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We study the statistical properties of helicity in direct numerical simulations of fully
developed homogeneous and isotropic turbulence and in a class of turbulence shell
models. We consider correlation functions based on combinations of vorticity and velocity
increments that are not invariant under mirror symmetry. We also study the scaling properties
of high-order structure functions based on the moments of the velocity increments projected
on a subset of modes with either positive or negative helicity (chirality). We show that mirror
symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well
captured by a dimensional argument plus anomalous corrections. These findings are also
supported by a high Reynolds numbers study of helical shell models with the same chiral
symmetry of Navier-Stokes equations.
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I. INTRODUCTION

All phenomenological theories of three-dimensional (3D) turbulence are based on the concept of
direct energy cascade [1]. However, helicity is also an inviscid invariant of the 3D Navier-Stokes
equations (NSEs) defined as the scalar product of velocity u(x) with vorticity ω(x). Its mean value

H = 1

V

∫
V

d3x u(x) · ω(x) (1)

is exactly zero if the flow is invariant under mirror symmetry, ω being a pseudovector. Since its
discovery [2–4], helicity has been the object of many speculations. In particular, it is not clear if
the presence of a nonzero mean helicity, globally or locally, can affect the statistical properties of
the forward energy cascade. On the one hand, because the nonlinear term of the NSE is locally
proportional to the solenoidal component of u × ω, flows with a nonzero helicity might have a
strongly depleted energy transfer [5,6]. On the other hand, helicity is not sign-definite, and therefore
cancellations might eventually smooth down this blocking mechanism [7,8]. There exist instances
where helicity plays a key role, interfering with the energy transfer, as in rotating turbulence [9,10],
in shear flows [11], and in the case of an NSE confined to evolve on a subset of sign-definite
helical modes [12–15]. In the presence of a stationary helicity injection, we have an exact law
which predicts the scaling properties of a specific velocity-vorticity mixed third-order correlation
function [16–18]. Nevertheless, this is not a strong constraint for the whole statistics. Indeed,
different phenomenological scaling for the spectral properties has been proposed in the presence of
two simultaneous fluxes of energy and helicity [4,7,19].

In this paper we further investigate the statistical properties of helicity in fully developed
turbulence by using high-resolution direct numerical simulations (DNSs). In order to have a proper
way to distinguish the importance of mirror-symmetry-breaking contributions scale-by-scale, we
study the properties of a class of structure functions based on velocity increments decomposed
on positive or negative helical modes. The latter have the advantage of observable definitions that
are sensitive to lack of mirror symmetry for all moments, odd or even, differently from what was
proposed earlier in Refs. [8,20]. Furthermore, we also introduce a set of velocity-vorticity correlation
functions based on the helicity cancellation exponent [21] that allows us to quantify the breaking of
mirror symmetry also on quantities based on velocity gradients.
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We show that helicity-sensitive observables are always subleading with respect to the ones
dominated by the energy flux. Results are also supported by studying analogous quantities in a
helical shell model [7,22,23]. We show that the scaling behavior of chiral quantities is well captured
by an analytical contribution in terms of the helicity flux, plus a small anomalous correction.

II. PHENOMENOLOGICAL BACKGROUND

We consider the 3D forced NSE

∂t u + u · ∇u = −∇p + ν�u + f , (2)

where p is the pressure, ν is the kinematic viscosity, and f is a parity-breaking external forcing
mechanism with energy injection ε = 〈u · f 〉 and helicity injection h = 〈u · (∇ × f ) + ω · f 〉.
Under the assumptions of stationarity, homogeneity, and isotropy (but not mirror symmetry) it is
possible to derive two exact equations for two-point third-order correlation functions [1,16,17,24]:

〈(δru)3〉 = − 4
5ε r, (3)

