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An analytical-based method is utilized to follow the evolution of localized initially
Gaussian disturbances in flows with homogeneous shear, in which the base velocity
components are at most linear functions of the coordinates, including hyperbolic, elliptic,
and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and
hairpin vortices, are formed for the cases where the streamlines of the base flow are
open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear
over rotation leads to elongation of the localized disturbance along the outlet asymptote
and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear
disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For
elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last
and break into various vortical structures that spread in the spanwise direction. The effect of
the disturbance’s initial amplitude and orientation is examined and the optimal orientation
achieving maximal growth is identified.
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I. INTRODUCTION

Coherent vortical structures observed in turbulent boundary layers have been reported as early as
1967 [1]. In this pioneering work two kinds of coherent structures were identified: (i) counterrotating
vortex pairs (CVPs), which lead to the creation of streaks (regions of high and low velocity), and
(ii) hairpin (or horseshoe) vortices, which consist of a pair of streamwise vortices connected by a
short spanwise head segment. The remarkable feature of these structures is that their properties seem
to be universal through a range of flows and Reynolds numbers, e.g., the spanwise separation between
the vortices of the CVP was found to be about 100 wall units [1,2] and the hairpin vortex was found
to be inclined approximately 45◦ relative to the base flow [3], as first suggested by Theodorsen [4].
Since then, a growing list of researchers have reported the existence of these coherent structures in a
variety of wall-bounded turbulent and transitional shear flows. A good summary of the experimental
and numerical findings regarding the coherent structures can be found in the review by Robinson [5]
as well as the introduction of Schoppa and Hussain [6].

Counterrotating vortex pairs have been found to generate transient growth [7] through the creation
of streaks. During the transient growth the flow may become susceptible to secondary instabilities
(see, e.g., [8]). Hairpins have been identified in transitional scenarios where the flow undergoes
secondary varicose instabilities (see, e.g., [9]). The secondary instabilities led to incorporation of
CVPs as part of the self-sustained process (instability based) proposed by Waleffe [10]. A different
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self-sustained cycle proposed by Schoppa and Hussain [6] consists of interactions between parent
and offspring hairpins. More recently, hairpins have been identified as nonlinear optimal structures
on the route to turbulence [11]. One of the approaches towards understanding the physics of these
structures has been to study the evolution of artificially generated structures in laminar flows.
Hairpins were generated using a hemispheric bump (e.g., boundary layer [12]) and injection (e.g.,
boundary layer [13] and Taylor-Couette flow [14]). It has been found that, although the flow is
laminar and does not contain the turbulent Reynolds stress, similarities between the evolution of the
vortical shapes and inclination angles of 45◦ have been observed. Studies of streamwise vortices
have found that the spanwise and streamwise dimensions are comparable between transitional and
turbulent boundary layer flows [15,16].

The appearance of these structures under various flow conditions suggests that these structures
may play a key role in various transition scenarios and self-sustained turbulence. Moreover, the
similarities between the structures may imply that they are generated by a basic mechanism that
relies on the common elements of the flows: the shear of the base flow and the presence of a localized
vortical disturbance. In recent years, having in mind this mechanism, a simple model following the
evolution of the aforementioned coherent structures has been developed [17–20]. The model follows
the evolution of localized disturbances (in space) embedded in homogeneous shear flows. The main
assumption in these studies is that the disturbance is localized and therefore “sees” only the homoge-
neous shear surrounding it, i.e., the velocity components of the surrounding base flow are at most lin-
ear functions of the coordinates. The linear and nonlinear evolution of localized vortical disturbances
embedded in simple shear (unbounded Couette) flow were investigated in Ref. [17]. It was found that
for sufficiently low initial amplitudes CVPs are generated, whereas for sufficiently high initial ampli-
tudes hairpins are formed. Similarities between the characteristics of coherent vortices, such as the in-
clination angles and convective velocities, have been reported. The model has also been employed for
plane stagnation (irrotational) flow to study linear and nonlinear effects in the formation of CVPs [18].

The evolution (linear and nonlinear) of localized vortical disturbances in the above studies [17,18]
has been calculated using the commercial direct numerical simulation (DNS) software FLUENT.
Nevertheless, assuming linear (small-amplitude) disturbances, the evolution of localized disturbances
can be solved analytically. The linear evolution of localized disturbances in plane shear flows has
been solved analytically for plane stagnation (irrotational) flow [21], simple shear [22], circular
shear flow [23], hyperbolic flow [19] (see definition in Sec. III A), and elliptic flow [20]. For simple
shear the linear analysis has revealed that the vortical disturbances evolve into CVPs that gradually
align with the x axis. Since the flow is linearly stable, the growth is transient for the viscous case and
initially behaves according to a power law. It has been established that for optimal disturbance growth
the initial angles of the vortex plane are between 115◦ and 135◦ relative to the positive x axis. The
viscosity affects the maximal growth and the instant of time when this maximal growth is reached,
however the qualitative evolution of the vortex is less affected by the viscosity. The analysis has also
shown that hairpin vortices cannot be obtained in the linear case due to the symmetry properties
of the equations. For hyperbolic flows, the linear analysis has revealed that the vortices evolve into
CVPs, which extend along the principal axis of elongation (the outlet asymptote). The strength of the
vortical disturbances grows exponentially. The most amplified vortices for this case are those having
the vortex plane initially oriented around the angles 120◦–150◦ relative to the positive x axis. Linear
analysis of disturbances embedded in elliptic flows has shown that for circular (pure-rotational) flow
there is pure attenuation, whereas for all other types of elliptic flows exponential growth may be
expected (both viscous and inviscid). However, the final exponential growth may be preceded by a
long finite-time attenuation. Thus, for a finite observation time amplification may occur only for a
certain range of elliptic flows and there exists an optimal elliptic flow for which the amplification
is the most rapid. Analysis of the obtained structures has not revealed the aforementioned coherent
structures, but rather two basic regions of vorticity localizations with two additional vorticity regions
that appear and disappear periodically.

