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Rotating Rayleigh-Taylor instability
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The effect of rotation upon the classical Rayleigh-Taylor instability is investigated. We
consider a two-layer system with an axis of rotation that is perpendicular to the interface
between the layers. In general, we find that a wave mode’s growth rate may be reduced by
rotation. We further show that in some cases, unstable axisymmetric wave modes may be
stabilized by rotating the system above a critical rotation rate associated with the mode’s
wavelength, the Atwood number, and the flow’s aspect ratio.
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I. INTRODUCTION

Understanding of the Rayleigh-Taylor instability has increased progressively since Lord
Rayleigh’s [1] initial work and the investigations of Taylor [2] and Lewis [3]. The motivation
for research into this fundamental problem has changed over time, from the original interests of
Taylor and Lewis to the energy supply and astrophysical aspects of more recent work. The now
familiar structure of the Rayleigh-Taylor instability has been observed from small scales in, for
example, inertial confinement fusion problems (see, e.g., [4]) to extremely large scales, such as the
crab nebula (see, e.g., [5]) where pulsar winds accelerate through dense supernova remnants. In many
cases of practical interest, it would be desirable to have some further control over the instability after
the setting of the initial density profiles. One possibility is to rotate the system; the often stabilizing
effect of rotation on a flow is well known (see, e.g., [6]). Tao et al. [7] investigated whether rotation
may be used to influence the Rayleigh-Taylor instability at the surface of an inertial confinement
fusion target by considering instability at an interface parallel to the axis of rotation. In inertial
confinement fusion, the Rayleigh-Taylor instability reduces the efficiency of fusion during both the
acceleration phase, between the ablator and the fuel, and the deceleration phase, between the hot and
cold fuel regions (see, e.g., [8]). The efficiency is reduced due to the increased interfacial surface
area between the two layers in each case. The work of Tao et al. [7] suggested that the instability
may be suppressed around the equatorial region of a spherical rotating target.

In a previous paper [9] we reported results of experiments to study the development of the
Rayleigh-Taylor instability in a two-layer fluid system with axis of rotation perpendicular to the
layers. The presence of rotation introduces a restoring force on fluid elements moving perpendicular
to the axis of rotation: the Coriolis force. This fictitious force, which appears in a rotating reference
frame, acts to restore a fluid element, traveling in a direction perpendicular to the axis of rotation,
to its original position, following a curved path. The presence of the Coriolis force therefore allows
the fluid to support inertial wave motions, the rotational counterpart to the internal gravity waves
supported by a density stratification (see, e.g., [10,11]). As will be shown, the Coriolis force acts
to inhibit large-scale overturning motions at the unstable interface and is consequently important
in changing the character of the developing Rayleigh-Taylor instability as the rate of rotation is
increased. The effect is shown qualitatively in Fig. 1. It can be seen that the large-scale overturning
motion required to form large vortices (top) is restricted in the presence of rotation (bottom).
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FIG. 1. The top image, taken from our experiments (image layout modified from [12]), is of a magnetically
induced Rayleigh-Taylor instability developing in a nonrotating system. The instability develops in time,
forming large vortices that transport the green fluid downward. The bottom image is of the same fluids, but
here the system is rotating. The effect of the rotation can be seen to restrict the size of the vortices that form
and inhibit the bulk vertical transport of fluid. The times shown are 1.92 and 3.52 s after initiation in the top
and bottom images, respectively. The experiments are described in Refs. [9,12]. The tank diameter is 90 mm
and the rotation rate in the bottom image was 2.52 rad s−1.

In this paper we present a theoretical study of the Rayleigh-Taylor instability under the influence
of rotation. Miles [13,14] considered the effects of rotation on infinitesimal free-surface waves on a
body of water, remarking on Fultz’s [6] observation that the parabolic nature of the free-surface is
important and cannot be neglected as previous authors had (see, e.g., [15]): “The planar [horizontal
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hydrostatic interface] approximation is necessarily inconsistent for axisymmetric gravity waves in
the sense that both the rotation induced shift . . . and the free-surface slope are of the same order of
magnitude.” We develop the theory of Miles [13,14] to allow for a two-layer fluid system that may
have either a stable or an unstable interface. We find in the limit of high, stable density difference
that we recover Miles’ [14] result and in the limit of an unstable density difference with no rotation
we recover the classical Rayleigh-Taylor model [2]. In the special limit of semi-infinite fluid layers
and a strictly horizontal interface we recover the model of Chandrasekhar [16]. We develop the
dispersion relation for perturbations to an interface between two fluid layers in the low-rotation-rate
limit. For axisymmetric waves we are able to find a critical rotation rate above which a given wave
mode behaves as an oscillating standing wave, but below which it exhibits Rayleigh-Taylor growth.
In general, nonaxisymmetric waves cannot be stabilized indefinitely, but we are able to say for a
given mode whether the growth rate is reduced or increased by rotation and find that there is a strong
dependence on the aspect ratio of the layers.

In Sec. II we develop an inviscid theory based on the previous theories of Rayleigh-Taylor
instability due to Taylor [2] and the modeling of surface oscillations on rotating bodies of fluid
due to Lamb [15] and Miles [13,14]. The key results are a dispersion relation for axisymmetric
and asymmetric perturbations to the interface of a rotating two-layer fluid system (both stable
and Rayleigh-Taylor unstable), a critical rotation rate for stabilizing Rayleigh-Taylor unstable
axisymmetric modes of perturbation. In Sec. III we discuss our results and draw our conclusions.

II. MODELING

A. Growth of the instability

We begin by considering a two-layer rotating fluid as shown in Fig. 2. The upper layer is denoted
by a subscript 1 and the lower layer by a subscript 2. We assume cylindrical polar coordinates with
unit vectors er , eθ , and ez in the radial, azimuthal, and vertical directions, respectively, and take the
rotation to be described by the pseudovector � = �ez. The radius of the cylinder is a and the lid
and base of the cylinder are at z = ±d. The whole system may be accelerated vertically at a rate g1.
Ignoring the effects of viscosity, we write the rotating Euler equation for the fluid in each layer as

Duj

Dt
= − 1

ρj

∇pj + g∗ − � × (� × x) − 2� × uj (1)

for j = 1,2, where g∗ = −(g + g1)ez and uj and x are velocity and position vectors, respectively,
in the rotating frame. For simplicity, we drop the g1 notation and will write g∗ = −gez, with the
understanding that g may not be equal to the acceleration due to gravity and may change sign as a
result of external bulk acceleration of the system.

