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Scaling laws and bounds for the turbulent G.O. Roberts dynamo

A. Tilgner
Institute of Geophysics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany

(Received 28 September 2016; published 27 February 2017)

Numerical simulations of the G.O. Roberts dynamo are presented. Dynamos both with
and without a significant mean field are obtained. Exact bounds are derived for the total
energy which conform with the Kolmogorov phenomenology of turbulence. Best fits to
numerical data show the same functional dependences as the inequalities obtained from
optimum theory.

DOI: 10.1103/PhysRevFluids.2.024606

I. INTRODUCTION

Purely hydrodynamic or magnetohydrodynamic (MHD) flows driven by a volume force in three-
dimensional periodic boxes have a long history in the study of fundamental properties of turbulence
and magnetic field generation. Under the assumption that there are universal features in turbulence
independent of the shape of distant boundaries, spatially periodic models should allow us to study
those features conveniently. Body forces are frequently used to model the effect of actual boundaries,
such as moving propellers, which are too cumbersome to simulate in full. While this problem is
mostly rooted in engineering, it has also become of interest in MHD research because of laboratory
dynamo experiments in which liquid metal is forced by a moving boundary more easily represented
by a volume force in numerical simulations intended to design or reproduce the experiments (as, for
example, in Refs. [1,2]). Finally, some mechanisms to drive flows in geo- or astrophysics involve a
volume forcing if observed in the appropriate frame of reference, such as precession or tides [3].

Even the numerically convenient setting of a flow in a periodic box overstrains computational
possibilities if Reynolds numbers get too large. Exact analytical solutions for turbulent flows are
unknown, but techniques are known to determine at least upper bounds for certain quantities.
This approach is frequently called optimum theory. These techniques have been applied to several
idealized flows, notably, Couette flows and convection in plane layers, and also to MHD problems
([4–6] and references therein). These bounds were obtained by using either a background field
technique going back to Hopf [7] and Doering and Constantin [8], or by using an optimization
procedure introduced by Howard [9] and later on championed by Busse [10], mostly in the context
of convection. Both of these methods rely on the presence of boundaries where boundary conditions
restrict admissible fields and are not useful in a periodic domain. The results presented here for
dynamos draw on the work for nonmagnetic flows in periodic boxes by Doering and Foias [11] (see
also [12,13]), who formulate bounds in as general terms as possible. The present paper proceeds
by way of example and studies a periodic flow introduced by G.O. Roberts [14], but the procedure
is applicable to general forcing. The G.O. Roberts flow has served as a paradigm for numerous
problems [15–19] and resembles qualitatively the helical flows generated by convection in rotating
systems.

The model which will be considered here is a three-dimensional periodic box driven by a force
density such that the flow assumed in the G.O. Roberts dynamo is a solution of the Navier-Stokes
equation with that forcing. In general, this flow is unstable. If magnetic field growth sets in, the most
important question is at which amplitude the field will saturate. This issue was already tackled with
the tools of weakly nonlinear analysis [20,21]. Far from onset, dimensional or heuristic arguments
are necessary [22,23]. Heuristics are always uncertain, and dimensional arguments face the problem
that more than one length scale (different periodicity lengths in different directions) or more than
one velocity scale (the kinetic velocity and the Alfvèn velocity) may be available to form expressions
with certain prescribed units. Optimum or bounding theory on the other hand is rigorous but has a
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mixed record regarding its performance in approximating or tightly bounding the quantity of interest.
A bound is, of course, the more interesting the closer it is to the value it bounds. The present paper
explores the possibilities of this tool when applied to the G.O. Roberts dynamo.