Recently, utilizing concepts from the analytical solution for linear disturbances, an analytical-
based numerical method (ABNM) has been developed [24], capable of following the nonlinear
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evolution of finite-amplitude localized disturbances embedded in any homogeneous shear flow. The
solution is carried out using Lagrangian variables in Fourier space, which enables very efficient
computations relative to other DNS software. The method has been implemented using MATLAB

and compared successfully with previous results mentioned above [17,18]. Comparing the ABNM
to other DNS software (e.g., FLUENT), the ABNM is limited by the requirement that the shear of
the base flow is homogeneous. Nevertheless, other DNS software demands more calculation time
and requires writing programs for the insertion and extraction of initial disturbance and further
postprocessing, which are easily performed in the ABNM. The ABNM has also been utilized to
follow the evolution of a train of hairpins in a minimal flow-element model [25], consisting of simple
shear, CVPs, and a wavy vortex sheet.

The aim of the present paper is to explore the nonlinear evolution of localized disturbances in
various homogeneous shear base flows (hyperbolic, simple shear, and elliptic), taking advantage of
the ABNM. In particular, we aim to study the effects of base-flow shear and vorticity as well as
the initial disturbance magnitude and orientation. The mathematical method is briefly summarized
in Sec. II, followed by results in Sec. III, and a discussion and summary in Sec. IV. Appendix A
summarizes the numerical parameters used for the calculations, whereas Appendix B presents the
analytical expressions describing the linear evolution of the total enstrophy in hyperbolic flows.

II. MATHEMATICAL METHOD

A. Analytical-based numerical method

The ABNM is described thoroughly in Ref. [24], thus only essential features of the method are
given here. Without loss of generality the base-flow velocity and vorticity are given by

V = (− 1
2 (� + σ )y,− 1

2 (σ − �)x,0
)
, � = (0,0,�), (1)

where σ and � are constants representing the base-flow strain rate and vorticity, respectively. The
equation describing the evolution of vorticity ω associated with a three-dimensional finite-amplitude
localized disturbance in incompressible viscous base flow is

∂ω

∂t
+ (V · ∇)ω − (ω · ∇)V − (� · ∇)v = ν�ω + (ω · ∇)v − (v · ∇)ω, (2)

where t is time, ν is the kinematic viscosity, and the disturbance vorticity ω and velocity v are
related by ω = ∇ × v. The two rightmost terms on the right-hand side are the nonlinear terms. The
equations are transformed to ordinary differential equations (in time) by performing a transformation
from real space [r = (x,y,z)] to Fourier space [k = (k1,k2,k3)] and using Lagrangian variables [q =
(q1,q2,q3)]. The equations are integrated in time using Euler’s method (first order) and the vorticity
in real space is calculated by applying the inverse Fourier transform. The following parameters are
defined for convenient comparison between various base flows:

κ = 1
2

√
σ 2 − �2 (for σ 2 > �2), η = 1

2

√
�2 − σ 2 (for �2 > σ 2); (3)

λ = σ − �

σ + �
, �∗ = |σ | + |�|

2
. (4)

B. Initial disturbance

Following previous studies [17–20,22,23], the initial disturbance used in this study is the Gaussian
disturbance given by the following expression:

ω(r,t = 0) = ∇F × μ, F = (π1/2δ)−3 exp(−r2/δ2), (5)

where r is the spherical radial coordinate, δ is the representative length scale of the disturbance,
and μ is its initial fluid impulse. We focus on disturbances that are symmetric with respect to the
spanwise coordinate, i.e., μ = (μ1,μ2,0). The initial orientation of the vortex φ is the angle between
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FIG. 1. Isosurface (|ω| = 0.7ωmax) of the initial Gaussian disturbance with the vorticity vectors super-
imposed: (a) illustration of fluid impulse μ and its orientation φ and (b) illustration of vortex inclination
angle α.

μ and the positive x axis, i.e., tan φ = μ2/μ1. The strength of the initial vortex is characterized by
ε = ωmax(t = 0)/�∗, where for a Gaussian vortex ωmax(t = 0) = 0.154μ/δ4. The magnitude of ε

determines whether the nonlinear terms are negligible (i.e., ε � 1). All length scales are normalized
by δ and the time scale by 1/�∗. The vortex Reynolds number is given by Re = �∗δ2/ν. It should
be noted that the corresponding Reynolds number based on a representative length scale of the base
flow � and a representative velocity of the base flow �∗� is Re� = (�/δ)2Re, which is much
larger than the vortex Reynolds number. The initial disturbance (plotted for arbitrary parameters)
is presented in Fig. 1. An isosurface corresponding to 0.7ωmax is shown, with the vorticity vectors
superimposed. The fluid impulse μ and initial orientation angle φ are illustrated in Fig. 1(a).

C. Integral properties

The strength of the vortex is measured by the volumetric integral of enstrophy (also referred to
as the total enstrophy)

W (t) =
∫

V

|ω|2dV. (6)

For the Gaussian disturbance W (0) = (2π3)−1/2μ2/δ5. Additional integral properties proposed by
Shukhman and Levinski [22] include the center of the vortical structure (CVS) and the vortex
inclination angle α, which describes the angle between the vortex elongation axis and the x axis.
The CVS is the first moment of the enstrophy, normalized by the vortex strength (this definition is
analogous to center of gravity)

Xi(t) =
∫
V

|ω|2xidV

W (t)
. (7)

The vortex inclination angle for spanwise symmetric disturbances is defined by

α = 1

2
arctan

(
2T12

T11 − T22

)
+ 1

4
π (1 + s) − 1

2
π, s = sgn(T11 − T22), (8)

where Tij is the tensor of enstrophy distribution defined as (see [22])

Tij =
∫

V

|ω|2(xi − Xi)(xj − Xj )dV. (9)

Thus, α is the angle between the longest principal axis of Tij and the x axis, as illustrated in Fig. 1(b)
for the initial disturbance.
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FIG. 2. Base-flow examples: (a) hyperbolic, λ = 0.5, with inlet and outlet asymptotes superimposed;
(b) simple shear, λ = 0; and (c) elliptic, λ = −0.5.