When the fluid system is spun up into a hydrostatic regime (in the rotating, noninertial reference
frame) then uj ≡ 0 and

pj = p0 − ρj

{
gz − �2

2

(
r2 − 1

2
a2

)}
, j = 1,2, (2)

where p0 is a constant reference pressure equal to the pressure at the interface when the system is
not rotating. We take z = z0(r) to be the position of the interface between the two fluid layers. In
the absence of viscosity, requiring the stress to be continuous across the interface is equivalent to
requiring continuity of pressure across the interface. Hence we may write p1 = p2 on z = z0(r) and
it follows that the interface is an isobar on which pj = p0 and has a profile given by

z0(r) = �2
(
r2 − 1

2a2
)

2g
, (3)

constrained by
∫ a

0 z0(r)r dr = 0 to ensure that the fluid layers are of equal depth. The shape and
position of the interface are independent of the densities of the fluid in the upper and lower layers.
Hence, while the value of p0 and the stability of the interface may change according to whether
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FIG. 2. Two layers of incompressible fluid of density ρ1 and ρ2 occupy a cylindrical tank of radius a that is
being accelerated (see [2]) at a rate g1. When the tank is not rotating we take the interface between the fluids to
be at z = 0 (coordinates moving with the tank), the base of the tank at z = −d , and the lid of the tank at z = d .
The tank is spun up to have a constant angular velocity � about the z axis. The isobar describing the interface
is given by z = z0(r) where z0(r) = �2(r2 − 1

2 a2)/2g and p = p0 on z = z0(r). The meridional plane is split
into two domains D1 and D2 representing the upper and lower layers, respectively (shaded gray).

ρ1 < ρ2 or vice versa, the profile remains the familiar concave paraboloid such as may be observed
at the free surface of a vigorously stirred beverage.

Following Taylor [2], we investigate the development of the Rayleigh-Taylor instability under
rotation by considering the development of a perturbation to the interface. The strength of a
stratification can be characterized by an Atwood number, defined here as A = (ρ2 − ρ1)/(ρ2 + ρ1).
Using this definition, we have that for a stable stratification A > 0 and for an unstable stratification
A < 0. (N.B. In experimental investigations of the Rayleigh-Taylor instability, many authors,
dealing only with unstable flows, define the Atwood number with opposite sign.) The amplitude
of the perturbation and the velocity and pressure deviation from the hydrostatic are all assumed to
be small. We describe the fluid velocity and pressure perturbations in terms of a scalar potential,
unifying the approaches of Taylor [2], in modeling the nonrotating Rayleigh-Taylor instability, and
Miles [13,14], in modeling surface waves on a rotating fluid. Taylor [2] used a standard velocity
potential and Miles [14] used an acceleration potential of the kind proposed by Poincaré [17].
Here we make use of the generalized potential described by Hart [18]. Specifically, for an interface
perturbation

z = z0(r) + εζ (r,θ,t), (4)

where ε|ζ | � d, we take the velocity perturbation to the hydrostatic background to be

uj = ε

{(
1 + 1

4�2

∂2

∂t2

)
∇φj − 1

2�

∂

∂t
(ez × ∇φj ) + ez× (ez × ∇φj )

}
(5)
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for j = 1,2 and the pressure to be

pj = p0 − ρjg[z − z0(r)] − ερj

{
∂φj

∂t
+ 1

4�2

∂3φj

∂t3

}
(6)

for j = 1,2.
Substitution of (5) and (6) into (1) shows that the rotating Euler equation is satisfied at leading

order by the order 1 hydrostatic pressure terms and at order ε by the generalized potential φ. (We
note that both the present formulation and that of Miles [13,14] necessarily imply a swirl component
to the flow as soon as the radial velocity is nonzero.) By further assuming that the fluid in each layer
is incompressible, i.e., ∇ · uj = 0, we obtain the governing wave equation for each fluid layer{

∂2
t ∇2 + 4�2∂2

z

}
φj = 0, j = 1,2. (7)

Solutions to this type of wave equation in the context of inertial waves and internal gravity waves
are well known (see, e.g., [19] and references therein).

We seek to solve the governing equation (7) together with the following boundary conditions:
that there is no flow through the tank walls, an impermeability condition given by

u · er = 0 on r = a,

u · ez = 0 on z = ±d; (8)

we also require that the velocity on the axis of rotation r = 0 is sufficiently regular, specifically that

r∂φ2
j /∂r → 0 as r → 0 (9)

(this condition allows for finite fluid velocities across the axis of rotation); and finally, we require
continuity of stress across the interface. In the absence of viscosity we therefore require

p|+− = 0 across z = z0(r) + εζ (r,θ,t). (10)

Since ζ is unknown we require the kinematic condition that the interface moves with the local fluid
velocity to close the system:

D

Dt
(z0 + εζ ) = u · ez on z = z0(r) + εζ (r,θ,t). (11)

Following Taylor [2] and Miles [14] we adopt a variational formulation and seek normal mode
solutions of the form

φ = φ̂(r,z) exp{i(ωt + mθ )}, ζ = ζ̂ (r) exp{i(ωt + mθ )}, (12)

where m ∈ N0 is an azimuthal wave number. Substitution into (7) yields the governing equation

1

r

∂

∂r

(
r
∂φ̂j

∂r

)
− m2

r2
φ̂j + (1 − μ2)

∂2φ̂j

∂z2
= 0, j = 1,2, (13)

where we adopt Miles’ [14] notation by defining μ = 2�/ω. The boundary conditions (8) and (9)
become

r∂φ̂2
j /∂r → 0 as r → 0,

r∂φ̂j /∂r + μmφ̂j = 0 on r = a,

∂φ̂j /∂z = 0 on z = ±d,

(14)

where the plus or minus is taken according to whether j = 1 or 2, respectively. The condition of
pressure continuity across the interface (10) yields, at order ε,

iωμ2ζ̂ = 2�2

g

(
1 − 1

μ2

)(
1 + A

A
φ̂2 − 1 − A

A
φ̂1

)
(15)
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on z = z0(r). The kinematic condition (11) at order ε can be written as

iωμ2ζ̂ = z′
0

(
∂φ̂j

∂r
+ μm

r
φ̂j

)
− (1 − μ2)

∂φ̂j

∂z
, j = 1,2 (16)

on z = z0(r) for each layer, where z′
0 ≡ dz0/dr .

