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Caustics-induced coalescence of small droplets near a vortex

P. Deepu,1,* S. Ravichandran,2,† and Rama Govindarajan3,‡
1Department of Mechanical Engineering, Indian Institute of Technology, Palakkad 678557, India

2TIFR Centre for Interdisciplinary Sciences, Narsingi, Hyderabad 500075, India
3International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India

(Received 30 June 2016; published 28 February 2017)

How droplets grow rapidly from 10 to 50 μm is an outstanding question in cloud physics.
We show theoretically and numerically that caustics, locations of multivalued droplet
velocity, of small droplets near a single planar steady vortex offer one route through this
bottleneck. Such a vortex serves as a simple model for the more complicated turbulence field
existing in clouds. Within a special radial distance rc from the vortex center, droplets closer
to the vortex can centrifugally overtake those farther out and coalesce. Small polydispersity
increases rc dramatically, enabling repeated collisions at short time intervals and formation
of large droplets. Our results show that caustics brought about in a polydisperse suspension
could offer a mechanistic explanation of accelerated rain initiation.
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I. INTRODUCTION

Particles suspended in turbulent flows exhibit inhomogeneous densities, even in statistically
homogeneous turbulence [1]. Particles that are much denser than the fluid (“heavy” particles) are
typically centrifuged out of regions of high vorticity and preferentially cluster in regions of high
strain [2]. Such regions of high strain are normally associated with hyperbolic fixed points, but
other kinds of attractors for heavy particles are known to exist. For example, if the vortex dynamics
exhibits periodicity, particles can get attracted to elliptic fixed points in the rotating frame [3–5].
Further, the interaction of vorticity and gravity can change the dynamics [1,6] and produce stable
limit cycles [7]. The problem of particle clustering, collisions, and coalescence in turbulent flows is
relevant to many industrial and geophysical areas such as spray combustors, aerosol drug delivery,
growth of water droplets in rain clouds, and formation of planetesimals in protoplanetary disks [8].
Our work addresses the droplet growth bottleneck in cloud physics, an open question on the rapidity
of onset of rainfall in warm cumulus clouds. While diffusion-driven growth is relatively fast when
the droplets are small (<10 μm), and collisions-coalescence driven by gravitational settling can
explain growth beyond 50 μm, neither mechanism can explain the emergence of ∼50 μm drops
from a 10 μm population within about 15 minutes [9]. We provide a mechanism for accelerated
droplet growth in this size range.

The coupling between small heavy particles and the flow is characterized by the Stokes number,
St ≡ τ/τf, where τ is the response time of the particle (defined later) and τf is a typical flow time
scale, such as a vortex turnover time. Droplets of Stokes numbers above a critical value (≈1 based
on the Kolmogorov timescale [10]) respond to flow structures in the dissipative range of turbulence,
and experience caustics, i.e., two or more particles with different velocities arrive at the same place
at the same time. Caustics are thought to play an important role in clustering (see, e.g., Ref. [11])
and therefore in increasing collision rates (see, e.g., Ref. [12]). Such collisions typically take place
between particles being propelled out of different vortical regions at large relative velocities [13].
The term “caustics” in common parlance is thus evocative of relatively large particles and regions
between vortices.
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Our interest is in small and heavy droplets, in the vicinity of a single vortex. Here too caustics
can occur, as shown by Ref. [14], for particles which start within a critical radius r ′

c from the
vortex center, which, for a pair of identical particles is r ′

c = 0.55
√

2π�τ, 2π� being the circulation
of the vortex. [When not clear from the context, a prime will be used to indicate a dimensional
variable.] We ask whether such caustics can affect the rate at which droplets grow, and answer
strongly in the affirmative. We show that droplets which begin life at a radius within r ′

c of the
vortex centre are far more likely to collide and coalesce than droplets which lie outside. The present
study uses a two-dimensional, time-independent vortex as a model for turbulent eddies. This is an
oversimplification since vortices evolve in space and time in a turbulent flow; however, it leads to
a nontrivial yet tractable model describing the basic features of turbulence-particle interaction. It
also brings to light evidence that the neighborhood of each vortex can be important for caustics
formation.

Our results also show that the caustics radius rc for the smallest polydispersity in droplet size
is different by orders of magnitude from that for identical droplets, so slightly larger particles, as
they are centrifuged out, can mop up a large number of smaller particles in an extremely short
time, to effect runaway growth. This further suggests that initially polydisperse systems of particles
would undergo collisions and produce large droplets more frequently. We confirm this prediction by
numerical simulations. Thus a vast majority of the large droplets seen in the flow are those in which
caustics have initiated the growth.