II. THE MODEL

Consider a fluid with density ρ, conductivity σ , kinematic viscosity ν, magnetic permeability
μ0, and magnetic diffusivity λ = μ0σ moving at a velocity v(r,t) as a function of position r and
time t . The magnetic field is B(r,t). The flow is driven by the time-independent force density f (r).
Periodic boundary conditions are imposed with a periodicity length h along the z axis and a along
the x and y axes. It will later be of interest to apply additional restrictions and to allow mean fields
(obtained by averaging over the periodicity volume or over planes) only for certain components.
Dimensions are removed from the equations of evolution by using a and a2/λ as units of length and
time, and by introducing the rescaled variables va/λ, pa2/(νλρ) (p is the pressure), Ba/

√
ρμ0λν,

and f a3/(ρλν). Using the same symbols for the rescaled and for the original variables, the equations
of evolution read

1

Pm
(∂tv + v · ∇v) = −∇p + ∇2v + (∇ × B) × B + f , (1)

∂t B + ∇ × (B × v) = ∇2 B, (2)

∇ · v = ∇ · B = 0, (3)

with Pm = ν/λ. The periodicity enforces v(r,t) = v(r + x̂,t) = v(r + ŷ,t) = v(r + lz ẑ,t), with
lz = h/a and likewise for B. Hats denote unit vectors.

With V the volume of the periodicity cell, define the time-averaged densities of magnetic energy
EB and dissipation εB as

EB =
〈

1

V

∫
1

2
B2dV

〉
, εB =

〈
1

V

∫
(∇ × B)2dV

〉
(4)

and time-averaged densities of kinetic energy and dissipation as

Ekin =
〈

1

V

∫
1

2
v2dV

〉
, εv =

〈
1

V

∫
(∂jvi)(∂jvi)dV

〉
=

〈
1

V

∫
(∇ × v)2dV

〉
, (5)

where 〈...〉 denotes the time average and with the standard index notation in which summation over
repeated indices is implied. It will be convenient to use the force amplitude F defined through
f (r) = F�(r), with F � 0. The shape function � is normalized to 1

V

∫ |�(r)|2dV = 1 and obeys
∇ · � = 0. (A contribution with nonzero divergence to f can always be balanced by the pressure
gradient.)

A characteristic velocity can be defined from the kinetic energy. Because velocities are given
in multiples of λ/a in the units chosen here, this characteristic velocity actually is the magnetic
Reynolds number Rm defined as

Rm =
√

2Ekin. (6)

The hydrodynamic Reynolds number Re is given by

Re = Rm/Pm. (7)

The choice of units also leads to a factor Pm in the expression for the total energy Etot:

Etot = 1

Pm
Ekin + EB. (8)
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One obtains an energy balance by dotting Eq. (1) with v, Eq. (2) with B, integrating over V ,
adding the two equations, and using the fact that time derivatives of time averages are zero:

εv + εB = F

〈
1

V

∫
� · vdV

〉
. (9)

Equations (1)–(3) were solved numerically for a volume force of the form

� =
⎛
⎝sin(2πx) cos(2πy)

− cos(2πx) sin(2πy)√
2 sin(2πx) sin(2πy)

⎞
⎠ (10)

in the domain 0 � x,y � 1, 0 � z � lz. Velocity and magnetic fields were enforced to be periodic
in all three directions. Zero wave number modes were allowed for v in the z direction (to conform
with the structure of �) and for B in the x and y directions (to allow a mean field in the x,y plane).

The results of six suites of simulations will be presented below, three for lz = 1 and three for
lz = 2. For both lz, three series of runs simulated Pm = 3, 1, and 0.3 for different F . The numerical
scheme was the same finite difference method implemented on graphics processing units as used in
Ref. [19]. Spatial resolutions reached up to 5123.