〈δru(δr u · δrω)〉 − 1
2 〈δrω(δr u · δr u)〉 = − 4

3h r, (4)

where δru and δrω are, respectively, the longitudinal velocity and vorticity increments, defined in
terms of the projection on the unit vector r̂: δrX = δr X · r̂ , and the generic vector increment between
two points is δr X = X(r + x) − X(x). Notice that (4) is different from zero only in the presence
of a mirror-breaking forcing mechanism. The two exact scaling relations (3) and (4) are valid in the
inertial range, i.e., when the increment r is chosen in a range of scales where dissipative and forcing
effects can be neglected. Moreover, since helicity is not sign-definite, it is not possible to predict the
energy transfer direction: both a simultaneous cascade of energy and helicity toward small scales
and a split cascade with energy flowing upward and helicity downward are possible [4,11,13,25].
In order to disentangle in a systematic way the statistical properties under mirror symmetry, it is
useful to adopt an exact decomposition of the velocity field in positive and negative Fourier helical
waves [26,27]:

u(x,t) =
∑

k

[u+
k (t)h+

k + u−
k (t)h−

k ]eik·x, (5)

where h±
k are the eigenvectors of the curl, i.e., ik × h±

k = ±kh±
k . We choose h±

k = μ̂k × k̂ ± iμ̂k,
where μ̂k is a unit vector orthogonal to k satisfying the condition μ̂k = −μ̂−k, e.g., μ̂k = z × k/

||z × k||, with any arbitrary vector z. In terms of such decomposition the total energy, E =∫
d3x |u(x)|2, and the total helicity are written as

E =
∑

k

|u+
k |2 + |u−

k |2, (6)

H =
∑

k

k (|u+
k |2 − |u−

k |2). (7)

It is useful to further distinguish the energy content of the positive and negative helical modes,
E±(k) = ∑

k�|k|<k+1 |u±
k |2, such that we have for the energy and helicity spectra [7]

E(k) = E+(k) + E−(k), (8)

H (k) = k [E+(k) − E−(k)]. (9)

It is straightforward to realize that the equivalent of (8) and (9) in real space is given by the
second-order correlation functions decomposed in terms of the fields u±(x) = ∑

k u±
k (t)h±

k expik·x :

〈δruiδrui〉 = 〈δru
+
i δru

+
i 〉 + 〈δru

−
i δru

−
i 〉, (10)

〈δruiδrωi〉 = 〈δru
+
i δrω

+
i 〉 + 〈δru

−
i δrω

−
i 〉, (11)
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because both mixed terms 〈δru
±
i δrω

∓
i 〉 and 〈δru

±
i δru

∓
i 〉 vanish, due to the orthonormality

of h±
k .

It is not possible to derive a closed expression for the energy and helicity spectra from (3) and
(4) alone, because there exists a continuum of possible combinations of ε,h, and k with the correct
dimensional properties:

E(k) = ε
2
3 −αhαk− 5

3 −α. (12)

Different possibilities have been proposed, based on different closures of the spectral equations,
depending on the dynamical time scale that drives the energy and helicity transfers. One possibility
is based on the idea that the only relevant time scale is the one given by the energy fluctuations,
τE
r ∼ ε−1/3r2/3. In this case we have the dimensional estimate for the (mirror invariant) energy flux:

ε ∼ 〈δruiδrui〉/τE
r → 〈(δru)2〉 ∼ ε2/3r2/3, (13)

while for the chiral term,

h ∼ 〈δruiδrωi〉/τE
r → 〈δruiδrωi〉 ∼ hε−1/3r2/3. (14)

Translating back to Fourier space we would then have for the semisum (mirror-symmetric) and the
semidifference (mirror-antisymmetric) of the spectral components [7]:

E+(k) + E−(k) ∼ CEε2/3k−5/3, (15)

E+(k) − E−(k) ∼ CHhε−1/3k−8/3, (16)

where CE and CH are two dimensionless constants. Hence, the two energy components can be
written as

E±(k) ∼ CEε2/3k−5/3 ± CHhε−1/3k−8/3. (17)

Another possible dimensional closure employs the helicity time scale, τH
r ∼ h−1/3r1/3, to evaluate

both fluxes (13) and (14). In this case we have [19]

E±(k) ∼ CEεh−1/3k−4/3 ± CHh2/3k−7/3 . (18)