Droplet dynamics within the caustics radius rc may not be described by a field [15], since
velocity can be multivalued at a given place and time. Outside this radius, droplet dynamics may be
described by a compressible field, where the divergence ∇ · vp < 0, so droplets come closer to each
other slowly. Thus collisions outside the caustics radius may occur when the centres of two droplets
approach closer than the sum of their radii, but these will be seen below to be rare events. We use the
terms “particle” and “droplet” interchangeably, because our droplets are so small that they remain
practically spherical and are made up of fluid which is much more viscous than the surroundings, so
that standard Stokes flow around each droplet is an adequate description, which is discussed further
below.

II. FORMULATION OF THE MODEL

Since our interest lies in the bottleneck range of droplet sizes, we disregard the effect of gravity
(for studies on this effect, see Ref. [16]). The only force applied on the droplet is Stokesian
drag. This is a simplifying assumption, since in our numerical simulations, particle Reynolds
numbers up to O(1) are observed, and in these cases an Oseen correction to the Stokes drag
would become appropriate. The viscous relaxation time scale (or Stokes time) of a droplet of
radius a(t) is given by τ (t) = 2ρpa(t)2/ρν. Here ρp is the particle density, ρ is the density of the
fluid, ν is its kinematic viscosity, and t is time. Under these assumptions, for heavy (ρp � ρ) and
small [a(t) � the relevant flow length scales] particles, Maxey-Riley equations reduce to ẋ = v and
v̇ = 1

τ (t) [u(x,t) − v], where x(t) is the position vector of the particle.
The fluid flow field u(x,t) is prescribed by a steady planar point vortex with circulation 2π�.

After recasting the above equations in cylindrical polar (r,θ ) coordinates with origin at the vortex
center, and using τ (0) and

√
�τ (0) to nondimensionalize time and length respectively, we get

r̈ + b(t)ṙ = ζ 2/r3, (1)

ζ̇ + b(t)ζ = b(t), (2)

where b(t) = [a1/a(t)]2, with a(t = 0) = a1, is a staircase function that undergoes a step change
with every coalescence event. Its introduction allows us to study the interplay between caustics and
coalescence, which was not addressed in previous studies [14,17]. Upon putting b(t) = 1, Eqs. (1)
and (2) respectively reduce to Eqs. (8) and (9) in Ref. [14]. ζ = r2θ̇ denotes the angular momentum
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per unit mass of the particle about the vortex center. The overdot represents differentiation with
respect to time. Particles which start within rc will be flung out and overtake all particles that were
initially located within a critical radial separation. We show by a singular perturbation analysis
that particles which start at r � 1 cannot overtake any others, particles which start at r � 1 can
overtake those which start at r � 1, and that there is a critical radius of order 1 where the behavior
changes. For an initial particle velocity equal to the local fluid velocity, Eq. (2) gives ζ (t) = 1.
For simplicity, we ignore collisions and set b(t) = 1. Subsequently, Eq. (1) becomes amenable to
analytical solutions in two asymptotic limits. At large r and t , the inertia term (first term) can be be
neglected. With the initial radius r(0) = ro, it leads to the outer solution

r4 − r4
o = 4t. (3)

In the other asymptotic limit of short time and radius, the Stokes drag (second) term can be ignored
in favor of the other two terms. The resulting differential equation, along with the initial condition
r(0) = ri , admits the following inner solution at large r − ri :

ri(r − ri) = t. (4)

The crossover between the two asymptotic limits of small and large r can be shown to take place at
rc ∼ O(1).

Though Eqs. (3) and (4) are strictly applicable only at the two asymptotic bounds, they are
useful for presenting a simple description of caustics, as follows. We observe that the inner solution
describes a rapid ejection of the particle (r ∝ t), while the outer solution corresponds to a slow radial
velocity. Hence, a particle that started from ri will catch up with the one that started from ro(�ri).

III. METHODOLOGY

Thus caustics enable droplets to collide with each other at significant relative velocities, thereby
aiding droplet growth through coalescence. To quantify the proportion of large droplets that are
formed due to caustics, we numerically simulate Eqs. (1) and (2) for a multidroplet system. To avoid
the singularity at the center of a point vortex, we use the more realistic Lamb-Oseen vortex to model
the fluid tangential velocity as uθ = (1 − e−r2/r2

v )/r . The droplets are initially randomly positioned
in a plane perpendicular to the vortex axis around the vortex center within a radius of R, which is
taken to be a few multiples of rc. The Lagrangian trajectories of the particles are tracked using a
fourth order Runge-Kutta method. Simulations are conducted over an ensemble of random initial
droplet configurations. For example, the polydisperse system results presented below are from 50
realizations with a total number of particles N = 3×105.