III. BOUNDS

All the bounds derived below follow from two theorems. The first is the Cauchy-Schwarz
inequality stating that ∣∣∣∣

∫
ghdV

∣∣∣∣
2

�
∫

g2dV ·
∫

h2dV (11)

for any two square integrable functions g and h, and the second is Poincaré’s inequality in the form∫
g2dV � l2

∫
|∇g|2dV, (12)

where l2 is the inverse of the smallest eigenvalue of −∇2 whose eigenfunction is compatible with
the boundary conditions and restrictions imposed on g [11]. We will apply Poincaré’s inequality to
components of both velocity and magnetic fields and use inverse eigenvalues l2

v and l2
B . Periodicity

alone allows spatially constant fields, leading to infinite lv and lB . However, we will want to exclude
uniform translation and a uniform magnetic field (which does not decay through Ohmic diffusion),
and lv and lB are determined by the smallest wave vector of the admitted fields. It may be interesting
to make different choices for v and B regarding the admissible fields with the largest length scale,
as was done at the end of the previous section, so that we keep track of two different lengths lv
and lB .

It is now trivial to obtain bounds in which F plays the role of the control parameter. Poincaré’s
inequality applied to the definitions of energies and dissipation rates yields

εv � 1

l2
v

2Ekin, εB � 1

l2
B

2EB. (13)

Combined with the Cauchy-Schwarz inequality applied to Eq. (9), this leads to

Rm2

l2
v

+ 2EB

l2
B

� εv + εB � FRm. (14)

Since all variables in this inequality are positive, it immediately follows that

Rm � F l2
v , (15)
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and from searching the extremum of EB over Rm in Eq. (14), that

EB � 1
8 (lBlvF )2, (16)

so that the total energy is bounded from above by

Etot = 1

Pm
Ekin + EB �

(
1

Pm

1

2
l2
v + 1

8
l2
B

)
l2
vF

2. (17)

This upper bound is of very limited practical interest. The dependence of Etot in F 2 suggests
that this bound needs to be so large in order to accommodate laminar solutions which will become
unstable in an actual time integration at sufficiently large F , so that the Etot obtained in numerical
simulations of turbulent flows will be far below this bound. Optimum theory as we currently know
it is not able to discriminate between stable and unstable solutions, which is one of its major
weaknesses.

For now, we will seek bounds independent of F , which relates energies and dissipation rates.
One obtains the following from dotting Eq. (1) with f and averaging

1

Pm
F

〈
1

V

∫
� · {(v · ∇)v}dV

〉

= F

〈
1

V

∫
� · ∇2vdV

〉
+ F

〈
1

V

∫
� · {(∇ × B) × B}dV

〉
+ F 2. (18)

Two of the integrals appearing in this equation can be manipulated into more convenient forms:∫
� · {(v · ∇)v}dV = −

∫
vivj

1

2
(∂i	j + ∂j	i)dV (19)

and ∫
� · {(∇ × B) × B}dV = −

∫
BiBj

1

2
(∂i	j + ∂j	i)dV. (20)

The tensor 1
2 (∂i	j + ∂j	i) is real and symmetric and therefore has real eigenvalues. Denote by e

the largest absolute value of these eigenvalues found anywhere in the volume. One then has∣∣∣∣
〈

1

V

∫
� · {(v · ∇)v}dV

〉∣∣∣∣ � 2eEkin (21)

and ∣∣∣∣
〈

1

V

∫
� · {(∇ × B) × B}dV

〉∣∣∣∣ � 2eEB. (22)

These bounds could be sharpened. In order to improve the first inequality, one could determine the
divergence-free, periodic field v which maximizes

∫
� · {(v · ∇)v}dV and obtain a better estimate

from there. This procedure requires the solution of a multidimensional linear eigenvalue problem,
which is a large numerical effort which does not seem appropriate for this paper. It should also be
pointed out that in the context of the G.O. Roberts flow, the first of the above integrals will be grossly
overestimated, anyway. It is known from numerical simulations that the velocity field resembles the
laminar flow even if the forcing is chosen large enough to create turbulence [18]. If � is the force
field of the Roberts flow of Eq. (10) and v the laminar response, then the integral

∫
� · {(v · ∇)v}dV

is strictly zero.

024606-4



SCALING LAWS AND BOUNDS FOR THE TURBULENT . . .

