side of
the channel, which we attribute to slight defects in the channel construction that may be caused by
misalignment of SU-8 layers and produce a perturbation to the stress along one side of the channel.
The first region of the channel that reaches a stress value with a multivalued shear rate will be able
to jump to a high shear rate, and as a result the jet will always form on that side. A slight velocity
increase is still present on the nonjetting side of the channel entrance, although this high-velocity
region does not persist downstream and dissipates just past the entrance.

The 45° channel entrance shows the jet forming at one corner of the entrance and then extending
into the 1 mm wide upstream channel [63]. The narrower upstream section of the channel allows
both main and upstream channel sections to stabilize in the jetting regime. The evolution of the jet
originates at the point of highest stress, which in this case is at the entrance corner. We note that
this jet extends backwards upstream until reaching the entrance port of the channel not shown in the
video.

All of the channel entrances discussed above constrict the flow by narrowing the channel width.
As a result, a nonuniform stress field develops across the channel entrance, indicated by the jets
that form along the sides of the entrance. We constructed a channel from glass and double-sided
tape that reduces from a square cross section, of approximately 2 mm width and 2 mm height, to
a main section of 100 μm height and 2 mm width. A reduction in the channel height produces a
more uniform stress and flow field across the channel entrance. While this reduces any directional
preference for the jet to form, it still forms although about 1 cm from the entrance. In this case,
roughness in the edges of the tape likely cause perturbations to the stress that preference the flow
to one side of the channel. This shows that even for a channel with an entrance designed to have
symmetric flow, the flow will still separate into a stable jet.

We conclude that the channel entrance does not have a significant effect on the presence of the jets
in general. Rather, the entrance geometry can alter the location of the jet in the channel by creating
a localized stress that initiates the wall shear rate to jump into the higher shear rate.

IV. SIMULATIONS

The experimental results suggest that a shear banding fluid will transition to the banded flow
behavior in high aspect ratio rectangular channels. In all cases, the volumetric flow constraint can
be satisfied by a velocity profile composed of stable shear rates (see schematic Fig. 2), even when
the parameter γ̇ z

w is an unstable shear rate. The flow field can adjust by altering the position of the
shear band, the kink in the velocity profile as shown in the schematic Fig. 2(c). As a result, the flow
constraint can be satisfied by a velocity profile composed of the stable shear rates and a velocity
profile with a kink is produced [56]. This has been shown for different constitutive models with
nonmonotonic stress curve, including Giesekus and VCM [30,64]. Two-dimensional simulations and
experiments have shown, however, that the shear banded velocity profiles can become unstable and
exhibit undulations in the interface between high and low shear rates [21,29,65,66]. Our experiments
and those of Haward et al. suggest that these undulations may destabilize the uniform banded flow
in rectangular channels so that a jet may form. We use the Johnson-Segalman (JS) model to explore
jetting and the conditions that promote or suppress jet formation [67].

The JS model is chosen as a model fluid because of its relative simplicity and the ability to
represent shear banding fluids due to its nonmonotonic constitutive equation [68,69]. We implement
the JS model in a finite volume code developed to model viscoelastic simulations using OpenFOAM,
an open-source computational fluids solver. A number of different viscoelastic models have already
been used in OpenFOAM and compared with experimental results from the literature [70]. The
model solves incompressible flows of viscoelastic fluids satisfying the continuity equation and the
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TABLE III. Parameters for the Johnson-
Segalman model.