Relation (18) breaks the −5/3 law for the energy spectrum and has been proposed to be valid only
in the high-k region of strongly helical turbulence, to explain the bottleneck observed close to the
viscous scale. Indeed, relation (18) is not smooth for h → 0 and therefore cannot be considered
a good option if helicity is subleading. A third possible scenario is a split cascade, where energy
flows upward and helicity downward. In this case, in the forward-helicity cascade range, only h flux
appears, and the dimensional prediction gives

E(k) ∼ h2/3k−7/3, H (k) ∼ h2/3k−4/3. (19)

This last scenario has never been observed in isotropic turbulence, unless a dynamical mode reduction
on helical modes with the same sign is imposed [12,13,27]. Besides the open issues concerning the
spectral properties and higher-order statistics are even less studied and understood. There are very
few measurements of the mirror-antisymmetric components of structure functions. As a result,
while a huge amount of work has been devoted to intermittency and anomalous scaling properties
of the mirror-symmetric components, very little is known about the helical components [8,20]. In
what follows we will investigate further the statistical properties of helical turbulence concerning
its spectral properties and beyond, assessing also the chiral components of high-order correlation
functions. In particular, we will study the scaling properties of longitudinal structure functions based
only on positive or negative helical modes:

S±
p (r) = 〈(δru

±)p〉. (20)
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TABLE I. Details of the simulations. N : number of collocation points along each axis; L: size of the periodic
box; ν: kinematic viscosity; kf : range of forced wave numbers; urms: rms velocity; Reλ = urmsλ/ν: Taylor-

microscale Reynolds number, where λ = 2π

L

√
〈u2(x)〉

〈[∂xu(x)]2〉 is the Taylor microscale; ε: mean energy dissipation

rate; η: Kolmogorov length scale; T0: large-eddy-turnover time.

Run N L ν kf urms Reλ ε η T0

R1 1024 2π 0.001 [1,2] 3.4 320 3.2 0.004 0.3

In terms of the above decomposition, we can define energy- or helicity-like structure functions, i.e.,
combinations that are symmetric or antisymmetric for the exchange of positive and negative helical
projections:

SE
p (r) = 〈(δru

+)p〉 + 〈(δru
−)p〉 ∼ rζE

p , (21)

SH
p (r) = 〈(δru

+)p〉 − 〈(δru
−)p〉 ∼ rζH

p . (22)

The advantage of working with the above definition is to avoid observables based on vorticity
increments, which are strongly influenced by viscous contributions and might not have a power law
scaling in the inertial range. In order to have a dimensional estimate for (21) and (22) we start from
the phenomenological predictions (17) considering the helical component to be subleading. Then
one might dimensionally write

δru
± ∼ ε1/3r1/3 ± hε−2/3r4/3, (23)

and therefore conclude that, at the lowest order in h,

SE
p (r) ∼ ε

p

3 r
p

3 + o(h), (24)

SH
p (r) ∼ ε

p

3 −1hr
p

3 +1 + O(h2), (25)

where the second relation is obtained taking into account that the leading terms proportional to εp/3

cancel out.
Another possible way to highlight the scaling properties of the helical component of the scale-

by-scale velocity statistics is to look directly at the local helicity increments:

Hp(r) = 〈sign(δruiδrωi)|δruiδrωi |p〉, (26)

where we have introduced the sign function in order to have a chiral observable for all orders of the
moment p [28,29]. The mean value of the sign of local helicity, which gives a direct measure of the

FIG. 1. (a) Temporal evolution of total energy and helicity from DNS with injection of helicity (R1).
(b) Flux of energy �E(r) = 〈(δru)3〉/r and flux of helicity �H (r) = [T (1) + T (2)]/r , in real space, where
T (1) = 〈δru(δr u · δrω)〉 and T (2) = −0.5〈δrω(δr u · δr u)〉 [see Eqs. (3) and (4)]. (c) Scaling of the first term
T (1), the second term T (2), and their sum in (4). The solid line is drawn with slope 1 for comparison.
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relative importance of chiral fluctuations with respect to the nonchiral background, is known as the
cancellation exponent [21] and can be estimated dimensionally to be