The remaining integral in Eq. (18) can be estimated using the Cauchy-Schwarz inequality:〈
1

V

∫
� · ∇2vdV

〉
=

〈
1

V

∫
v · ∇2�dV

〉
= 1

V

∫
〈v〉 · ∇2�dV

�
√

1

V

∫
〈v〉2dV

√
1

V

∫
|∇2�|2dV

�
√

1

V

〈∫
v2dV

〉
‖∇2�‖ = Rm‖∇2�‖ (23)

with the shorthand notation ‖∇2�‖ =
√

1
V

∫ |∇2�|2dV . Inserting these inequalities into Eq. (18)
leads to

F � 2eEtot + ‖∇2�‖Rm. (24)

This inequality is finally introduced into εv + εB � FRm [see Eq. (14)] to yield

εv + εB � 2eEtotRm + ‖∇2�‖Rm2. (25)

It can be seen from the definitions of Rm and Etot, Eqs. (6) and (8), that Etot varies as a function
of Rm as Rm2 for EB = 0 and possibly faster if EB �= 0. The first term on the right-hand sides of
Eqs. (24) and (25) thus exceeds the second term by at least a factor Rm. If we now restrict attention
to the limit Rm → ∞ and retain only the dominating term in Rm on the right-hand sides in Eqs. (24)
and (25), we find that asymptotically,

Etot � 1

2e
F (26)

and

εv + εB � 2eEtotRm. (27)

The first inequality is a lower bound for the total energy in terms of F , which complements the upper
bound derived above and expresses the scaling expected for turbulent flow.

The second inequality (27), if used as an equality, is familiar from the Kolmogorov picture of
turbulence in that it states that a dissipation rate is given by an energy multiplied by a large-scale
Reynolds number. Note that a relation of this type could only be derived for the total energy, not
kinetic and magnetic energies separately.

It is always true that εv + εB � εB , and at large Rm, one expects the dissipation rate to be
dominated by Ohmic dissipation, so that εv + εB ≈ εB , and one can transform with little loss
Eq. (27) into εB � 2eEtotRm. For infinite Pm (more precisely, for Rm2/Pm → 0), one has the
additional simplification

εB � 2eEBRm, (28)

which suggests that in this case the Kolmogorov phenomenology applies to the magnetic field alone.
The next section will study among others the ratio εB/EB . For infinite Pm, εB/EB is evidently

bounded from above by 2eRm. The bound is more complicated in the general case. Inserting
εv � Rm2/l2

v into Eq. (25) leads to

εB

EB

� 2eRm + 2e
Ekin

EBPm
Rm +

(
‖∇2�‖ − 1

l2
v

)
Rm2

EB

. (29)

This expression frequently simplifies, as, for instance, for the G.O. Roberts flow, because ‖∇2�‖ =
1/l2

v and the last term disappears.

024606-5



A. TILGNER

10-2

10-1

100

101

101 102 103

— E
B
 / 

(E
B
-— E

B
)

Rm

FIG. 1. EB/(EB − EB ) as a function of Rm for lz = 2 (blue symbols with an enclosed surface) and lz = 1
(red symbols built of crosses and stars). For lz = 2, Pm is 0.3 (squares), 1 (circles), and 3 (diamonds). Results
for the same Pm are shown for lz = 1: Pm = 0.3 (+), 1 (x), and 3 (*). The solid line indicates the power law
Rm−1.

Up to here, this section was kept in general terms independent of a particular choice for �. The
next section presents numerical simulations of the G.O. Roberts dynamo, which means that � is
given by Eq. (10), which implies

‖∇2�‖ = 8π2, e = 2π. (30)

The velocity is allowed to have a component independent of z but is required to be periodic with
periodicity length 1 in the x and y directions, so that 1/l2

v = 8π2. The magnetic field on the other
hand is allowed to have a mean field along the x and y directions but is required to be strictly periodic
in the z direction with periodicity length lz, so that 1/l2

B = (2π/lz)2.