We choose parameters typical of warm clouds. We set the average initial droplet radius to
10 μm with a prescribed polydispersity in size, and the droplet planar number density, n to 4000/m2,
corresponding to a cloud liquid content of about 0.5 g/m3 or roughly one droplet per Kolmogorov
volume, and a collision cross section of one particle diameter. Evidently, increasing the number
density and/or droplet diameter will increase the frequency of droplet collisions and accelerate
the droplet growth rate, but such a parametric study is outside the scope of this paper. In the
spectrum of a real cloud, circulation would range from ∼10−5 m2/s (at the Kolmogorov length
scale, rk ∼ 1 mm) to 100 m2/s (at the integral length scale of 100 m [9]). In our short simulation
times, the probability of observing collision events is very low for � � 1 m2/s (as the caustics
zone shrinks significantly), whereas for � � 10 m2/s the particle velocities would be too large for
Stokes drag to be applicable. Hence, for the purposes of illustration, we simulate for two values of
circulation: � = 1 m2/s and � = 10 m2/s, and set rv = 0.3. We note that these values of circulation
describe intense vorticities corresponding to high-intermittency events which typically take the form
of long-lived vortex filaments [18,19]. The corresponding Stokes number = O(10) based on the
maximum vorticity. Note that the numerical value of the Stokes number is high because the vortex
turnover time scale is low, but the droplets are too small to display significant settling under gravity.
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FIG. 1. (a) Snapshot of the initial locations of the droplets (randomly distributed) with a mean size of
10 μm and standard deviation of 2 μm. (b) Droplet positions at t ′ = 0.024 s. � = 10 m2/s. Origin represents
the center of the vortex. The droplets which start their journey from within the critical radius of caustics
are colored green (dark grey), others red (light grey). Subsequently if in a merging event, at least a caustics
droplet is involved, the resulting droplet is colored black. The size of the black droplets is scaled up for better
visualization.

Given the low particle volume fraction, only binary collisions are assumed to take place. At the
beginning of every simulation time interval [t,t + 	t], all pairs of droplets (i,j ) are checked for
potential collision by calculating the time 	t (ij ) = ((a(i) + a(j )) − r (ij ))/v(ij ), at which they would
touch if they continued to move in straight trajectories. The superscript (ij ) denotes a relative
quantity between the ith and j th droplets. If 0 < 	t (ij ) < 	t , the droplets are deemed to collide at
(t + 	t (ij )). For more details, see Ref. [20]. However, not all collisions need result in coalescence;
for instance, if the droplets do not approach each other with sufficient kinetic energy to expel the
intervening air film, they will bounce away. Based on approach conditions such as collision angle,
relative velocity between the colliding droplets and the ratio of droplet sizes, we determine whether
two colliding droplets will bounce or merge (see Ref. [21] for details). Since cloud droplets are
small (a < 100 μm), the probability of fragmentation on collision is neglected [22]. Bounce and
coalescence events are treated as elastic and inelastic collisions, respectively, with droplets always
remaining spherical.

IV. RESULTS AND DISCUSSION

For brevity we refer to droplets located initially within rc = 0.55
√

(2π ) as caustics droplets.
We color these droplets green and other droplets red [Fig. 1(a)]. In the course of the simulation,
droplets resulting from coalescence events involving at least one caustics droplet are colored black
and remain black subsequently. The fraction of large droplets at the end of the simulation which are
black give a measure of coalescence induced by caustics.

In Fig. 1 we present the snapshots of droplet positions at the beginning and end of a typical
simulation (see also movie 1 in the Supplemental Material [23]). The simulation time is chosen
long enough for most of the high-velocity particles to overtake the outer slow-moving particles [see
Fig. 1(b)], beyond which almost no more collision events are expected to occur. The large droplets,
which are centrifuged out the farthest (order of metres in a fraction of a second), are invariably black,
i.e., caustics droplets were involved in their creation. Note that the time taken is far shorter than a
typical lifetime of vortices of such circulations in turbulent flows of Reynolds numbers typical of a
cloud. Though large droplets form only a small fraction of the total population, a dramatic change
this causes in the caustics radius, as shown below, will lead to significant droplet growth.
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FIG. 2. Probability distribution of droplet size for an initial monodisperse population at t = 0 (©) and
t = 0.044 s (×). � = 1m2/s. Theoretical predictions from Eq. (5), using the same values of R′ and Nc/N as
used in simulation are shown by 	. The same color coding as in Fig. 1 is used.