The variational functional 
[φ̂1,φ̂2] is defined by multiplying the governing equation (13) by
ρj φ̂j and integrating over the domain D = D1 ∪ D2 = [0,a] × [−d,d] (see Fig. 2) so that


 =
∫

D
ρφ̂

{
1

r

∂

∂r

(
r
∂φ̂

∂r

)
− m2

r2
φ̂ + (1 − μ2)

∂2φ̂

∂z2

}
dA. (17)

Following the method outlined by Miles [14], we write the integral (17) in conservative form, giving


 =
∫

D
ρ

[
1

r

∂

∂r

(
rφ̂

∂φ̂

∂r

)
+ (1 − μ2)

∂

∂z

(
φ̂

∂φ̂

∂z

)]
dA

−
∫

D
ρ

[(
∂φ̂

∂r

)2

+ m2

r2
φ̂2 + (1 − μ2)

(
∂φ̂

∂z

)2]
dA. (18)

We consider the first integral in Eq. (18) and integrate over D1 and D2 separately. Defining I1 to be
the integral over D1 and I2 to be the integral over D2, we have

I1 =
∫ z0(a)

z0(0)

∫ r0(z)

0

ρ1

r

∂

∂r

(
rφ̂1

∂φ̂1

∂r

)
r dr dz +

∫ d

z0(a)

∫ a

0

ρ1

r

∂

∂r

(
rφ̂1

∂φ̂1

∂r

)
r dr dz

+
∫ a

0

∫ d

z0(r)
ρ1(1 − μ2)

∂

∂z

(
φ̂1

∂φ̂1

∂z

)
r dz dr, (19)

where r0(z) is the well-defined inverse of z0(r). Integrating and enforcing the boundary conditions
∂φ̂1/∂z|z=d = 0, (r∂φ̂1/∂r + μmφ̂1)|r=a = 0, and r∂φ̂2

1/∂r → 0 as r → 0 implies

I1 = ρ1

∫ z0(a)

z0(0)
rφ̂1

∂φ̂1

∂r

∣∣∣∣∣
r=r0(z)

dz − ρ1μm

∫ d

z0(a)
φ̂2

1

∣∣
r=a

dz − ρ1(1 − μ2)
∫ a

0
φ̂1

∂φ̂1

∂z

∣∣∣∣∣
z=z0(r)

r dr.

(20)

Transforming the first term in Eq. (20) by making the substitution z = z0(r) gives the result

I1 = −ρ1μm

∫ d

z0(a)
φ̂2

1

∣∣∣∣
r=a

dz + ρ1

∫ a

0
φ̂1

{
z′

0
∂φ̂1

∂r
− (1 − μ2)

∂φ̂1

∂z

}∣∣∣∣
z=z0(r)

r dr. (21a)

Following a similar procedure, we may also show

I2 = −ρ2μm

∫ z0(a)

−d

φ̂2
2

∣∣∣∣
r=a

dz − ρ2

∫ a

0
φ̂2

{
z′

0
∂φ̂2

∂r
− (1 − μ2)

∂φ̂2

∂z

}∣∣∣∣
z=z0(r)

r dr. (21b)

Eliminating the interface perturbation ζ from the pressure continuity condition (15) and the kinematic
condition (16), we see that

z′
0
∂φ̂j

∂r
− (1 − μ2)

∂φ̂j

∂z
= −z′

0
μm

r
φ̂j + 2�2

g

(
1 − 1

μ2

)(
1 + A

A
φ̂2 − 1 − A

A
φ̂1

)
(22)
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for j = 1,2 on z = z0(r). Thus, we may rewrite (21a) and (21b) as

I1 = −ρ1μm

∫ d

z0(a)
φ̂2

1

∣∣∣∣
r=a

dz

+
∫ a

0
ρ1φ̂1

{
2�2

g

(
1 − 1

μ2

)(
1 + A

A
φ̂2 − 1 − A

A
φ̂1

)
− z′

0
μm

r
φ̂1

}∣∣∣∣
z=z0(r)

r dr, (23a)

I2 = −ρ2μm

∫ z0(a)

−d

φ̂2
2

∣∣∣∣
r=a

dz

−
∫ a

0
ρ2φ̂2

{
2�2

g

(
1 − 1

μ2

)(
1 + A

A
φ̂2 − 1 − A

A
φ̂1

)
− z′

0
μm

r
φ̂2

}∣∣∣∣
z=z0(r)

r dr. (23b)

Substituting (23) into (18), we have that


[φ1,φ2] = −ρ1μm

∫ d

z0(a)
φ̂2

1

∣∣
r=a

dz − ρ2μm

∫ z0(a)

−d

φ̂2
2

∣∣
r=a

dz

+
∫ a

0
ρ1φ̂1

{
2�2

g

(
1 − 1

μ2

)(
1 + A

A
φ̂2 − 1 − A

A
φ̂1

)
− z′

0
μm

r
φ̂1

}∣∣∣∣
z=z0(r)

rdr

−
∫ a

0
ρ2φ̂2

{
2�2

g

(
1 − 1

μ2

)(
1 + A

A
φ̂2 − 1 − A

A
φ̂1

)
− z′

0
μm

r
φ̂2

}∣∣∣∣
z=z0(r)

rdr

−
∫

D1

ρ1

⎡
⎣(∂φ̂1

∂r

)2

+ m2

r2
φ̂2

1 + (1 − μ2)

(
∂φ̂1

∂z

)2
⎤
⎦dA

−
∫

D2

ρ2

⎡
⎣
(

∂φ̂2

∂r

)2

+ m2

r2
φ̂2

2 + (1 − μ2)

(
∂φ̂2

∂z

)2
⎤
⎦dA. (24)

Taking the functional derivative of 
 with respect to, for example, φ̂1, where δ1
 ≡ 
[φ̂1 +
δφ̂1,φ̂2] − 
[φ̂1,φ̂2], yields, after some manipulation,

δ1
 = 2ρ1

∫
D1

{
1

r

∂

∂r

(
r
∂φ̂1

∂r

)
− m2

r2
φ̂1 + (1 − μ2)

∂2φ̂1

∂z2

}
δφ̂1dA

−2ρ1

∫ d

z0(a)

{
μmφ̂1 + r

∂φ̂1

∂r

}
δφ̂1

∣∣∣∣
r=a

dz

+ 2ρ1

∫ a

0

{
2�2

g

(
1 − 1

μ2

)(
1 + A

A
φ̂2 − 1 − A

A
φ̂1

)

−z′
0
μm

r
φ̂1 −

[
z′

0
∂φ̂1

∂r
− (1 − μ2)

∂φ̂1

∂z

]}
δφ̂1

∣∣∣∣
z=z0(r)

r dr. (25)

So we see that the functional 
 is stationary with respect to first-order variations of φ̂1 about the
solution of the governing equation (13) in D1, the boundary condition (22) for j = 1 at the interface
z = z0(r) and at the no-radial flow condition at r = a on the boundary of D1. Similarly, 
 is stationary
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with respect to first-order variations of φ̂2 about the solution of the governing equation (13) in D2,
the boundary condition (22) for j = 2 at the interface z = z0(r) and the no-radial flow condition
at r = a on the boundary of D2. [The Euler-Lagrange equation for 
 as expressed in Eq. (17) is
the governing equation (13) multiplied by 2ρj .] Following Miles [14], we pose trial solutions that
satisfy the governing equation (13), the regularity condition at r = 0, and the boundary conditions
on r = a and z = ±d exactly and invoke the variational principle only with respect to the final
boundary condition on z = z0(r).