IV. RESULTS

We start with an overview of the solutions obtained numerically. The G.O. Roberts dynamo is
the prototypical α2 dynamo with a large mean field for control parameters near a dynamo onset at
small Rm. We therefore compute both the total magnetic energy density EB and the energy density
of the mean field,

EB =
〈

1

V
A

∫
dz

1

2

(
1

A

∫
dy

∫
dx B

)2
〉
, (31)

where A is the cross section of the computational volume V in the x,y plane, and A = ∫
dx

∫
dy1.

The ratio of mean to fluctuating energies, EB/(EB − EB), is shown as a function of Rm in Fig. 1.
The computations with the better separation of scales (lz = 2) show a magnetic field dominated by
the mean field at low Rm. The contribution of the mean field to the total field suddenly decreases
at an Rm between a few hundred and 1000. Beyond that sudden drop, EB/(EB − EB) decreases
approximately as 1/Rm, whereas the runs with the worse separation of scales (lz = 1) always have
EB/(EB − EB) < 1 and show a decrease of this ratio roughly in 1/Rm. A similar abrupt drop as in
the case lz = 2 was observed in convection-driven dynamos [24], where this drop signaled a transition
from dynamos generating a mean magnetic field to dynamos which do not generate a mean field and
in which all observed mean fields are merely statistical fluctuations. In the convection dynamos, the
transition occurred at even smaller Rm than observed here for the G.O. Roberts dynamo. A dramatic
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FIG. 2. (1 − f�) Pm−1/2 as a function of Re with the same symbols as in Fig. 1.

decrease of mean field generation at large Rm was already noticed in Ref. [18] and could be linked
to a transition from a large-scale to a small-scale dynamo. While the disappearance of the mean field
is observed in the dynamos with the columnar flow structures mentioned above, it does not appear
in less organized turbulent flows [25]. For the purpose of the present paper, it suffices to note that
the simulations discussed here contain cases of fields dominated by a mean field as well as cases
with a small mean field.

Another result relevant to the discussion below is the ratio of magnetic and total dissipation rate:

f� = εB

εB + εv

. (32)

This ratio has received much attention in recent years, partly due to an attempt to theoretically predict
saturation field strengths in convection dynamos [26]. f� is zero for Rm below the onset of dynamo
action and tends to 1 for Rm tending to infinity. Brandenburg [27] found that εv/(εB + εv) = 1 − f�

scales as Pm1/2, and later [28] that εv/εB ∝ Pm0.6. Finally, a dependence of the exponent on helicity
was discovered in Ref. [29]. Figure 2 plots (1 − f�) Pm−1/2. The factor Pm−1/2 obviously has not
removed the Pm dependence from the graph. In fact, there is no recognizable scaling for f� in the
present data collection. The point of interest for the discussion below is that 0.07 < f� < 0.8 for
all points in Fig. 2.

The most natural global quantity to investigate regarding its scaling behavior is the total energy
Etot as a function of the driving force F , as shown in Fig. 3. The bounding theory of the previous
section provides us with an upper and a lower bound on Etot. According to (24) and for Rm → ∞,
one has for the G.O. Roberts flow Etot � F/(4π ), and Eq. (17) yields Etot � F 2( 1

Pm + 1
2 l2

z )/(128π4).
As mentioned above, the second bound is required by laminar solutions and can only be of interest
for small F . The scaling for large F suggested by the first bound can also be inferred from heuristic
arguments: The energy injected into, and dissipated by, the flow is in order of magnitude FU with
U a characteristic flow velocity, whereas the total energy dissipation is within the Kolmogorov
phenomenology proportional to EtotU/L, so that Etot ∝ FL, with L an integral length scale and
the proportionality factor is of course left undetermined. This scaling matches the lower bound in
Eq. (24). The bounding theory provides us with prefactors. In the high Rm limit, this prefactor differs
by a factor 2π from the prefactor obtained from the fit shown in Fig. 3. The exponent on the other
hand is close to the one found in the actual simulations, in as far as one accepts exponents deduced
from the limited set of data in Fig. 3. The upper and lower bounds represent the actual scalings in
separate intervals of F , because one is based on laminar solutions and the other is not.
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FIG. 3. Total energy as a function of the driving force F with the same symbols as in Fig. 1. The continuous
line shows the function F/2, and the dashed line is given by F 2/(3 × 104).