H0(r) =
〈

δruiδrωi

|δruiδrωi |
〉

∼ hε−1/3r2/3

ε2/3r1/3η−2/3
∼ hε−1r1/3η2/3, (27)

where we write the numerator in terms of its dominant helical contribution and the denominator as
the mirror-symmetric term with |δru| ∼ ε1/3r1/3 and |δrω| ∼ ε1/3η−2/3. Here η is the Kolmogorov
length scale, where the vorticity increment is expected to be maximal. As a result, we should have
for (26) the scaling property:

Hp(r) ∼ hη
2−2p

3 ε
2p−3

3 r
p+1

3 . (28)

III. NUMERICAL SIMULATIONS OF NAVIER-STOKES EQUATIONS

We have performed a series of DNSs of the NSE (2) with a fully dealiased, pseudospectral code
at a resolution of 10243 collocation points on a triply periodic cubic domain of size L = 2π . The
flow is sustained by a random Gaussian forcing with

〈fi(k,t)fj (q,t ′)〉 = F (k)δ(k − q)δ(t − t ′)Qi,j (k),

FIG. 2. (a) Log-log plots of energy spectrum E(k) and its helical components E±(k). Inset: Compensated
energy spectra with predictions (17) and (18). (b) Log-log plots of helicity spectrum H (k). Inset: Compensated
helicity spectra with predictions (17) and (18).
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FIG. 3. Log-log plots of structure functions in real space for (a) second, (b) fourth, and (c) sixth order
based on positive or negative, S±

p (r), helical modes and their combinations, SE,H
p (r). SH

p (r) are multiplied with
a scalar factor for better representation. Inset: Local slopes of the curves showing ζE,H

p (r) and ζ±
p (r) [see (29)].

Dimensional predictions (solid lines for p/3 and dashed lines for p

3 + 1) are also shown for comparison, where
p is the order of the structure functions.
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where Qij (k) is a projector imposing incompressibility and F (k) has support only for kf ∈
[kmin,kmax]. We carried out a DNS, namely, R1, where we inject maximal helicity by forcing
only the positive helical modes of the velocity (see Table I).

In Fig. 1(a) we show the evolution of the total energy E and helicity H and of their fluxes in
real space [Fig. 1(b)]. It is clear that the system is in a stationary state with a dual forward cascade
of energy and helicity. Figure 1(c) shows that the two contributions entering in (4) have different
properties in the inertial range and that only their sum shows a good linear behavior as predicted
by the constant-helicity-flux solution. This is not surprising; we must expect that in the presence
of two transferred quantities only particular combinations of correlation functions might have an
exact scaling behavior, while any general combination of fields might be affected by leading and
subleading contributions.

In Fig. 2 we show the energy and helicity spectra and their positive and negative helical
components E±(k). We observe that the predictions (15) and (16) give a better compensation at
least for not too high wave numbers where a dissipative bottleneck is known to affect the local
scaling properties. At those wave numbers, the relative helicity H (k)/kE(k) is already very small,
and it is unlikely that the bottleneck is due to some helical effects as proposed by (18). Concerning
real-space quantities, in Fig. 3 we show the scaling of structure functions of positive and negative
helical components of velocity together with their combinations for the second, fourth, and sixth
order. To verify the dimensional scaling predictions (24) and (25) we calculate the local slopes of
SE,H

p (r) and S±
p (r):

ζE,H
p (r) = d log SE,H

p (r)

d log r
, ζ±

p (r) = d log S±
p (r)

d log r
, (29)

as shown in the insets of Fig. 3. We then used ESS [30] to obtain a better fit of the relative scaling
exponents in the inertial range: ζE,H

p /ζ
E,H
3 . In Fig. 4 we compare the scaling exponents ζE,H

p and
their dimensional predictions (24) and (25). To derive the absolute value of the scaling exponents
out of the ESS scaling we have assumed, ζE

3 = 1 and ζH
3 = 2 in agreement with the exact scaling

properties (3) and (4). From this figure we can see that the dimensional prediction is well verified,
except for the presence of a small anomalous correction for high-order moments.