If φ̂ is an exact solution of the governing equation (13), it follows from the definition of 
 that

(φ̂) = 0. Therefore, if φ̂ is a solution of (13), it follows from (18) and (21) that

∫
D

ρ

[(
∂φ̂

∂r

)2

+ m2

r2
φ̂2 + (1 − μ2)

(
∂φ̂

∂z

)2]
dA

= −ρ1μm

∫ d

z0(a)
φ̂2

1

∣∣∣∣
r=a

dz − ρ2μm

∫ z0(a)

−d

φ̂2
2

∣∣∣∣
r=a

dz

+
∫ a

0
ρ1φ̂1

{
z′

0
∂φ̂1

∂r
− (1 − μ2)

∂φ̂1

∂z

}∣∣∣∣
z=z0(r)

r dr

−
∫ a

0
ρ2φ̂2

{
z′

0
∂φ̂2

∂r
− (1 − μ2)

∂φ̂2

∂z

}∣∣∣∣
z=z0(r)

r dr. (26)

Substituting (26) into (24), we therefore have, after simplification,


 ∝
∫ a

0

{
ω2

[
1 + A

A
φ̂2 − 1 − A

A
φ̂1

]2

+
[

�2

1 − μ2

(
r

∂

∂r
+ 2μm

)
− g

∂

∂z

]

×
[

1 + A

A
φ̂2

2 − 1 − A

A
φ̂2

1

]}∣∣∣∣
z=z0(r)

r dr. (27)

The constant of proportionality is (ρ2 − ρ1)(1 − μ2)/4g, but as interest is focused upon stationary
values of 
, it will be disregarded. The expression in Eq. (27) is the two-layer equivalent of the
functional given in (3.2) of Ref. [14] and it can be seen that Miles’ expression is recovered in the
limit A = 1 (the stable single layer limit). The cross term in the first term of the integrand is crucial
in coupling the behavior of the two fluid layers.

Again, following Miles [14], we seek to construct a series solution based on trial solutions of the
form

φ̂jn(r,z) = Jm

(
knr

a

)
cosh

(
kn

a

[z ∓ d]√
1 − μ2

)
(28)

for n = 1,2, . . ., where Jm is a Bessel function of the first kind and we take the minus or plus sign
in Eq. (28) according to whether j = 1 or 2, respectively. The trial solutions (28) satisfy both the
governing equation (13) and the vertical impermeability boundary conditions at z = ±d. The radial
impermeability boundary condition at r = a sets the possible modes of solution and so in general
we sum over the countable number of solutions kn of

kJm+1(k) = m(1 + μ)Jm(k), (29)

which follows from substituting (28) into (14) and setting r = a. (The ratio kn/a may be regarded as
the radial wave number associated with the nth mode.) The trial solutions (28) form a complete set
over D (and are orthogonal in each layer when μ = 0) and so as the number of terms in the series
increases we approach a full solution [14]. (See Ref. [20] for a description of this classical approach
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and its relation to the method of weighted residuals.) Thus, we approximate φ̂1 and φ̂2 by

φ̂j ≈ φ̂
(N)
j =

N∑
n=1

cjnφ̂jn, j = 1,2 for some N � 1. (30)

We adopt a variational approach applied to (27) in order to find the coefficients cjn such that our
solution satisfies (22) on z = z0(r), the remaining unsatisfied condition. Specifically, by seeking
stationary values of the functional 
, by taking the partial derivatives ∂
/∂cjn, j = 1,2, n =
1, . . . ,N , we may construct 2N linear equations in the 2N coefficients. The eigenvalue equation for
ω is found by setting the determinant of this linear system to be zero. If ω has a negative imaginary
part, then (12) implies growth and the onset of the Rayleigh-Taylor instability.

In the remainder of this section we initially consider purely axisymmetric instabilities, first
asymptotically for low rotation rates in Secs. II B 1–II B 3 and then numerically for arbitrary rotation
rates in Sec. II B 4. We then consider asymmetric instabilities, first asymptotically for low rotation
rates in Secs. II C 1–II C 3 and then numerically for arbitrary rotation rates in Secs. II C 4 and II C 5.

B. Axisymmetric instability m = 0

In the first instance we consider purely axisymmetric motion: the special case m = 0. Setting
m = 0 in Eq. (29) shows that we sum over the zeros of J1(k), which implies k ∈ R.

1. Single-mode, low-rotation-rate, gravity wave solutions: Asymptotics

Following Miles [14], we initially consider a solution containing a single trial solution, each in the
upper and lower layers. We further assume a low rotation rate such that α = �2a/g � 1. Using such
an approximation, Miles was able to explain the discrepancies between the theory of Lamb [15] and
the experimental observations of Fultz (see [6], Fig. 12) and so we adopt this level of approximation
for initial investigation. Seeking an asymptotic expression for the eigenvalue equation for ω, we
take (28) for some single n ∈ N. By considering ∂
/∂c1n = 0 and ∂
/∂c2n = 0 and expanding in
powers of α we find, after some significant manipulation, that an eigenvector of the solution is

c ∝ [
1,−1 − 1

6 coth(knδ)α + O(α2)
]
, (31)

where δ = d/a, and the eigenvalue equation for ω is

ω2 ∼ gA
kn

a
tanh(knδ) + 2�2

[
1 + 2knδcsch(2knδ) − 1

24
k2
nA

2sech2(knδ)

]
+ g

a
O(α2). (32)

We observe therefore that if gA < 0, then ω2 < 0 and interfacial perturbations will grow rather than
oscillate: the Rayleigh-Taylor instability. The form of (32) suggests that we may be able to suppress
this growth to some extent by rotating the system, i.e., the second term in Eq. (32) may be used to
compete with the first if it has the opposing sign. However, it would be mistaken to suggest that (32)
implies that, given a sufficient rotation rate, an unstable mode could be fully stabilized (ω2 > 0),
as is concluded erroneously by Sharma et al. [21] in the context of particle laden Rayleigh-Taylor
instability. The expansion (32) is asymptotic and its validity breaks down when the second term is
comparable to the first. The correct approach is to consider an expansion when ω, not �, is small
compared to (a/g)1/2 (see Sec. II B 3). The expression in Eq. (32) is the first of two key results we
present. It is the dispersion relation for a slowly rotating two-layer fluid system that may be either
stably stratified or Rayleigh-Taylor unstable.

Whether the growth rate of a given wave mode is reduced or increased by rotation depends on the
sign of the second term in Eq. (32). Provided |A |/δ � 8.72, then there are no solutions for which
the second term in Eq. (32) can be made negative and so the effect of rotation is always to initially
suppress a given wave mode. (The threshold coefficient c ≈ 8.72 is given by

c2 = 24

ξ 2
0

[ξ0 coth ξ0 + cosh2 ξ0],
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where

ξ0[sinh(4ξ0) − 2ξ0] = 2[sinh(2ξ0) + ξ0]2,

giving ξ0 ≈ 1.39) However, if |A |/δ � 8.72, indicating a sufficiently strong stratification or
sufficiently shallow aspect ratio, then there may exist wave modes that are excited by rotating
the system. For example, A = − 1

2 , δ = 1
18 , and n = 7 gives |A |/δ = 9 > c, k7 ≈ 22.76, and the

second term of (32) is approximately −0.14, i.e., the seventh mode is excited rather than suppressed
as the first six modes are.