III. RESULTS

A. Parameter definition

As mentioned in the Introduction, three types of homogeneous shear flows exist. (a) One is
hyperbolic flow for |σ | > |�| (λ > 0), having hyperbolic streamlines and two asymptotes with
angles ψ = ± arctan(λ1/2), corresponding to the outlet (+) and the inlet (−) directions. The limiting
case of this flow is the irrotational (plane stagnation) flow with � = 0 (λ = 1). Hyperbolic flows are
found in a mixing layer between two consecutive Kelvin-Helmholtz rollers (see Fig. 1 in Ref. [24]).
Other applications of hyperbolic flows are described in detail in the introduction of [26], (b) simple
shear for σ = � (λ = 0), which is the unbounded Couette flow, and (c) elliptic flow for |σ | < |�|
(λ < 0), having elliptic streamlines, with the limiting case of pure rotational flow for σ = 0 (λ = −1).
Elliptic flows may serve as approximations of flows around one-dimensional vortex cores. Additional
examples are given in Refs. [27,28]. In the current study several base flows are examined by varying
σ < 0 and � < 0 to obtain λ = (−1,−0.75,−0.5, . . . ,1), while maintaining a constant value of
�∗ = 40 s−1. The three types of flow are presented in Fig. 2. The inlet and outlet asymptotes for
hyperbolic flow [Fig. 2(a)] are superimposed on the figure, together with the angle ψ . The simple
shear is plotted in Fig. 2(b) and the elliptic flow is in Fig. 2(c). The rotation frequency of a fluid
particle over an elliptic streamline is η = 2π/Tell, where η is defined in Eq. (3) and Tell is the rotation
period.

For each base flow various initial orientations and initial amplitudes of the disturbance are
examined. The vortex initial orientation is varied as φ = (0◦,10◦,20◦, . . . ,180◦). The initial
orientation is physically interesting since it has a major effect on the evolution of the vortex.
Depending on the orientation, the vortex may decay initially or grow rapidly. One can also find
the optimal initial orientation that causes maximal amplification for a given time. The initial
amplitude of the vortex ε is varied between ε = 0.015, 1, and 7.5, corresponding to linear, moderately
nonlinear (MNL), and highly nonlinear (HNL) cases, respectively. The simulations are performed
for δ = 10−3 m and ν = 10−6 m2/s, which together with �∗ = 40 s−1 maintain a vortex Reynolds
number of Re = 40 for all the cases. Due to the large number of parameters, the effect of varying Re
is left for a future study. The numerical parameters are summarized in Appendix A. Convergence
has been verified by obtaining negligible differences in the evolution as a result of doubling the
computational domain size for a fixed cell size and doubling the number of points in each direction
for a fixed domain (i.e., fixed domain with half-cell size).

B. Parametric investigation

1. Hyperbolic flows

For all hyperbolic flows (λ > 0) similar features of the disturbance evolution are observed for
various values of λ. Moreover, the overall evolution is very similar for linear and MNL disturbances;
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FIG. 3. Disturbance evolution for λ = 0.5, isosurfaces of Q/Qmax = 0.3 for (a) ε = 1 (MNL) and φ = 90◦,
(b) ε = 7.5 (HNL) and φ = 90◦, and (c) ε = 7.5 (HNL) and φ = 150◦.

in both cases the disturbance evolves into CVPs that elongate along the outlet asymptote. An
example is presented in Fig. 3(a) for λ = 0.5 and φ = 90◦. The second invariant of the velocity
gradient tensor Q = (− 1

2∂ui/∂xj )(∂uj/∂xi); (see [29]) is visualized to capture regions of swirling
motion. Initially, the MNL disturbance evolves into CVPs (T = 1) and then the vortices are
stretched by the base flow (T = 2.5).

The HNL cases are characterized by the formation of hairpins (φ < 120◦ and φ > 160◦) for
short initial evolution times. An example is shown at T = 1 in Fig. 3(b) for λ = 0.5 and φ = 90◦.
Nevertheless, at later times, as the disturbance elongates along the outlet asymptote, the regions of
spanwise vorticity corresponding to the heads of the hairpins break and eventually only the legs
(CVPs) remain. For values of φ in the range 120◦ < φ < 160◦ vortex loops are observed for short
initial evolution times. An example for λ = 0.5 and φ = 150◦ is presented in Fig. 3(c) (T = 1).
The vortex loop spreads (T = 2.5) before finally breaking into CVPs at later time (not shown). The
disturbances remain localized in the spanwise direction in all cases.
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FIG. 4. Disturbance evolution for simple shear (λ = 0), ε = 7.5 (HNL), isosurfaces of Q/Qmax = 0.3 for
(a) φ = 50◦, (b) φ = 90◦, and (c) φ = 130◦.

2. Simple shear

For the simple shear (λ = 0) the evolution features are similar to the ones observed for hyperbolic
flows. For linear and MNL disturbances CVPs are formed and then they elongate and rotate towards
the x axis [similarly to Fig. 3(a) above]. For HNL disturbances CVPs and hairpins are generated,
depending on their initial orientation φ. Counterrotating vortex pairs are formed for φ < 80◦, as
shown in Fig. 4(a) for φ = 50◦. The formation of CVPs is similar to the one described above for
hyperbolic flows. Hairpins are formed for φ > 80◦, as demonstrated in Fig. 4(b) for φ = 90◦ and
in Fig. 4(c) for φ = 130◦. For 80◦ < φ < 130◦ hairpins form rapidly [e.g., T = 1 in Fig. 4(b)],
whereas for φ � 130◦ the vortex loops spread and more time is required for the hairpins to form
[e.g., Fig. 4(c)]. The above structures have been compared successfully with previous calculations
obtained using FLUENT [17]. The disturbances remain localized in the spanwise direction in all cases,
as in the case of hyperbolic flows.