FIG. 4. Scaling exponents ζE,H
p of the chiral-symmetric and chiral-antisymmetric structure functions

obtained using ESS. The lines with slopes p

3 and p

3 + 1 correspond to the dimensional predictions for ζE
p

and ζH
p , respectively. The error bars show the variation of the exponents within the inertial range.
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FIG. 5. (Top) Log-log plots of helicity structure functions Hp(r), defined in (26), for p = 0, 1, 2, and
3. Inset: local slopes of the same curves. Horizontal lines indicate the values 1

3 , 2
3 , 1, and 4

3 from bottom to
top. (Bottom) Scaling exponents ζH

p of Hp(r) obtained using ESS. The line with slope p+1
3 corresponds to the

dimensional prediction. The error bars show the variation of the exponents within the inertial range.

In Fig. 5 we show the scaling behavior of Hp(r) for values of p from 0 to 3 compared with the
dimensional prediction (28). This works well up to p ∼ 1.5, while for p � 2 nontrivial anomalous
corrections appear. In summary, the scaling exponents for the two sets of helicity-sensitive structure
functions SH

p (r) agree well with the dimensional estimate except for a small anomalous correction
which is of the same order of the one observed for the mirror-symmetric terms. One might argue
that the two set of anomalous exponents should be correlated, being connected to the dependency on
the energy dissipation on the right-hand side of (24) and (25). It is important to notice that helicity
is not positive definite, and its dissipation can be split in two different channels, one for positive
and one for negative helical components. The theoretical dependency on the Reynolds number of
the two processes and of the total helicity dissipation is discussed in Refs. [7,29,31]. Further studies
of changing Reynolds number would be needed to clarify the existence of a dissipative anomaly
for the helicity cascade and the dependency of the whole statistics on the turbulence intensity. The
multiscale nature of the correlation involving vorticity and velocity in Hp(r) might be particularly
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TABLE II. Helicity indices si in (30) for the four helical shell models.

Model s1 s2 s3 s4 s5 s6

No. 1 + − − − − +
No. 2 − − + − + −
No. 3 − + − + − −
No. 4 + + + + + +

sensitive to fluctuations of the dissipative physics, hence explaining the large intermittent correction
shown in Fig. 5.

In order to investigate further the statistics of the helicity transfer we present in the next section
a study of helical shell models, where it is possible to considerably increase the Reynolds number.

IV. HELICAL SHELL MODELS

To check the robustness of the previous findings, we studied the same helical structure functions
in a family of helical shell models [23]. Shell models have been useful to study cascade processes
and scaling behaviors in turbulent flows since they allow us to achieve very high Reynolds numbers
in numerical simulations [22,31–36].

Shell models are based on a simplified dynamical evolution of the energy and helicity transfer
by keeping only one (or a few) modes for each spherical shell in Fourier space. They represent a
drastic nonexact reduction of the degrees of freedom of the NSE. The original idea is to describe
the evolution of a single complex variable un, representing all the modes in a shell of wave numbers
k ∈ [kn,kn+1], with kn equispaced in logarithmic scale, kn = 2nk0. The first step to have a realistic
helical structure was done in Ref. [23], where two complex variables u+

n and u−
n carrying positive

or negative helicity were introduced for every wave number. This lead to four independent classes
of helical shell models, mimicking exactly the four classes of helical interactions of the original
NSE [27]. Other models based on similar decompositions have also been proposed [18,37,38]. Here
we follow the structure given in [23], where the four possible models have the general form

u̇+
n = i

(
akn+1u

s1
n+2u

s2∗
n+1 + bknu

s3
n+1u

s4∗
n−1 + ckn−1u

s5
n−1u

s6
n−2

) + f +
n − νk2

nu
+
n ,

u̇−
n = i

(
akn+1u

−s1
n+2u

−s2∗
n+1 + bknu

−s3
n+1u

−s4∗
n−1 + ckn−1u

−s5
n−1u

−s6
n−2

) + f −
n − νk2

nu
−
n . (30)

The helicity indices si = ± are reported in Table II, and the coefficients a, b, and c can be found in
Table III.