Rather than considering the limit of low rotation rate α � 1, we may substitute (28) into (27)
with m = 0 and take δ → ∞, which may be thought of as forcing a horizontal initial interface,
rather than parabolic, to find

ω4 − 4�2ω2 − ω4
0 = 0 where ω2

0 = gA
kn

a
, (33)

the solution of which, selecting the physically appropriate branch by introducing the factor A /|A |,
is Chandrasekhar’s solution [see Eqs. (162) and (163) in Ref. [16]], given by

ω2 = 2�2 + A

|A |
√

4�4 + ω4
0 (34)

in the present notation.
If the vertical coordinate z is scaled by the layer depth d and the radial coordinate r is scaled by

the domain radius a, then the nondimensional form of (3) is

z�
0(r�) = α

2δ

(
r�2 − 1

2

)
, (35)

where superscript stars denote nondimensional quantities. It follows from (35) that for the interface
between the two fluid layers to be horizontal, i.e., z�

0(r�) = const, then either α = 0 and the system
is not rotating or we are considering the limit δ → ∞. Hence we may interpret the approximation of
Chandrasekhar [16], that the system is rotating, but has a horizontal initial interface, as considering
the special case of d → ∞ and a → ∞, with infinite aspect ratio δ → ∞. We can expect therefore
that when we have large aspect ratio δ and moderate values of α, (34) will be a better approximation
to ω than the asymptotic expansion (32) since no small rotation rate approximation has been made
in the case of (34). [We note that the two solutions (32) and (34) coincide, as they must, if δ � 1
and α � 1.]

2. Single-mode, low-rotation-rate, inertial wave solutions: Asymptotics

We show the presence of inertial waves when ω2 ∼ O(α). We consider ∂
/∂c1,n = 0 and
∂
/∂c2,n = 0 for a single n ∈ N, but specifically seek solutions for which ω2 does not have an
order 1 contribution, but has a leading-order contribution at O(α).

In order to ensure that ω2 has no leading-order contribution we find that we must satisfy

sinh

(
2knδ√
1 − μ2

)
∼ O(α), (36)

which requires

ω2a

g
∼ 4α

1 + [2knδq]2
+ O(α2), (37)
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where δq = δ/qπ for ±q = 1,2, . . .. The frequencies associated with these wave modes depend
upon whether q is even or odd. For q odd

ω2a

g
∼ 4α

1 + [2knδq]2

{
1 ∓ [2knδq]2

1 + [2knδq]2

α

6δ
+ O(α2)

}
, (38)

where the minus or plus sign is taken according to whether the wave occurs mainly in the upper or
lower fluid, respectively. The eigenvectors correspond to waves occurring in either predominantly
the upper fluid c = (1,O(α2)) or predominantly the lower fluid c = (O(α2),1).

For q even,

ω2a

g
∼ 4α

1 + [2knδq]2

[
1 − [2knδq]2

(1 + [2knδq]2)2

1

A

(
(4δq)2

± 1

6
((1 + [2knδq]2){1 + [2knδq]2 − 12(4δq)2}A 2 + 36(4δq)4)1/2

)
α

δ
+ O(α2)

]
. (39)

It is straightforward to show that when A = 1, δq is replaced by δq/2, and the minus sign is chosen
in Eq. (39) (corresponding to the flow taking place in the lower fluid), the solution in (4.13) in
Ref. [14] is recovered. The solutions Miles found correspond to the even q solutions; hence δq must
be replaced by δq/2 above for comparison. For even q the associated eigenvector is

c =
(

1,
1

6(1 + A )(4δq)2
[A {1 + [2knδq]2 − 6(4δq)2}

∓ (A 2(1 + [2knδq]2){1 + [2knδq]2 − 12(4δq)2} + 36(4δq)4)1/2] + O(α)

)
. (40)

The odd q solutions are present for all values of A including the special case A = 1.

3. Single-mode critical rotation rate for stabilization

A critical rotation rate �c for which a single gravity wave mode is stable for � > �c and unstable
for � < �c can be found by considering an asymptotic expansion of 
 as a series in ω2a/g. Near
the stability threshold we are in a regime ω2a/g � 1 and thus an expansion to the first two terms of
the series can be used to find the critical rotation rate.

We have that for m = 0, kn is such that J1(kn) = 0 and so using the results∫ 1

0

J 2
0 (knx)

J 2
0 (kn)

x dx = 1

2
, (41a)

∫ 1

0

J 2
0 (knx)

J 2
0 (kn)

x3dx = 1

6
, (41b)

∫ 1

0
J0(knx)J1(knx)x2dx = 0, (41c)

we may show that if α = α0 + aω2α1/g + · · · , to leading order the variational function 
 is
proportional to

ω2a

g

{[
1 − A

A
c1n − 1 + A

A
c2n

]2

+ 1 − A

2A

[
k2
n

12
+ δk2

n

α0

]
c2

1n − 1 + A

2A

[
k2
n

12
− δk2

n

α0

]
c2

2n

}
. (42)

It follows that for nontrivial solutions of ∂
/∂c1n = 0 and ∂
/∂c2n = 0 we require to leading order{
1 − A

A
+ 1

2

[
k2
n

12
+ δk2

n

α0

]}{
1 + A

A
− 1

2

[
k2
n

12
− δk2

n

α0

]}
− 1 − A 2

A 2
= 0, (43)
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at the instability threshold ω = 0 and hence α = α0. Thus, we may solve (43) for α0 = αc, the
critical value of α that yields ω = 0. Hence, we find the critical rotation rate �c to be given exactly
by

�2
ca

g
= 6δ

A

(
1 − k2

n

48

)−1[{
1 − k2

nA
2

12

(
1 − k2

n

48

)}1/2

− 1

]
. (44)

This result does not depend on exploiting a small rotation rate or other small external parameter
and so is not asymptotic and is therefore true in general. Since �c ∈ R, (44) only applies for
−1 � A < 0, i.e., a critical rotation rate only exists if the fluid layers would be Rayleigh-Taylor
unstable in a nonrotating regime, as might be anticipated on physical grounds. Under this condition
on A , (44) can be shown to be a strictly monotonically increasing function in kn, bounded such that
αc ∈ [0,12δ).

A key observation from (44) is that the monotonic dependence of αc on kn means that for a
given rotation rate all structures larger than the critical wavelength associated with kn are stabilized,
whereas all structures smaller than the critical wavelength remain unstable. This is in keeping with
the physical arguments presented earlier in the Introduction.