Parameter Value
ηs 0.5 [Pa-s]
ηm 120 [Pa-s]
λ 4 [s]
ξ 1

momentum equation:

∇ · u = 0, ρ
Du
Dt

= ∇ · (T + 2ηs D − p I), (7)

where the quantity in parentheses is the total stress and T is the micellar stress determined by the JS
constitutive model, p is pressure, ηs is the solvent viscosity, and D is the rate-of-deformation tensor.
The micelle stress here satisfies the JS constitutive model:

T + λ

[(
1 − ξ

2

) ∇
T +ξ

2




T
]

= 2ηm D, (8)

where
∇
T and




T denote the upper and lower convective derivatives respectively, ηm is the micellar
viscosity, and λ is the relaxation time. The parameter, ξ , is a dimensionless parameter that controls
the relative magnitude of the two convective derivatives. This parameter controls shear banding by
introducing nonaffine motion to the shear components via the lower convective derivative. This model
simplifies to the Oldroyd-B model when ξ = 0, which describes the dynamics of Hookean dumbbells.
In this context, the nonaffine deformations introduce slip between the dumbbells. Although this model
is phenomenological, the relative simplicity makes it amenable to studying shear banding behavior,
even though it does not capture all the complexities, such as concentration gradients, of more detailed
models. We therefore do not expect the model to quantitatively match our experimental results, but it
is nevertheless instructive for understanding the relation between stress and flow in the microchannel
that results in jetting.

The parameters for the JS model, shown in Table III, are chosen to produce a top jumping path
along the shear stress curve that roughly matches the values measured from steady shear rheology for
the high concentration system (Fig. 12). The choice of JS parameters provides quantitatively similar
values compared to the zero shear rate viscosity, η0, lower critical shear rate, γ̇1, and relaxation
time, λ, of the high concentration system from Tables I and II. The JS model does not fit the steady
shear rheology data at high shear rates. This is because the JS model is Newtonian in the high shear
rate, while the WLM solutions are shear thinning at high shear rates. Importantly, the JS model
does produce a nonmonotonic stress curve with a well-defined range of unstable shear rates, in
this case approximately (0.12 − 4) s−1. The lower and upper shear rate limits, denoted γ̇L and γ̇U ,
respectively, define the range unstable for the JS model. We note that for the parameters chosen, the
shear stress at the lower critical shear rate is approximately 4 times higher than the stress at the high
critical shear rate. This difference in stress magnitude will be relevant for the distribution of stress
in the channel.

The 3D rectangular domain for simulations has a cross-section dimension of 20 μm × 200 μm
(to match the SU-8 channel) and a length of 800 μm. A flow-controlled experimental system is
replicated by setting the channel inlet at a fixed integrated velocity, which is adjusted to change the
volumetric flow. The outlet boundary condition is set at a constant pressure, and the normal direction
gradient (along x) of the velocity and polymer stress are set at zero. The fluid velocity is set at zero
(no slip) at the top, bottom, and side walls of the channel. The gradient normal to the wall surfaces
for the other variables, pressure and micelle stress, are set as zero. The flow is initialized by running
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FIG. 12. Shear stress curve for the JS model (assuming simple shear for comparison with data replotted
from Fig. 4) using the parameters shown in Table III compared to steady shear measurements for the high
concentration system. Transitions by top jumping and bottom jumping for the JS are also shown in dash-dot
and dashed lines respectively. The parameters of the JS model are set to match a top jumping path with the high
concentration rheology. The unstable shear rates are shown between the two critical shear rates, γ̇L and γ̇U .

the simulation at a weak flow, Uavg = 0.1 μm/s, and all simulation runs with volumetric flows are
started from this initial flow field.

At low volumetric flows, the flow profile matches a Newtonian-like flow [Fig. 13(a)], which is
to be expected from the JS model for weaker stresses on the linear portion of the stress curve. As
volumetric flow increases, a jetting flow is observed similar to the behavior seen in experiments.
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FIG. 13. Cross section velocity profiles from simulation of a JS viscoelastic fluid in a rectangular channel.
(a) Quasi-Newtonian flow field at Q = 0.002 nl/s. (b) Jetting flow at Q = 0.003 nl/s. (c) Pluglike flow at
Q = 0.032 nl/s . The effective channel width determined from the uniform plug flow for the same volumetric
flow is 199.7 μm. (d) Velocity profile across the channel width for the AR = 10 channel at various volumetric
flows. The flow transitions from quasi-Newtonian to jetting to pluglike.
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FIG. 14. Cross section profiles for (a) shear stresses and (b) the normal stress terms from numerical
simulation of JS model for jetting flow at steady state.