The four classes of interactions conserve energy and helicity separately, as in the original NSE,
provided that the coefficients a, b, and c are chosen appropriately. The added value with respect to
simpler shell models is that the energy and helicity now have structures similar to (6) and (7) for the

TABLE III. Coefficients of Eqs. (30) for the four helical shell models. These values depend on the
shell-to-shell ratio λ = kn/kn−1; here λ = 2. These coefficients guarantee energy and helicity conservation.
Conventionally, and without loss of generality, we always choose a = 1.

Model b c

No. 1 −1/2 1/2
No. 2 −5/2 −3/2
No. 3 −5/6 1/6
No. 4 −3/2 −1/2
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FIG. 6. Time evolution of total energy (31) and total helicity (32) in a typical run of the shell model
simulation.

NSE [27]:

E = E+ + E− =
N∑

n=0

(|u+
n |2 + |u−

n |2), (31)

H = H+ + H− =
N∑

n=0

kn(|u+
n |2 − |u−

n |2). (32)

Here we consider only model no. 3 because its dynamics is known to be dominated by a forward
energy cascade, with scaling properties very similar to those of the original NSE [7,23]. The equations
that we integrate are the following:

u̇+
n = i(akn+1u

−
n+2u

+∗
n+1 + bknu

−
n+1u

+∗
n−1 + ckn−1u

−
n−1u

−
n−2) − νk2

nu
+
n + f +

n ,

u̇−
n = i(akn+1u

+
n+2u

−∗
n+1 + bknu

+
n+1u

−∗
n−1 + ckn−1u

+
n−1u

+
n−2) − νk2

nu
−
n + f −

n . (33)

We used a fully helical forcing, injecting energy only on the positive modes of the first two shells:
f +

0 = ξr,0 + iξi,0, f +
1 = 0.5(ξr,1 + iξi,1) (where all ξ are Gaussian random variables with 〈ξ 〉 = 0

and 〈ξ 2〉 = 1), in order to mimic the setup of the previous section. The number of shells is N = 25,
k0 = 1, the shell-to-shell ratio is λ = kn/kn−1 = 2, and the viscosity is ν = 1.5 × 10−7. The time
integration is given by a second order Adams-Bashforth scheme, with explicit integration of the
viscous term [39]. With this setup, the Reynolds number is Re ∼ 107, and the large-scale eddy
turnover time is τ0 ∼ 1. We let the system evolve for a total time ∼105τ0. In Fig. 6 we show the
typical evolution of the total energy and of the total helicity in one simulation.

In full analogy with the definitions used in Sec. II for NSE, we can write mirror-symmetric and
mirror-antisymmetric structure functions as

SE
p (kn) = 〈|u+

n |p〉 + 〈|u−
n |p〉 ∼ k

−ζE
p

n , (34)

SH
p (kn) = 〈|u+

n |p〉 − 〈|u−
n |p〉 ∼ k

−ζH
p

n . (35)
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FIG. 7. Log-log (base 2) plots of the symmetric and antisymmetric (35) and (36) structure functions of
different orders p = 0.2 (a), p = 2 (b), p = 4 (c), p = 6 (d). Straight lines correspond to the predictions (42)
and (43).