There exists a threshold rotation rate α = 4δ, where the hydrostatic interface intersects the lid
and the base of the domain and, as a result, the assumed form of φ no longer satisfies the boundary
conditions at z = ±d. So, although it follows from (44) that for a given radial wave number kn there
exists a critical rotation rate for stabilization, it is not guaranteed that this critical rotation rate is
less than the threshold rotation rate 4δ. That is to say, although (44) implies that since there are no
growing axisymmetric modes for −1 � A < 0 when �2

ca/g > 12δ, suggesting all axisymmetric
modes may therefore be made indefinitely stable, this absolute critical rotation rate cannot be attained
before the model breaks down. In summary, (44) shows that for a given rotation rate there exists
a critical wavelength, above which all axisymmetric modes are stable, but below which all short
wavelength modes remain unstable.

Chandrasekhar (see Chap. X, Sec. 95 in Ref. [16]) considers the special case of a two-layer
stratification of semi-infinite fluids with a horizontal interface and states that “ . . . it follows that in
the present case rotation does not affect the instability or stability, as such, of a stratification . . . ”
The critical rotation rate given in Eq. (44) shows that Chandrasekhar’s result is a special case and
not true in general for purely axisymmetric flows, supporting Carnevale et al. [22]. The case of two
semi-infinite fluids superposed is given by taking the limits a → ∞ and d → ∞. The assumption of
a horizontal interface implies that these limits should be taken such that δ = d/a → ∞. Taking the
limit δ → ∞ in Eq. (44) shows that there is indeed no finite critical rotation rate to stabilize a given
unstable mode as δ → ∞ since �c → ∞. The result (44) is the second key result presented here and
shows that, for finite-aspect-ratio flows, it is possible to completely suppress some Rayleigh-Taylor
unstable modes by rotating the system.

4. Single-mode, arbitrary-rotation-rate solutions: Numerics

In order to obtain results at arbitrary rotation rate we proceed using a hybrid of analytical and
numerical methods, whereby evaluation of integrals is carried out using Simpson’s rule. For N = 1
and n = 1 we construct the matrix of coefficients of cjn from the linear equations ∂
/∂cjn = 0
for j = 1,2. This yields a 2 × 2 matrix M and the zeros of its determinant, corresponding to
possible solutions, are calculated numerically and plotted in Fig. 3 for A = ± 1

2 and δ = 1
4 ,4. The

zero-rotation-rate solutions, as found by Taylor [2], are indicated by white circles on the vertical
axes. Selecting n = 1 gives k = k1, the first zero of J1, and so we have k ≈ 3.83.

Inertial waves are present as a result of the rotation and it can be seen that these solutions all
converge at the origin, indicating that as the rotation rate tends to zero these waves are not supported,
consistent with their definition. The first pair of inertial wave solutions, corresponding to (38) with
q = 1, are indicated by dot-dashed lines extending away from the origin. The grayed-out regions
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FIG. 3. Solutions of the eigenvalue problem, consistent with the assumptions of Sec. II A, describing the
dispersion relation for Atwood numbers A = ± 1

2 (stable and unstable, respectively), δ = 1
4 ,4, N = 1, and

k = k1 ≈ 3.83. Solid lines are the exact solution calculated numerically. The long-dashed lines correspond to
Chandrasekhar’s solution (34). (a) Stable: A = 1

2 and δ = 1
4 . The gravity wave solution coincides with the

α = 0 axis at the value given by Taylor, indicated by a circle. The asymptotic solution is shown as a dashed line
for α < 0.5 and continues as dotted for larger values. The first pair of inertial wave solutions (38) corresponding
to q = 1 are shown (dot-dashed lines). The grayed region contains an infinite number of possible inertial wave
solutions corresponding to higher values of q. (b) Unstable: A = − 1

2 and δ = 1
4 . On α = 0 the unstable growth

is predicted by Taylor’s [2] result. It can be seen that as the rotation rate α increases, one of the q = 1 inertial
wave solutions coalesces with the gravity wave solution. The critical rotation rate is predicted by (44) and is
given by αc = 0.49. (c) A = 1

2 and δ = 4. With the increase in δ we see an improvement between the full
solution and Chandrasekhar’s solution, giving better agreement than the low-rotation-rate asymptotics (32).
(d) A = − 1

2 and δ = 4. There is excellent agreement with Chandrasekhar’s solution for α < 5 compared with
the low-rotation-rate asymptotics, but his solution remains in the unstable region as α → ∞, unlike the full
solution. The critical rotation rate αc = 7.78 follows from (44). As in (b), one of the q = 1 inertial wave
solutions coalesces with the gravity wave solution.
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contain an infinite number of inertial waves corresponding to the higher values of q. Within this
region the numerical contouring of |M| = 0 fails and so the region has been grayed out.

In the stable cases A = 1
2 , shown in Figs. 3(a) and 3(c), the effect of the rotation on the gravity

wave on the interface is only to increase its frequency, hence the comments of Miles [13] indicating
that the effects of rotation are not especially interesting for axisymmetric waves on a single layer of
fluid. The asymptotic gravity wave solutions (32) are shown as the dashed lines extending away from
the white circle on the vertical axes. They are shown dashed for α < 0.5, after which we anticipate
the approximations being less good, as the errors are O(α2), and the solution is thereafter shown as
dotted.

In the unstable cases A = − 1
2 , shown in Figs. 3(b) and 3(d), the effect of rotation on the k1

gravity wave at the interface is to change the sign of ω2 from negative (unstable, a Rayleigh-Taylor
instability) to positive (stable, standing-wave solutions). The rotation is able to completely stabilize
the mode for α > αc. It can be seen that as the rotation rate is increased the gravity wave solution
coalesces with the dominant inertial wave solution. The predicted critical rotation rates are αc ≈ 0.49
for δ = 1

4 and αc ≈ 7.78 for δ = 4. It can be seen that for moderate values of α there is significant
improvement in the agreement between the numerical solution and Chandrasekhar’s [16] solution
for the larger value of δ, as expected (see Sec. II B 1). With the parameters used in Fig. 3(b), the
asymptotic value of αc calculated for large N is within 3.4% of that calculated using N = 1 modes,
as in Eq. (44).

It can be shown that as a result of (41b), the key results of Sec. II B, (32) and (44), are independent
of the �2/(1 − μ2) term in Eq. (27), the only term that has an explicit dependence on the profile
z0(r). As the low-rotation-rate approximation (32) and the critical rotation rate (44) are independent
of this term, it follows that the unstable solution branch for ω can be well approximated by neglecting
this term. Indeed, for low to moderate Atwood number (A � 1

2 ) then


 ∝
∫ a

0

{
ω2(φ̂2 − φ̂1)2 − gA

∂

∂z

(
φ̂2

2 − φ̂2
1

)}∣∣∣∣
z=z0(r)

r dr (45)

is a reasonable approximation to (27), with approximate O(A 2) error. The calculated critical rotation
rate for the example considered in Fig. 3(b) using (45), as opposed to (27), is αc = 0.45 compared
to αc = 0.49, an error of approximately 7.8%.