This transition occurs when the z-direction wall shear stress exceeds the critical value, γ̇L, defined
from the JS model (Fig. 12). The flow profile in the z-direction across the jet is pluglike, noticeable
in Fig. 13(b). A large velocity gradient borders the high-velocity profile on the top and bottom walls,
corresponding to the high shear rate part of the stress curve. As volumetric flow is increased, the top
and bottom wall regions with a high shear rate fill an increasing portion until the entire channel is
filled and we observe pluglike flow; see Fig. 13(c).

To better demonstrate transitions from quasi-Newtonian, jetting, and pluglike flows, we plot the
velocity profile across the channel width in Fig. 13(d). The transition from quasi-Newtonian to
jetting is apparent when a narrow parabolic profile forms in the center of the channel. For the jetting
flow, the maximum velocity outside of the jet region at Q = 0.003 nl/s is in fact lower than the
maximum velocity of the quasi-Newtonian flow at Q = 0.002 nl/s . The transition to jetting results
in greater flow within the jet and a weaker flow outside the jet. Figure 13(d) shows that as volumetric
flow increases, both the width of the jetting region and the maximum velocity in the jet increase.
The velocity gradient on the sides of the jetting flow however remain similar while volumetric flow
increases. This is a result of a similar composition of stresses surrounding the jet, which shift towards
the sidewalls as flow increases but do not change significantly in magnitude.

At Q = 0.016 nl/s, the y-direction flow profile is close to parabolic. This exemplifies the situation
where the entire top and bottom walls are in the high shear rate branch but the side walls remain
stable in the low shear rate branch. In context of the directional wall shear rate discussed in the
aspect ratio section, the average wall shear rate is above the upper critical shear rate, γ̇ z

w > γ̇U , but
the wall shear rate along the side remains below the first critical shear rate γ̇

y
w < γ̇L. The transition

from parabolic-Y flow to pluglike flow occurs only when γ̇
y
w > γ̇L, which is shown in Fig. 13(d) at

Q = 0.032 nl/s .
An analysis of the micellar stress field is needed for a better understanding of the jetting flow.

The τxz and τxy shear stresses are shown in the channel cross section in Fig. 14(a). As expected for
flows in a rectangular channel, τxz is the largest shear stress component because it spans the shortest
channel dimension, h. A large variation in the τxz magnitude is also apparent across the jetting
region, with relatively weak τxz stresses located in the jetting region, coincident with the largest
shear rates. We note that τxz remains linear across the z direction, even as it varies in magnitude in
the y direction. This variation in wall stress can be understood in context of the JS shear stress curve
(Fig. 12), whose shear stress at the upper critical shear rate, γ̇U , is approximately 4 times lower than
at the lower critical shear rate, γ̇L. Rather than following the top-jumping path shown in Fig. 12, the
wall shear rate inside the jet jumps to the high shear rate branch, at a lower stress. This is similar to
the decrease in shear stress as a function of shear rate observed in shear-rate–controlled rheometry
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FIG. 15. Plot of wall shear stress as a function of apparent shear rate (1) from the JS model simulations.
The shear stress at the wall is compared for the jet region (o), the maximum value (x), and the mean over
entire cross section perimeter (+) for aspect ratio 10. The mean is also shown for aspect ratio 1. The data from
simulations are compared to wall shear stress predicted from the Weissenberg-Rabinowitsch-Mooney analysis
for top jumping (dash-dot) and bottom jumping (dashed) curves from the JS model.

for the high concentration system [71]. In the jetting flow, however, the high and low shear rates
coexist along the top and bottom walls at different shear stress.