Additionally, we can define mirror-antisymmetric structure functions based on the third order
correlation function responsible for the helicity flux [29,40]:

S�H

p (kn) = 〈
sign

(
�H

n

)∣∣k−2
n �H

n

∣∣p/3〉 ∼ k
−ζ

�H
p

n , (36)

where for shell model (33) the instantaneous helicity flux at shell n is

�H
n =

n∑
i=0

Ḣi =
(a

λ
+ b

)
δH
n + a

λ
δH
n+1, (37)

where δH
n = −2k2

n(C+
3,n − C−

3,n) with C±
3,n = Im(u∓

n+1u
±∗
n u±∗

n−1). Also for shell models it is possible
to use a dimensional argument to predict the scaling of mirror-symmetric and mirror-antisymmetric
quantities. Let us consider the energy and helicity balance equations in the inertial range, where
dissipative effects are negligible:

ε = 〈
�E

n

〉
, h = 〈

�H
n

〉
, (38)

where ε and h are the energy and helicity input at large scales, respectively. The instantaneous energy
flux at shell n is

�E
n =

n∑
i=0

Ėi = (a + b)δE
n + aδE

n+1, (39)

where δE
n = −2kn(C+

3,n + C−
3,n), while the helicity flux is defined in (37). As a consequence,

〈C±
3,n〉 ∼ εk−1

n ± hk−2
n . (40)
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FIG. 8. Log-log (base 2) plot of the sixth order structure functions for two simulations at different Reynolds
numbers: Re ∼ 107 and Re ∼ 3 × 109.

We can then identify

〈|u±
n |〉 ∼ 〈|C±

3,n|1/3〉. (41)

Substituting (41) in (34) and (35) and considering that (36) should have the same chirality and
dimensions of (35), we get the predictions

SE
p (kn) ∼ k−p/3

n , (42)

SH
p (kn) ∼ S�H

p (kn) ∼ k−(p/3+1)
n . (43)

In Fig. 7 we show the scaling observed forSE
p (kn),SH

p (kn) andS�H
p (kn) at changing p. The scaling

regime for the helical components is deteriorating for higher moments. In particular we observe a
change of sign for the antisymmetric structure functions in the middle of the inertial range, hence we
plot the absolute values. Spurious contributions to the power law scaling can be a consequence of
contaminations coming from the viscous range or from inertial subleading terms. In order to clarify
this point, we performed another set of simulations with N = 31 shells and Re ∼ 3 × 109. As can
be seen from Fig. 8, even with a longer inertial range, the change of sign and the deterioration in
the scaling for high-order helical structure functions are still present, indicating that viscosity might
not be the primary cause. In Fig. 9 we summarize the behavior of all scaling exponents, compared
with the dimensional predictions (42) and (43). For higher orders, a deviation from the dimensional
prediction is observed. As seen in Sec. III for the original NSE, this is possibly due to intermittent
corrections or subleading contributions coming from subleading corrections in the helicity flux.
Even though the presence of a change of sign in higher-order moments results in large error bars in
the estimate of the scaling exponents, our measurements are in good agreement with those reported
in Ref. [29]. Our observations disagree with the scaling of subgrid helicity flux measured in DNS
of the NSE, reported in Ref. [8]. However, in the latter case, the helicity flux is taken with absolute
values, leading to a possible mixing among chiral and mirror-symmetric contributions.

V. CONCLUSIONS

We have studied the statistical properties of helicity in DNS of high Reynolds number flows.
We focused on a set of observables sensitive to mirror symmetry, studying the scaling properties
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FIG. 9. Exponents of the symmetric and antisymmetric structure functions (34)–(36) as functions of order
p. The values are obtained as the mean of linear fits over different ranges of shells. The error bars show the
dispersion as a function of the fitting ranges.

of structure functions based on either helical-projected velocity fields or on velocity-vorticity
correlations. In both cases we found that chiral contributions are subleading with respect to their
counterparts involving only mirror-symmetric components. We investigated the scaling behavior of
these subleading corrections in high-order structure functions. A dimensional argument assuming
that the main chiral contributions are analytical in the helicity flux captures the power law scaling
quite well, except for some anomalous correction. Controlling the multiscale amplitudes of chiral
fluctuations is key to develop also subgrid turbulent models for flows that break mirror symmetry
either globally or locally [41]. Furthermore, we extended our analysis to higher Reynolds numbers by
measuring the statistics of helicity in shell models. Also in shell models we found a scaling behavior
quantitatively similar to what reported for the Navier-Stokes equations, including the presence of
correction to scaling even at extremely high Reynolds numbers.
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