C. Nonaxisymmetric instability m �= 0

We now consider the more general case that includes nonaxisymmetric modes. Here the right-hand
side of (29) can be nonzero and so ω ∈ C, giving the possibility of both growth and precession of
the instability. As ω ∈ C it follows that k = k(�,ω) ∈ C in general. The fact that k cannot be
determined a priori for the whole solution space increases the difficulty of calculating solutions for
the nonaxisymmetric cases compared to the axisymmetric cases.

1. Single-mode, low-rotation-rate, gravity wave solutions: Asymptotics

To find the corresponding low-rotation-rate asymptotics as in Sec. II B we expand both ω and k

in terms of α. It follows from (29) for ω ∼ ω0 + ω1α
1/2 + ω2α + · · · that

k

k0
∼ 1 + 2m

k2
0 − m2

(
αg

aω2
0

)1/2

− 2m

k2
0 − m2

[(
aω2

1

g

)1/2

+ m
(
k2

0 + m2
)

(
k2

0 − m2
)2

](
αg

aω2
0

)
+ O(α3/2), (46)

where k0 ∈ R satisfies

k0Jm+1(k0) = mJm(k0). (47)

[Note that again there is a countable number of solutions k0n but for clarity we will use the notation
k0 and understand that it may not be the first zero of (47).] Substituting in and following a similar
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procedure to that in Sec. II B, the first two terms for ω satisfy

aω2
0

g
= A k0 tanh(k0δ), (48a)

√
a

g
ω1 = m

k2
0 − m2

[1 + 2k0δ csch(2k0δ)]. (48b)

The leading-order term ω0 is unchanged from (32), noting the change in definition of k0. The ω1

term is not present in Eq. (32), as a result of m = 0 in the axisymmetric case. However, we note
that ω1 ∈ R and so this term can play no role in the growth or suppression of interfacial waves; it is
merely contributing a modification to the precession velocity. We also note that ω1 is independent
of A and is therefore exactly the same as the first correction term found by Miles [see Eq. (5.5) in
Ref. [14]].

For comparison with the second term on the right-hand side of (32) we now calculate a(2ω0ω2 +
ω2

1)/g and find it to be

2

{
1 − 2m2k2

0(
k2

0 − m2
)3 + 2k0δ csch(2k0δ)

[
1 − m2(

k2
0 − m2

)2

(
k2

0 + m2

k2
0 − m2

+ 2k0δ coth(2k0δ)

)]

− 1

8
k2

0A
2sech(k0δ)2

[
1 + 4

k2
0 − m2

(
m2

k2
0

cosh(k0δ)2 − k2
0G(m,k0)

)]}
, (49)

where we use (41a)–(41c) and define

G(m,k) =
∫ 1

0

Jm(kx)2

Jm(k)2
x3dx. (50)

Provided k0 is a solution of (47), then in the limit m → 0, G(m,k0(m)) → 1
6 and we may recover

the axisymmetric m = 0 term in Eq. (32) from (49). The associated eigenvector with the solution
described by (48) and (49) is

c =
(

1,−1 − k0

2
coth(k0δ)

[
1 + 4

k2
0 − m2

(
m2

k2
0

− k2
0G(m,k0)

)]
α + O(α2)

)
(51)

and we note that therefore to leading order the solution in the lower layer is growing and precessing
in the opposite direction to the fluid in the upper layer, as might have been anticipated.

It follows from (49) that ω2 ∈ C if ω0 ∈ C and so may contribute to both precession and growth–
decay. Whether the growth rate of a wave mode is reduced or increased by a small amount of rotation,
compared to its growth in a nonrotating system, is controlled by (49) too, since ω1 ∈ R.

2. Single-mode, low-rotation-rate, inertial wave solutions: Asymptotics

As with the axisymmetric case, for ω2 to have a leading-order contribution of O(α) we require (36)
and hence (37) to be satisfied. Writing ω ∼ ω1α

1/2 + ω2α + · · · and k ∼ k0 + k1α
1/2 + k2α + · · ·

we have that

ω2
1a

g
= 4

1 + [2k0δq]2
for δq ≡ δ

qπ
, q ∈ N. (52)

The leading-order balance of (29) is therefore

Jm+1(k0) = m

k0

(
1 + 2

ω1

)
Jm(k0). (53)
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Combining (52) and (53), we have that for a given m �= 0 and δq , k0 must satisfy

1 + [2k0δq]2 =
(

1 − k0

m

Jm+1(k0)

Jm(k0)

)2

. (54)

The solutions fall into two categories according to whether q is odd or even, as before. For q odd

ω2a

g
∼ 4α

1 + [2k0δq]2

⎧⎨
⎩1 ∓ α[2k0δq]2

2δ

{
1 + 4

[
δ2
qm

2 − G(m,k0)
]}

×
[(

1 + 4δ2
qm

2
)
(1 + [2k0δq]2) − 8mδ2

q

ω1

]−1
}

. (55)

The expression for q even is lengthy and so here we note only the solutions for extreme values of δ.
Specifically, if q is even and m �= 0, then for δ � 1,

ω2a

g
∼ 4α

{
1 ± 2δ2

qα

δ

{
k2

0[1 − 4G(m,k0)] + 4m
}+ O(α2)

}
, (56)

and for δ � 1,

ω2a

g
∼ 4α

{
1

[2k0δq]2
± α

δ

m

δqk
3
0

+ O(α2)

}
. (57)

A further, higher-order, solution exists, provided m �= 0, for k ∼ k0 + O(α), where Jm(k0) = 0 and

ω2a

g
∼
(

2m

k2
0δ

)2

α3

{
1 − α

2δ

[
4G+(m,k0) − 1 + 4

k2
0

(
1 ± 2

A

)]
+ O(α2)

}
, (58)

where

G+(m,k) =
∫ 1

0

J 2
m(kx)

J 2
m+1(kx)

x3dx. (59)

3. Single-mode critical rotation rate for stabilization

In Sec. II B 3 it was shown that for δ < ∞ there exists a critical rotation rate �c above which an
axisymmetric wave mode can be stabilized for a given unstable Atwood number. Here we show that
such a critical rotation rate does not exist in the case m �= 0.