To better understand the process of hairpin formation, the behavior of vortex lines, superimposed
on the Q isosurfaces, has been investigated. The vortical structures of a CVP (for MNL disturbance
and φ = 90◦) and a hairpin (for HNL disturbance and φ = 90◦) are presented in Fig. 5, together
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FIG. 5. Vortical structures (isosurfaces of Q/Qmax = 0.3) for simple shear (λ = 0) and φ = 90◦, together
with the associated vortex lines indicated by the red color: (a) ε = 1 (MNL) and T = 0, (b) ε = 7.5 (HNL) and
T = 0, (c) ε = 1 (MNL) and T = 5, and (d) ε = 7.5 (HNL) and T = 5.

with the associated vortex lines indicated by the red color. For the MNL disturbance [Fig. 5(a)] the
vortex lines are not modified significantly and at T = 5 [Fig. 5(c)] they remain bent a little near
the disturbance. On the other hand, for the HNL disturbance [Fig. 5(b)] the vortex lines near the
disturbance bend significantly and at T = 5 [Fig. 5(d)] they become closely aligned with the hairpin
legs and head. Thus, for the hairpin the vortex lines follow closely the Q isosurface.

3. Elliptic flows

For the elliptic flows (λ < 0) the disturbance evolution is similar for various values of λ except
the limiting pure rotation case (λ = −1). The initial evolution phase (T � 1) is similar to the one
described above for hyperbolic flows. For the linear and MNL disturbances CVPs are formed initially.
An example of CVPs obtained at T = 1 is presented in Fig. 6(a) for λ = −0.5 and φ = 90◦. At
some later time (depending on λ and φ) two regions of localized vorticity are formed, as can be
seen at T = 20 in Fig. 6(a). These regions intensify while being rotated by the base flow and the
process continues. This scenario is general for all initial orientations; however, the exact shapes of
the vortical structures depend on the initial orientation and differ from case to case. Unlike in the
hyperbolic and simple shear flows, for elliptic flows the vortices spread in the spanwise direction.

For HNL disturbances hairpins and vortex rings are observed initially before breaking into various
vortical structures. Several examples of hairpins that form by T = 1 are presented in Figs. 6(b)–6(d).
In flows with small ellipticity (i.e., relatively high |λ|) the vortical structures give way to two growing
regions of localized vorticity as in the linear and MNL cases. An example can be seen in Fig. 6(b)
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FIG. 6. Disturbance evolution in elliptic flows, isosurfaces of Q/Qmax = 0.3 for (a) λ = −0.5, ε = 1
(MNL), and φ = 90◦; (b) λ = −0.5, ε = 7.5 (HNL), and φ = 90◦; (c) λ = −0.25, ε = 7.5 (HNL), and φ = 90◦;
and (d) λ = −1, ε = 7.5 (HNL), and φ = 0◦.

for λ = −0.5 and φ = 90◦, where two growing regions of localized vorticity appear similarly to the
MNL case [Fig. 6(a)]. The two vorticity regions connect intermittently during the rotation cycle (e.g.,
at T = 20). In flows with highly elliptical streamlines (i.e., smaller |λ|) various vortical structures are
observed, among which hairpin-shaped vortices appear and reappear during the cycle. An example
is shown in Fig. 6(c) for λ = −0.25 and φ = 90◦. Initially a hairpin is observed (T = 1), but later
it breaks and a representative snapshot of an intermittent hairpin is presented at T = 15.

In pure rotation flow (λ = −1) the vortical structures eventually decay while spreading in the
spanwise direction for all initial amplitudes. An example of the evolution of a HNL disturbance is
presented in Fig. 6(d) for φ = 0◦. Initially a hairpin begins to form (T = 1), but shortly afterward it
breaks and the vortical structures spread along the spanwise direction (T = 5).

C. Integral properties

The total enstrophy, normalized by its initial value, as a function of time and initial vortex
orientation is presented in Fig. 7 for λ = 1 (irrotational flow) and ε = 1 (MNL). In Fig. 7(a)
the contours correspond to equally spaced isolines of the normalized enstrophy (with the symbol
+ indicating the numerical values of the isolines). The horizontal axis corresponds to the time
and the vertical axis to the initial vortex orientation angle φ. Red (solid) lines represent isolines
where enstrophy is greater than its initial value, whereas blue (dotted) lines represent isolines
where enstrophy is less than its initial value. It can be seen that for φ = 120◦ the enstrophy grows
monotonically, whereas for φ = 30◦ it decays initially but starts to grow and returns to its initial
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FIG. 7. Total normalized enstrophy as a function of time and initial vortex orientation for λ = 1 (irrotational
flow) and ε = 1 (MNL): (a) enstrophy contours vs time (horizontal) and initial vortex orientation angle (vertical)
and (b) enstrophy (radial coordinate) vs initial vortex orientation angle φ (angular coordinate). Temporal spacing
between the contours is indicated above the figure.

value by T ≈ 2.3. The region of φ corresponding to decay shrinks with time, whereas the region
corresponding to growth expands. The optimal initial orientation angle for which the growth is
maximal is around φ = 135◦, corresponding to W/W (0) = 30.