In the JS model, normal stresses contribute to the shear stress balance as a term that includes
the normal stress difference [67,68]. For example, when ξ = 1 the x-z stress balance includes the
normal stress difference term, λ γ̇xz(σzz − σxx), where σ denotes normal stress. We plot the normal
stress difference terms that contribute to the x-y and x-z stress balance to exemplify the contribution
of normal stresses [Fig. 14(b)]. The normal stress difference term for the x-y stress balance is
largest in the high shear rate region near the wall bordering the jet. The magnitude of the normal
stress difference term is also large compared to the τxz shear stress in the same location. This term
compensates for the decrease in the τxz shear stress in the negative slope portion of the stress curve
and balances the velocity gradient. As the jet begins to form in time, the normal stress term magnitude
increases and the region of high stress shrinks as the jet narrows.

The focusing of flow into a narrow jet is driven and sustained by the stress balance in the
y direction. This is exemplified by the x-y stress balance. At steady state, the τxy shear stresses
surround the jet where the velocity gradients are greatest. The magnitude of the normal stress term
in the x-y stress balance, λ γ̇xy(σyy − σxx), is greatest in the region surrounding the jet as well. While
this normal stress term is not as large as the x-z component, it nevertheless contributes to the x-y
stress balance surrounding the jet. As the jetting flow develops, the x-y shear stress and normal stress
difference terms grow in magnitude beginning from the edges of the channel. The imbalance of
stresses in the y direction at the edges lead to the flow focusing into a jet. The balance of stresses in
the y direction leads to a stable jet. As volumetric flow is increased and the width of the jet increases,
the cross-section stress profiles remain at a similar in magnitude but the stresses surrounding the jet
spread until they are confined by the side walls.

We show the development of wall shear stresses, τw, as a function of flow by plotting the maximum
wall shear stress and the wall shear stress adjacent to the jet as a function of apparent shear rate
(Fig. 15). We compare these data to the expected wall shear stress for a top and bottom jumping JS
model from the Weissenberg-Rabinowitsch-Mooney analysis (Eq. 2). The transition to jetting flow
corresponds to the sharp change in the top jumping curve at approximately γ̇L = 0.15 s−1. Flows
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below this value produce a Newtonian flow profile, and the maximum wall stress occurs uniformly
across the top and bottom surfaces. These wall stresses match well with the top jumping curve. Once
jetting occurs, the shear stress in the jet region rapidly decreases and follows the bottom jumping
curve while the maximum stress remains near the top jumping curve. The mean shear stress along
the channel walls remains between the top and bottom jumping curves, but decreases in magnitude
as the size of the jet increases and more wall surface is at the lower stress value. Once the entire
channel transitions to pluglike flow [Fig. 13(c)], the maximum and mean value are equal, and both
are on the bottom jumping curve.

We also compare the mean wall shear stress in the rectangular channel, AR = 10, to the mean wall
shear stress in a square channel, AR = 1. The latter does not exhibit jetting behavior, but the onset of
shear banding and accompanying decrease in wall stress occur at the same apparent shear rate. For
both aspect ratios, the wall shear stress does not immediately decrease to the bottom jumping curve
because the wall shear stress is mixed between the top and bottom jumping curves. This transition
is broadened further when the AR is sufficiently large for jetting. The similar wall stress behavior
observed in rectangular capillaries of AR = 1 and AR = 10 suggests that rectangular capillaries can
produce qualitatively different behavior than circular capillaries. Circular capillaries cannot have
steady wall shear stress that is mixed between the two branches.

Our results demonstrate that the JS model qualitatively replicates the jetting behavior seen in
experiments and that normal stress is important for the development of the jetting. Additionally, the
model shows the transitions from quasi-Newtonian, jetting, and pluglike flow as volumetric flow
is increased. The results show that normal stresses triggered by the high shear rate at the walls
are required to balance the shear stresses associated with the jetting flow field. We expect other
constitutive models that produce a nonmonotonic stress curve will produce similar stress fields and
are likely to display similar jetting behavior. Furthermore, we suspect that jetting does not explicitly
require shear banding. Strongly shear thinning fluids that exhibit substantial normal stress differences
might also exhibit jetting in rectangular channels, through a similar stress field.