For m �= 0 and � ∼ �0[1 + (�1/�0)ω + O(ω2)], (29) implies that

k

k0
∼ 1 − ω

2m�0
+ O(ω2) where Jm(k0) = 0, (60)

noting that m �= 0 changes the definition of k0 from the axisymmetric definition Jm+1(k0) = 0 to
Jm(k0) = 0. The eigenvalue equation for � becomes

1 − A 2

A 2

[
a2m�0J 2

m+1(k0)
]2

ω2 + O(ω3) = 0. (61)

It can be seen that there is no nonzero critical rotation rate �0 that can force the leading-order term
in Eq. (61) to be zero. Therefore, unlike the axisymmetric m = 0 case, there does not exist a critical
rotation rate that can be used to stabilize a given wave mode. However, a given wave mode may still
be suppressed (or indeed excited) by rotation, but a change of stability cannot occur.
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FIG. 4. (a) Constructed solution of |M| = 0 for ω ∈ C and A = − 1
2 , δ = 1

4 , N = 1, n = 1, and m = 1
(solid lines). (b)–(d) Projections of the solution squared, for comparison with Fig. 3(b). Bold solutions have
nonzero imaginary component. It can be seen that unstable wave modes are not stabilized by increasing the
rotation rate, but are suppressed initially. Asymptotic gravity wave approximations (48) and (49) to the solution
are shown as dot-dashed lines. (Inertial wave solutions are not shown.)

4. Single-mode, arbitrary-rotation-rate solutions: Numerics

The solutions of the eigenvalue problem are calculated numerically for N = 1, n = 1, δ = 1
4 ,

A = − 1
2 , and m = 1,2,3 [see Fig. 3(b) for comparison with the axisymmetric case m = 0]. The

numerical solution was calculated by evaluating the determinant of M for a given α over a plane
ω ∈ C (numerical integration was carried out using Simpson’s rule). The zeros of the real part of
|M| were contoured and intersections with the zero contour of the imaginary part of |M| were found.
The solution was constructed by then allowing α to vary over the range [0,αT ] [see Fig. 4(a)].
Figures 4(b)–4(d) are projections of the three-dimensional solution to allow comparison with Fig.
3(b). The positive vertical axis shows a projection of Re(ω)2a/g and the negative vertical axis
shows a projection of −Im(ω)2a/g, so the plots coincide with the axisymmetric case when ω ∈ R
or ω ∈ R. It can be seen that for m �= 0 the dominant gravity wave solution is not able to cross from
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FIG. 5. Gravity wave solutions of |M| = 0 for A = − 1
2 , δ = 1

4 , and m = 2 for N = 2 and n = 1,2, i.e.,
k01 ≈ 3.054 and k02 ≈ 6.706. Bold solutions have a nonzero imaginary component. (a) Three-dimensional
representation of the solution: The most unstable branches cross at α ≈ 1.505, where ω1 ≈ 1.514i–1.313i

and ω2 ≈ 0.189i–1.313i, indicated by circles. (b) Projected solutions for comparison with Fig. 3(b). Although
αT = 1, the α axis has been extended to show the possibility of rotation, causing some modes to become more
unstable than others.

024801-18



ROTATING RAYLEIGH-TAYLOR INSTABILITY

the unstable lower half of the domain into the stable upper half, unlike the m = 0 solution shown in
Fig. 3(b).

5. Multiple-mode, arbitrary-rotation-rate solutions

Figure 5 shows the possible wave modes for A = − 1
2 , δ = 1

4 , m = 2, N = 2, and n = 1,2. As
the rotation rate is increased the unstable gravity wave modes are seen to be suppressed, though the
suppression is greater for the more unstable n = 2 mode. The plot shows that suppressing a higher
wave mode to such an extent that it becomes more stable than a lower wave mode is possible since
the solution’s projections cross [at α ≈ 1.505 and Im(ω) ≈ −1.313, shown as circles, though in this
case the crossing occurs for α > αT , where the solution is not strictly valid]. Comparing Fig. 4(c)
with Fig. 5(b), it can be seen that the addition of a single extra mode significantly increases the
number of possible modes of behavior.

D. Summary of key results

In Sec. II A the approach developed by Miles [14] to model surface waves on a rotating body of
water was generalized to the two-layer case, allowing for either a stable (positive Atwood number) or
an unstable (negative Atwood number) initial stratification. The dispersion relation for axisymmetric
perturbations at low rotation rates was derived in Sec. II B, (32), which shows that gravitationally
unstable perturbations may be made less unstable by rotating the system. This suggests that at
least partial suppression of the Rayleigh-Taylor instability may be achieved through rotation of the
system, though we note that the dispersion relation (32) is only valid in the low-rotation rate limit
a�2/g � 1. In Sec. II B 3 an exact result (44) was found for the critical rotation rate required to
completely stabilize an otherwise gravitationally unstable axisymmetric wave mode. This critical
rotation rate depends on the aspect ratio of the system, which is the reason an exchange of stability
was not found in the model of Chandrasekhar [16]. The critical rotation rate in Eq. (44) indicates
that a rotation rate αc = 12δ is required to stabilize all axisymmetric wave modes, but the model
solutions (28) are invalid for α > 4δ.

In Sec. II C the dispersion relation for asymmetric wave modes was derived (46)–(50). This
dispersion relation includes axisymmetric perturbations m = 0 as a special case. In the asymmetric
case m �= 0 it was shown that the wave number cannot be determined a priori; it depends on both the
rotation rate � and the mode frequency ω. The dispersion relation reveals, as might be anticipated,
that the mode frequency contains both real and imaginary parts in general. Hence, the developing
instability is characterized by both a growth and a precession of a given wave mode. It was also
shown in Sec. II C 3 that a general critical rotation rate to stabilize an asymmetric mode does not
exist, unlike the axisymmetric case.

III. DISCUSSION AND CONCLUSIONS

We have considered theoretically the effects of rotation upon the classical Rayleigh-Taylor
instability. The dispersion relation for interfacial disturbances at low rotation rates (32) suggests
that axisymmetric modes of a developing Rayleigh-Taylor instability may have their rate of growth
inhibited by rotation. Indeed, if the critical rotation rate for the mode is below the threshold
2(gd)1/2/a, then (44) indicates that the mode may be stabilized indefinitely. Rotation was also
seen in some cases to be able to slow the growth of asymmetric modes.

We can understand our observations in the following qualitative manner: A rotating fluid is known
to organize itself into coherent vertical structures aligned with the axis of rotation, so-called Taylor
columns [23], whereas a perturbation to an unstable two-layer density stratification will lead to
baroclinic generation of vorticity at the interface, tending to break up any vertical structures. Hence
the system under investigation undergoes competition between the stabilizing effect of the rotation,
which is organizing the flow into vertical structures and preventing the two fluid layers passing
each other, and the destabilizing effect of the denser fluid overlying the lighter fluid that generates
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an overturning motion at the interface. With increased rotation rate the ability of the fluid layers
to move radially, with opposite sense to each other, in order to rearrange themselves into a more
stable configuration, is increasingly prohibited by the Taylor-Proudman theorem (see [24,25]). The
radial movement is therefore reduced and the observed structures that materialize as the instability
develops are smaller in scale.
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