A different presentation of the normalized enstrophy is shown in Fig. 7(b), where the radial
coordinate represents the normalized enstrophy and the angular coordinate represents φ. The contours
correspond to different evolution times with the initial contour being the unit circle marked by a
thick blue line and the final contour, corresponding to Tmax, marked by a thick black line. The
outlet asymptote is marked by the dashed line. Figure 7(a) is more adequate for understanding the
temporal evolution of the total enstrophy, whereas Fig. 7(b) is more convenient for finding the optimal
initial orientation. As can be seen in Fig. 7(b), the optimal initial orientation is around φ = 135◦,
which achieves a radius of 30 at Tmax = 3. An important conclusion from Fig. 7(b) is that the most
significant amplification occurs for vortices having the initial orientation of μ perpendicular to the
outlet asymptote (φ = 135◦) and that the least amplified disturbances have the orientation of μ in
the direction of the outlet asymptote (φ = 45◦). This observation can be explained from the linear
instability of hyperbolic flows to plane waves [26]. It has been found that for the unstable waves in
inviscid flow, the vorticity component in the outlet direction grows exponentially, while the vorticity
component in the direction normal to outlet decays exponentially. The mechanism responsible for
the growth is the vortex stretching mechanism. When the Gaussian vortex is oriented with μ close
to being perpendicular to the outlet (φ ≈ 135◦) it has significant initial vorticity along the outlet,
which leads to rapid growth. On the other hand, when the Gaussian vortex is oriented with μ close
to being along the outlet (φ ≈ 45◦) it has very small or zero initial vorticity along the outlet, leading
to initial decay and delay of the growth stage.

The normalized enstrophy for other hyperbolic base flows and simple shear is presented in Fig. 8
and for elliptic flows in Fig. 9. The presentation method is the same as in Fig. 7. The outlet asymptote
for hyperbolic flows is marked by the dashed lines. The enstrophy evolution is very similar for the
linear and MNL cases, thus only the MNL (first and second columns) and HNL (third and fourth
columns) cases are presented.

The evolution of the total enstrophy for all hyperbolic flows [λ > 0, Figs. 8(a)–8(c)] is qualitatively
similar to the irrotational case presented above (λ = 1, Fig. 7). For all hyperbolic flows the region of
φ corresponding to decay shrinks with time, whereas the region corresponding to growth expands.
It can be seen that the most significant amplification occurs for vortices with initial orientation in
the range 120◦ < φ < 150◦, i.e., the vortices having the vortex plane initially aligned with the outlet
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FIG. 8. Total normalized enstrophy as a function of time and initial vortex orientation for hyperbolic flows
and simple shear. The plotting method is the same as in Fig. 7. The first and second columns show the MNL case
(ε = 1) and the third and fourth columns the HNL case (ε = 7.5) for (a) λ = 0.75, (b) λ = 0.5, (c) λ = 0.25,
and (d) λ = 0.

(the vortex plane is initially perpendicular to the orientation of μ). These vortices are preferred
since they contain significant initial vorticity along the outlet, which grows according to a linear
instability mechanism [26]. The least amplified disturbances contain the smallest initial vorticity
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FIG. 9. Total normalized enstrophy as a function of time and initial vortex orientation for elliptic flows.
The plotting method is the same as in Fig. 7. The first and second columns show the MNL case (ε = 1) and
the third and fourth columns the HNL case (ε = 7.5) for (a) λ = −0.25, (b) λ = −0.5, (c) λ = −0.75, and
(d) λ = −1.

along the outlet, which results in initial decay and delay of the growth stage. The enstrophy growth
is linked to the growth of the vorticity component along the outlet direction, due to vortex stretching,
for all unstable waves in the Gaussian vortex. The enstrophy growth rate is not constant, since the
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growth rate of individual plane waves depends on time, wavelength, and wave-vector orientation.
Nevertheless, in the linear case it is possible to obtain an asymptotic analytical expression for the
enstrophy, which at long times behaves as W (t) ∼ exp(κt)/(κt)3/2. Further analytical expressions
for the asymptotic behavior of the enstrophy in the linear case, associated with other time scales of
the problem, are provided in Appendix B. The vortical structures corresponding to the enstrophy
growth are CVPs, such as the ones shown in Fig. 3, which contain mostly vorticity along the outlet
asymptote. Nonlinearity has a small effect on the optimal amplification.

For simple shear [Fig. 8(d)] the enstrophy undergoes transient growth. For example, for φ = 150◦
the maximum is reached at T ≈ 7 after which slow decay begins. The optimal initial orientation
is approaching φ = 120◦ at long times for both linear and nonlinear disturbances. This flow can
be considered as a limiting case of hyperbolic flows, except that the growth in this case is transient
only. The effect of nonlinearity is a small enhancement of the growth with little effect on the optimal
amplification.

For elliptic flows (λ < 0, Fig. 9) there are regions of initial growth and decay similarly to the
hyperbolic flows. For example, in Fig. 9(a) for φ = 40◦ the enstrophy decays initially but then
begins to grow and returns to its initial value at T ≈ 17. It is known that arbitrary elliptical flows are
linearly unstable [27,28]. The enstrophy growth is linked to the growth of all unstable plane waves
in the Gaussian vortex. The enstrophy growth rate is not constant, since the growth rate of individual
plane waves depends on time, wavelength, and wave-vector orientation. The vortical structures
corresponding to the enstrophy growth are the two regions of localized vorticity, such as the ones
shown in Fig. 6(a), which grow in magnitude and change their shape periodically. As the base-flow
streamlines become less elliptic (λ → −1) the growth stage is delayed and begins at later times so that
no growth may be seen when we are limited to a finite observation time. For example, for λ = −0.5
[Fig. 9(b)] the growth stage begins at T ≈ 10 for φ = 130◦ and T ≈ 17 for φ = 40◦, whereas for
λ = −0.75 [Fig. 9(c)] no growth is observed up to T = 20. Although for any λ > −1 the growth stage
will begin eventually, in the limiting case of pure rotation flow [λ = −1, Fig. 9(d)] the disturbance
ultimately decays. For the linear and MNL cases the most significant amplification occurs for vortices
with initial orientation in the range 120◦ < φ < 130◦. In flows with highly elliptical streamlines [e.g.,
Fig. 9(a) for λ = −0.25] the optimal initial orientation for HNL disturbances changes from φ = 120◦
for short times to φ = 160◦ at later times and the contour pattern is irregular. For flows with smaller
ellipticity [see, e.g., Figs. 9(b) and 9(c) for λ = −0.5 and λ = −0.75, respectively] the enstrophy in
the HNL cases behaves similarly to the linear and MNL cases.