V. CONCLUSION

In this paper, we investigate the jetting behavior of a shear banding fluid in high aspect ratio
rectangular channels. The jet forms over a finite volumetric flow range, below which we observe
quasi-Newtonian flow, and at higher flows we observe pluglike flow. The jetting flow occurs in
different channel geometries and channels constructed from various wall materials. If the channel
wall is made from a rough material, such as the rough edge of cut double-sided tape, the jet is likely
to form near the rough surface. Smooth and uniform surfaces, such as a rectangular glass capillary,
lead to the jet forming in the middle of the channel. We conclude that the jet forms in regions of
higher stress. This is further supported by observing the development of the jet in various channel
entrances where stress concentrations form near the corner of the entrance. Jetting is observed over
a range of z-direction wall shear rates that correspond to the plateau region of the shear stress curve
characteristic of shear banding fluids, indicating that the jetting behavior here is associated with the
onset of shear banding.

The JS viscoelastic model is used in 3D numerical simulations to model the behavior of a shear
banding fluid in a rectangular channel. Results from the simulations show the same transition from
quasi-Newtonian behavior to jetting and finally pluglike flow that we observe in experiments. Stress
profiles from the simulations show that shear banding leads to high shear rates along the wall and
large positive normal stresses in the flow direction. Negative normal stresses develop in these same
locations and balance the velocity gradients bordering the high-velocity jet. We also compare the
wall shear stresses in the channel to predictions from the WRM analysis for the JS model. The walls
within the jet follow a bottom jumping path of the stress curve and lead to a lower wall shear stress
while the walls outside the jet remain at a higher stress.

We believe our results are similar to the jetting instability observed by Haward et al. [44] using
CTAB/NaSal WLMs. The main difference in that system is that the linear rheology for their WLM
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system did not exhibit a stress plateau indicative of shear banding behavior. We did not observe
the jetting behavior at a lower concentration of the CPyCl/NaSal system, but we did observe that
velocity gradients extended further across the channel width. There are examples of shear banding
like behavior for entangled polymers with monotonic stress curve [64,72–75]. It is also possible
that the large differences in shear rates that a nonlinear, yet monotonic, stress curve could lead to
jetting-like behavior [76].

We note that other similar experiments of shear banding fluids in rectangular microfluidic channels
did not report this behavior. It is possible that for intermediate channel aspect ratios (AR ≈ 5−8),
the shear rate range for the unstable behavior was not sampled. Our results add to evidence that the
flow of non-Newtonian fluids rectangular microfluidic channels is indeed complex, in particular that
gradients across the channel width are not always negligible. This complex behavior also presents
opportunities for manipulation of flows in microfluidic channels, for instance, as a sorting mechanism
or as a means of producing flow through stress localizations.
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[23] L. Bécu, S. Manneville, and A. Colin, Spatiotemporal Dynamics of Wormlike Micelles Under Shear,

Phys. Rev. Lett. 93, 018301 (2004).
[24] M.-A. Fardin and S. Lerouge, Instabilities in wormlike micelle systems, Eur. Phys. J. E 35, 1 (2012).
[25] M. Fardin, T. Divoux, M. Guedeau-Boudeville, I. Buchet-Maulien, J. Browaeys, G. McKinley, S.

Manneville, and S. Lerouge, Shear-banding in surfactant wormlike micelles: Elastic instabilities and
wall slip, Soft Matter 8, 2535 (2012).

[26] K. W. Feindel and P. T. Callaghan, Anomalous shear banding: Multidimensional dynamics under
fluctuating slip conditions, Rheol. Acta 49, 1003 (2010).
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