The upper bounds for the energy dissipation are not infested by laminar unstable solutions. For
large Rm [so that the term 8π2Rm2 is negligible in Eq. (25)] one has

εv + εB � 4πEtotRm. (33)

The factor 4π is again an order of magnitude larger than the factor found in the simulations at the
highest Rm, as seen in Fig. 4. However, the important point about this bound is, in analogy with the
nonmagnetic case [11], that it provides a rigorous underpinning to the Kolmogorov phenomenology
as long as it is applied to total energy and dissipation in the form εv + εB ∝ EtotU/L. The bounding
theory does not in general provide support for any extensions of this phenomenology in which
magnetic and kinetic energies are split and which provides us with a scaling for the magnetic
field amplitude. Some simplification is achieved at large Rm, in which case εB � εv and Eq. (25)
simplifies to

εB � 4πEtotRm. (34)
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FIG. 4. EtotRm/(εB + εv) as a function of Re with the same symbols as in Fig. 1.
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FIG. 5. EtotRm/εB as a function of RmlzPm−1/2 with the same symbols as in Fig. 1. The factor lzPm−1/2 is
introduced on the x axis for a better collapse of the data points and a more compact graphical representation,
but it has no known physical significance.

Figure 5 verifies relation (34). A regime asymptotic in Rm of the form EtotRm/εB → const cannot
be discernible yet because εB is not much larger than εv in any of these simulations. Note the
appearance of Etot instead of Ekin/Pm on the right-hand side of Eq. (34). An equation containing
only magnetic quantities, at least in the form of a bound, is only obtained in the limit Pm → ∞
[see Eq. (28)]. Equation (13) always bounds EB in terms of εB but reflects the scaling pertaining to
laminar solutions, so that this bound will be of little practical interest in the turbulent regime.

The distinction between Etot and Ekin/Pm on the right-hand side of Eq. (34) becomes mute if there
is equipartition between magnetic and kinetic energies, because then, all energies are proportional
to each other. We are therefore led to investigate the ratio EBPm/Ekin in Fig. 6. This ratio is not
perfectly constant as F is varied, but except for the case lz = 2, Pm = 3, it varies around its mean by
less than 30% (and less than a factor of 2 over all). In the range of Rm in which Fig. 5 suggests the
validity of a Kolmogorov phenomenology (typically the last three or four points of each series), the
ratio of energies varies by at most 20% around its mean value, while the energies themselves vary by
more than an order of magnitude. For the purpose of the scaling implied by Eq. (34), εB ∝ EtotRm,
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FIG. 6. EBPm/(Ekinlz) as a function of F with the same symbols as in Fig. 1.
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FIG. 7. lzεB/EB as a function of Rm with the same symbols as in Fig. 1. The solid line shows the function
4 Rm.

we have nearly EB ∝ Ekin/Pm ∝ Etot and it cannot be tested whether Etot on the right-hand side of
this scaling relation is essential or whether it could be replaced by EB .