The vortex inclination angle α as a function of time is shown in Fig. 10 for various base flows.
The radial coordinate represents the time (shifted by one, so the unit circle corresponds to T = 0)
and each curve corresponds to a different initial vortex orientation φ. The outlet asymptote for
hyperbolic flows is marked by the dashed lines. Only the MNL and HNL cases are presented as
in previous plots. Note that there is a 90◦ difference between the initial inclination angle α(T = 0)
and the initial orientation angle φ. Thus, for example, in Fig. 10(a) the curve that begins on the
unit circle with α = 90◦ and then monotonically decreases to α = 45◦ at long times corresponds
to φ = 0◦ (represented by the thick purple line for demonstration purposes), whereas the curve
that begins with α = 150◦ and then monotonically increases to α = 225◦ corresponds to φ = 60◦
(represented by the thick blue line for demonstration purposes). Vortices with initial values of α

in the interval −45◦ < α < 135◦ are rotated towards α = 45◦, whereas other vortices are rotated
towards α = 225◦. It should be noted that, due to the symmetry of the base flow, the angles 45◦
and 225◦ correspond to the same vortex inclination angle as the evolution of disturbances with
initial angles of φ and φ + 180◦ is identical up to a rotation of 180◦. For the hyperbolic flows [λ > 0,
Figs. 10(a)–10(d)] all vortices change their vortex inclination angles and eventually have their vortex
planes aligned with the outlet asymptote. The initial change in α is faster for the HNL cases due to
the symmetry breaking. For example, for λ = 1 and the MNL case [Fig. 10(a)] most of the rotation
occurs up to T = 1 before settling on the asymptote, whereas for the HNL case most of the rotation
occurs up to T = 0.5. However, for long times more scattering is observed for the HNL case for
which the settling down phase to the asymptotic value is slower (compare the MNL case to the HNL
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FIG. 10. Vortex inclination angle α vs time for various flows: (a) λ = 1, (b) λ = 0.75, (c) λ = 0.5,
(d) λ = 0.25, (e) λ = 0, (f) λ = −0.25, (g) λ = −0.5, (h) λ = −0.75, and (i) λ = −1 (only φ = 0◦,180◦ are
shown). Odd rows show the MNL case (ε = 1) and even rows the HNL case (ε = 7.5). The radial coordinate
represents the shifted time 1 + T .
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FIG. 10. (Continued.)

one at T > 1). As the flow tends to simple shear (i.e., λ → +0) the asymmetry of the curves α(t)
with respect to the asymptotic (outlet) direction becomes stronger, so all curves approach the outlet
from above (in the first quadrant) and from below (in the third quadrant). For the simple shear case
[Fig. 10(e)] the vortex angle tends towards zero, i.e., the vortices tend towards extension along the
x axis. The trend towards the x axis is much slower for HNL disturbances.

For elliptic flows [Figs. 10(f)–10(h)] the angle becomes periodic with half the period of the base
flow (Tell = 2π/η). Such periodicity arises due to the symmetry of the base flow and has been
observed previously in the linear case [20]. The periodicity of the angle is linked to the formation of
two regions of localized vorticity, which grow in magnitude and change their shape periodically. The
amplitude of the oscillation for the MNL case is bigger than for the HNL case. The amplitude also
becomes bigger as the streamlines become less elliptic (λ → −1). For λ = −0.75 [Fig. 10(h)] the
amplitude in the MNL case exceeds 90◦, so spirals are observed. For the pure rotation case [Fig. 10(i)]
only φ = 0◦ and φ = 180◦ are shown. A temporal period of 2π (as in this case η = 1

2 |�| = �∗) can
be seen and the differences between the MNL and HNL cases are small.

Next we follow the evolution of a specific disturbance in various base flows. A disturbance with
initial orientation φ = 120◦ is selected as a representative disturbance in the range of the most
amplified disturbances. The strength of the vortex for various base flows is presented in Fig. 11
for MNL [Fig. 11(a)] and HNL [Fig. 11(b)] disturbances, with the linear evolution (calculated
analytically [19,20,22]) given by the dashed lines. It can be seen that there are minor differences
between the MNL and the linear cases and that as λ is higher the disturbance grows more rapidly.
The main differences between the MNL [Fig. 11(a)] and HNL [Fig. 11(b)] cases are observed at the
initial stage (T < 2) in which the HNL disturbances undergo significant amplification. In particular,
note the bottom two curves for λ = −1 and λ = −0.75, where small transient growth is observed at
short times. It should be noted that transient growth usually refers to linear mechanisms, associated
with linearly stable flows (or subcritical transition). However, the transient growth observed in the
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FIG. 11. Total enstrophy vs time of a disturbance with initial orientation φ = 120◦ embedded in various
base flows for (a) ε = 1 (MNL) and (b) ε = 7.5 (HNL). The linear evolution is given by the dashed lines.

HNL case is linked to nonlinear interactions between the waves composing the Gaussian vortex
packet, which result in self-induced motion of the vortex. The nonlinear self-induced motion is
mostly dominant at short times when the vortex is more localized. For hyperbolic flows the effect of
nonlinearity at long times is not significant, as can be observed by comparing the solid lines (HNL)
with the linear behavior given by the dashed lines. For elliptic flows the differences observed at long
times are due to the initial self-induced motion and they can be approximated by an almost constant
shift relative to the linear case.

The CVS for several base flows is shown in Fig. 12 for various initial amplitudes and initial
disturbance orientations of φ = 0◦, 60◦, 120◦, and 180◦. The vortices are initially positioned at the
origin and the time step between two consecutive symbols is equal. In the linear case the vortex
remains in the origin as no self-induced motion occurs. For the MNL case little self-induced motion
occurs, followed by convection of the CVS by the base flow. However, the nonlinear self-induced
motion in the MNL case has a negligible effect on the overall development of the vortex. In the
HNL case, the vortex initially propels itself in the direction of its orientation and then continues to
progress due to self-induced motion and convection by the base flow. The self-induced motion is
more dominant at the initial times when the vortex is more localized. For hyperbolic flows [Figs. 12(a)
and 12(b)] the CVS is eventually convected by the base flow along the outlet asymptote (except the
linear case), whereas for simple shear [Fig. 12(c)] it is convected by the base flow and gradually
approaches the base-flow direction (x axis). For elliptic flows [Fig. 12(d)] the CVS achieves the
farthest distance from the origin during the initial self-induced motion and then it approaches an
approximately elliptic path. For the pure rotation flow [Fig. 12(e)] only φ = 0◦ is presented and the
CVS gradually moves farther away from the origin.

IV. CONCLUSION

The evolution of localized disturbances has been investigated in various homogeneous shear
base flows of the form V = (− 1

2 (� + σ )y,− 1
2 (σ − �)x,0), where σ and � are the strain rate and

vorticity of the base flow, respectively. Coherent structures have been obtained for hyperbolic and
simple shear flows, i.e., λ ≡ (σ − �)/(σ + �) � 0. Counterrotating vortex pairs form in the linear
and moderately nonlinear cases for hyperbolic and simple shear flows. The dominance of shear
over rotation (|σ | > |�|) leads to elongation of the localized disturbance along the outlet asymptote
(x axis for simple shear). For the highly nonlinear disturbance CVPs form for hyperbolic flows as the
base flow succeeds in breaking the heads (spanwise vorticity) of the hairpins. For simple shear the
heads remain and hairpin vortices are observed even at long times. For elliptical base flows CVPs,
hairpins and vortex loops form initially, however they do not last and break into various vortical
structures that spread in the spanwise direction. Except for HNL disturbances and small values of
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FIG. 12. Center of the vortical structure on the x-y plane for initial orientations φ = 0◦,60◦,120◦,180◦ and
initial magnitudes ε = 0.015,1,7.5 for (a) λ = 1, (b) λ = 0.5, (c) λ = 0, (d) λ = −0.5, and (e) λ = −1 (only
φ = 0◦ is shown). The time step between two consecutive symbols is equal and the arrows indicate the direction
of increasing time.

|λ|, the enstrophy growth is governed by a linear mechanism, preceded by a transient behavior. In
this mechanism two localized regions of vorticity form and intensify while being rotated by the
base flow and the process continues. For HNL disturbances embedded in highly elliptical base flows
(having small values of |λ|) various vortical structures are observed, among which hairpin-shaped
vortices appear intermittently during the cycle. A major difference between the vortex evolution in
hyperbolic and elliptic flows is that in hyperbolic flows the vortex remains localized in the spanwise
direction, whereas in elliptic flows it spreads along the spanwise direction.

The most efficient (in terms of formation time and growth) mechanism for the formation of CVPs
is obtained for irrotational flow (λ = 1), whereas the most efficient mechanism for formation of
hairpins is for simple shear (λ = 0). Elliptic flows, on the other hand, do not seem adequate for
obtaining the evolution of such coherent structures. The most significant amplification occurs for
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TABLE I. Summary of the numerical parameters used in the study.

Base flow σ (s−1) � (s−1) ε xf yf zf Nx Ny Nz (�t)0/�t Tmax

1 −80 0 0.015,1 16 16 8 128 128 64 40 3
−80 0 7.5 16 16 8 256 256 64 20 2

2 −70 −10 0.015,1 16 16 8 128 128 64 40 3.5
−70 −10 7.5 16 16 8 256 256 64 20 2

3 −60 −20 0.015,1 16 12 8 100 80 64 20 4
−60 −20 7.5 16 12 8 200 150 64 10 2.5

4 −50 −30 0.015,1 20 10 8 128 64 64 10 5
−50 −30 7.5 20 10 8 256 128 64 10 3

5 −40 −40 0.015,1 25 8 10 160 64 64 10 10
−40 −40 7.5 25 8 10 320 128 64 20 5

6 −30 −50 0.015,1,7.5 20 10 20 128 64 128 10 20
7 −20 −60 0.015,1,7.5 20 10 20 128 64 128 10 20
8 −10 −70 0.015,1,7.5 20 20 20 128 128 128 10 20
9 0 −80 0.015,1,7.5 20 20 20 128 128 128 10 20

vortices with initial orientation in the range 120◦ < φ < 150◦ as these vortices contain significant
initial vorticity along the outlet asymptote for hyperbolic flows. The vorticity along the outlet
asymptote grows due to vortex stretching according to a linear instability mechanism [26].

The effect of moderate nonlinearity on the integral properties is minor and although symmetry
breaking occurs (due to self-induced motion), the overall evolution is very similar to the linear case.
On the other hand, the evolution of HNL disturbances is rather different. At short times considerable
self-induced motion occurs, accompanied by significant growth. At later times the evolution in the
HNL and linear cases is similar up to a constant enstrophy shift. The enstrophy is unbounded for
hyperbolic and elliptic flows (except λ = −1) and only transient for the limiting cases of simple
shear (λ = 0) and pure rotation flow (λ = −1).

Finally, a comment regarding the analytical-based method is in order. It can be utilized to
calculate the evolution of any localized disturbance, not necessarily the Gaussian vortex chosen
in this study. The method is also capable of following the evolution of nonlocalized periodic
disturbances (see, e.g., [25]).
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APPENDIX A: NUMERICAL PARAMETERS