However, it is clear from Fig. 6 that EBPm/Ekin depends on lz and Pm, so that there is no strict
equipartition between magnetic and kinetic energies but only a proportionality between the two.
The same situation was already found in convection dynamos, in which EB ∝ Ekin at high Rm, with
a proportionality factor depending on additional control parameters [30]. Reference [18] claims to
have found equipartition between EB and Ekin. However, this finding was fortuitous because it was
obtained for lz = 2 and Pm of order 1. For these parameters, one indeed obtains EB ≈ Ekin/Pm,
but not at general lz and Pm. From a balance between the Lorentz force term (∇ × B) × B and the
advection term v · ∇v/Pm and the assumption that B and ∇ × B are dominated by a mean field
which varies on the length scale lz while v varies on the length scale 1, one obtains EB ∝ lzEkin/Pm.
The same result was derived by Brandenburg [22] from an argument based on helicities and the
assumption of a dynamo field dominated by its mean component. While these arguments do yield a
nontrivial prefactor in EB ∝ Ekin/Pm, they require a strong mean field which does not exist in all
simulations presented here (see Fig. 1), so that it comes to no surprise that EBPm/(Ekinlz) does not
yield a value independent of all other parameters in Fig. 6.

Let us neglect these additional dependences for the moment and assume Ekin/Pm to be
proportional to EB/lz. Since Ekin/Pm is for most points in Fig. 6 larger than EB , let us approximate
EB + Ekin/Pm ≈ bEB/lz with some numerical constant b, so that Eq. (27) becomes

εv + εB � b2e
EB

lz
Rm. (35)

For large Rm, one expects εB � εv . The inequality

εB � b2e
EB

lz
Rm (36)

derived from relation (35) should therefore not be much more inaccurate than relation (35) itself.
Figure 7 tests Eq. (36). At the level of accuracy of double logarithmic plots, the scaling εB ∝

EB

lz
Rm implied by (36) viewed as an equality adequately represents the data cloud at large Rm. It

should be stressed that this scaling is not strictly supported by the bounds of the previous section,
since some heuristic input was necessary concerning EBPm/Ekin.

It is of interest to characterize the magnetic field through a time or length scale extracted from
its energy and dissipation rate, εB/EB . An initial study on convection dynamos found εB/EB ∝ Rm
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[31]. Later investigations yielded smaller exponents [24]. The present computations do not reach to
high enough Rm to accurately determine an exponent, but Fig. 7 suggests εB/EB ∝ Rm. Equation
(29) applied to the G.O. Roberts flow reads

εB

EB

� 4πRm

(
1 + Ekin

EBPm

)
. (37)

If the bracket tends to a constant for Rm → ∞, this inequality shows that the exponent c in
εB/EB ∝ Rmc must obey c � 1.

V. CONCLUSION

The G.O. Roberts dynamo is known as a dynamo generating a mean magnetic field, but this study
has shown that as Rm is increased, there is a sudden drop in the contribution by the mean field to the
total magnetic energy. The same phenomenon was already observed in convection-driven dynamos
in plane layers, which perhaps is not surprising because both flows consist of helical vortices with
parallel axes. However, if this is the essential feature common to both flows, one would expect an
analogous behavior in convection-driven dynamos in spherical shells. If the analogy is valid, the
energy of the axisymmetric modes should suddenly decrease at high Rm in favor of modes with a
nonzero azimuthal wave number.

It is possible to derive several rigorous bounds for the G.O. Roberts dynamo. These concern the
total energy, either as a function of the driving force or the total dissipation. The same functional
dependences appear in these bounds as in heuristic arguments, but the prefactors in proportionalities
are determined in the bounds and differ by about an order of magnitude from prefactors determined
from best fits to the numerical data. The prefactors and numerical constants in the bounds presented
above could be improved with some numerical effort. The Kolmogorov phenomenology relating
total energy to total dissipation is compatible with the bounds. But the optimum theory as presented
here does not give any bound of interest for the turbulent regime on magnetic energy alone, unless
one is interested in the limit of infinite Pm, or unless one accepts an independent result, extracted
from numerical simulations, which states that the ratio of magnetic and kinetic energy is nearly
independent of Rm at large Rm. In these cases, one obtains a phenomenology of the Kolmogorov
type for the magnetic field alone.
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