This Appendix summarizes the numerical parameters used in the study. The numerical parameters
are the normalized dimensions of the computational domain (xf ,yf ,zf ), the number of points
N = (Nx,Ny,Nz), the time step [as a fraction of the default time step (�t)0 = 0.000 625 s], and the
final (maximal) normalized time Tmax. For each base flow σ and � and initial vortex strength ε the
numerical parameters are given in Table I. The computational domain varies for different base flows
because in some cases the disturbance remains localized in a certain region within the domain, so
it has been possible to reduce the domain size without affecting the evolution of the disturbance.
Convergence has been verified by obtaining negligible differences in the evolution as a result of
doubling the computational domain size for a fixed cell size and doubling the number of points in
each direction for a fixed domain (i.e., fixed domain with half-cell size). Differences of up to 2% in
the integral quantities have been obtained. An example of a convergence test for simple shear, HNL
disturbance, and φ = 90◦ is presented in Fig. 13. Results for the base calculation are indicated by
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FIG. 13. Convergence test for simple shear (λ = 0), HNL (ε = 7.5), and φ = 90◦. Shown is a comparison
between the base calculation (blue dots), double domain with fixed cell size (red circles), and fixed domain with
half-cell size (black crosses) for (a) the evolution of enstrophy and (b)–(d) the axial distribution of vorticity
magnitude (ω = |ω|) at T = 5.

the blue dots, for the double domain with fixed cell size by the red circles, and for the fixed domain
with half-cell size (double number of points in each direction) by the black crosses. The enstrophy
is presented in Fig. 13(a) and the distribution of vorticity magnitude at T = 5 along x, y, and z is
shown in Figs. 13(b)–13(d), respectively. Excellent agreement is seen in all cases.

APPENDIX B: LINEAR EVOLUTION OF VORTICAL DISTURBANCES IN HYPERBOLIC
FLOW: ANALYTICAL RESULTS

In this Appendix we present analytical results concerning the linear evolution of the total enstrophy
in hyperbolic flows. The final expressions are exact for irrotational flow and approximate for arbitrary
hyperbolic flows. The goal is to fix an inadvertence made in Ref. [19] that led to incorrect results
concerning the asymptotical behavior of enstrophy at large times. The total enstrophy for hyperbolic
flows is unbounded, rather than viscous decay [as was shown in Figs. 3 and 4(b) in Ref. [19]].
Although the analytical expressions in Ref. [19] are correct, the long-time evolution of the total
enstrophy for the viscous case was calculated (numerically) improperly. The error is due to an
insufficiently small integration step in the numerical integration over the azimuthal angle in Fourier
space, required at large times. At large times the disturbance is increasingly compressed around the
inlet direction in k space, which requires a corresponding reduction of the integration step.
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For irrotational flow (λ = 1) the analytical integral expressions for the enstrophy [19] can be
simplified to exact analytical expressions. The normalized enstrophy is given by

W (t) = 1

2

1

D1D2D3

[
e2κt sin2

(
φ + 1

4
π

)(
1

D2
1

+ 1

D2
3

)
+ e−2κt sin2

(
φ − 1

4
π

)(
1

D2
2

+ 1

D2
3

)]
,

(B1)
where the length scales D1, D2, and D3 are given by

D1 = eκt

√
1 + 2

Re
(1 − e−2κt ), D2 = e−κt

√
1 + 2

Re
(e2κt − 1), D3 =

√
1 + 4κt

Re
. (B2)

In the inviscid case the exact expression reduces to

W (t) = 1
2

[
sin2

(
φ + 1

4π
)
(1 + e2κt ) + sin2

(
φ − 1

4π
)
(1 + e−2κt )

]
. (B3)

For arbitrary hyperbolic flows (0 < λ < 1) the exact analytical expressions are given only in integral
form [19]. Nevertheless, asymptotical expressions can be obtained. The normalized enstrophy is
given by

W (t) ≈ 1

2
sin2(ψ + φ)

e2κt

H1H2H
3
3

, (B4)

where the length scales H1, H2, and H3 are given by

H1 =
√

1 + (1 + λ)2

2λ3/2Re
e2κt , H2 ≈

√
1 + 2

λ1/2Re
, H3 =

√
1 + 4κt

λ1/2Re
. (B5)

The asymptotic expressions for H1, H2, and H3 for the most interesting case Re 	 1 are given by

H1 ≈
{

1, κt � τ1
(1+λ)eκt√

2 Reλ3/4 , κt 	 τ1,
H2 ≈ 1, H3 ≈

{
1, κt � τ2

2(κt)1/2

λ1/4Re1/2 , κt 	 τ2,
(B6)

where we have defined

τ1 = 1

2
ln

[
2λ3/2Re

(1 + λ)2

]
, τ2 = 1

4
λ1/2Re. (B7)

Now we can distinguish between three types of asymptotical behavior in three different time
intervals: (I) In the initial (inviscid) stage (1 � κt � τ1),

H1 ≈ H2 ≈ H3 ≈ 1, (B8)

WI(t) ≈ [
1
2 sin2(ψ + φ)

]
e2κt ; (B9)

(II) in the intermediate stage (1 � τ1 � κt � τ2),

H1 ≈ (2λ1/2Re)−1/2(σ/κ)eκt , H2 ≈ H3 ≈ 1, (B10)

WII(t) ≈
[
κλ1/4

σ

√
Re/2 sin2(ψ + φ)

]
eκt ; (B11)

and (III) in the final stage (1 � τ1 � τ2 � κt < ∞),

H1 ≈ (2λ1/2Re)−1/2(σ/κ)eκt , H2 ≈ 1, H3 ≈ 2(κt)1/2/λ1/4Re1/2, (B12)

WIII(t) ≈
[

(Re)2

8
√

2

λκ

σ
sin2(ψ + φ)

]
eκt

(κt)3/2
. (B13)
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FIG. 14. Normalized total enstrophy for σ = 20, � = 1, Re = 40, and initial disturbance orientation
perpendicular to outlet direction (i.e., φ = π/2 − ψ = π/2 − arctan

√
λ = 46.43◦) calculated from the

approximation (B4) (blue line) and numerically following the exact expression in the integral form (red
line) given in Ref. [19]. The instants of time τ1 and τ2 correspond to changes in the asymptotic behavior from
WI to WII and from WII to WIII, respectively.

It should be noted that the above asymptotic expressions also approximate the exact expressions
for the irrotational case (λ = 1). A comparison between a numerical calculation of the integral form
and the above asymptotic expressions is presented in Fig. 14. Very good agreement is observed for
τ > τ1.
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