A. Collisions in a monodisperse population

Initially monodisperse droplets too grow similarly, with caustics droplets being overwhelmingly
more successful in triggering coalescence, but the population of larger droplets is smaller than
in the polydisperse case. The evolution of an initially monodisperse population is described in
Appendix A. Briefly, we first derive the probability of collision between a j -mer (droplet of size aj )
and a monomer [see Eq. (A1)] and subsequently the survival probability of a j -mer as it travels from
r ′
j−1 (the radius location where the last collision has occurred) to a given r ′. Finally, P (aq,r

′), the
probability of a monomer which starts at r ′

c growing to a q-mer at position r ′ is obtained by multiple
integration of the appropriate product of survival and collision probabilities over successive intervals
of radii between collisions [see Eq. (A2)]. Treating coalescence events as statistically independent,
the probability of finding a q-mer in the population initially spread over a radius of R′ is

P ≈ P (aq,R
′)NC/N, (5)

where Nc/N is the initial fraction of caustics droplets and denotes the probability that a given
monomer is a caustics droplet. This theoretical prediction is seen in Fig. 2 to be in excellent
agreement with numerical simulations. There is thus a significant probability of coalescence giving
rise to lower-order mergers in a short time. At larger time and radius, the probability of production of
large droplets will be even higher. Note that our theory allows only the caustics droplets to grow in
size, and hence the observed match reinforces the conclusion that caustics droplets are responsible
for large droplet production. Thus we have shown that caustics near a single vortex can transform a
monodisperse aerosol into a polydisperse population, with significant population of larger particles.
We show next how the small degree of polydispersity thus generated can have a drastic effect on
the caustics radius and thence on the number of droplets with which a given droplet can collide,
initiating a domino effect.

B. Effect of polydispersity

In Eqs. (1) and (2), we allow for two droplets at an initial radial separation of δr to have different
Stokes times (τi and τo, for inner and outer). The critical caustics radius rc, i.e., the maximum radius
at which an inner droplet placed initially may overtake at least the droplet in front for any δr , is
shown as a function of the ratio ξ ≡ τo/τi in the inset to Fig. 3. At ξ = 1, we recover the result of
rc = 1.38 for the mono-disperse case; but the main finding here is that rc is very different when the
lighter droplet is at the rear than when it is in the front. At ξ = 0.99, for example, the critical radius
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FIG. 3. Effect of bidispersity in particle size on the maximum distance that can be bridged (within the chosen
time span of integration) as a function of initial radius at different values of ξ , as given in the legend. Inset: Effect
of bidispersity on the critical radius for caustics at δr = √

(2π )×10−5. τi is used for nondimensionalization.

is 2 orders of magnitude larger than the critical radius for ξ = 1. The droplet at the rear will overtake,
and thus has the possibility of coalescing with, all droplets within a critical initial separation 	rc (for
more details, see Ref. [14]). This is shown in Fig. 3. The difference between the curves for ξ = 0.99
and ξ = 1.01 reiterates that caustics harness even the slightest polydispersity to enable a much larger
number of droplets to participate in the collisions-coalescence process. Further, mechanisms such as
supersaturation fluctuations in clouds can encourage a degree of polydispersity [24] and contribute
to a much larger caustics region. This in turn increases the collision rate and permits generation of
larger droplets. Extending the theoretical analysis carried out for the monodisperse case [Eq. (A2)]
to a more realistic polydisperse case will be highly complicated. Nevertheless, in the case of a
bidisperse system, one can derive a closed form expression for the probability of survival of an inner
(and bigger) droplet as it overtakes the outer (smaller) particles. We defer this discussion until after
we have presented the numerical results.

Shown in Fig. 4 for two typical circulations is the droplet size distribution (averaged over
many realizations) after a small simulation time. An initially polydisperse system with a Gaussian
size distribution of mean 10 μm and standard deviation 2 μm has been prescribed, as shown for
comparison. It is clear that, first, caustics-induced mergers produce size distributions (black curves)
with larger mean values and extended tails. In stark contrast, the probability distributions for droplet
starting outside the caustics zone hardly change. Second, the coalescence rate increases significantly
at higher � due to a bigger caustics zone and greater particle ejection rate. Finally, droplets that
are initially larger are more vulnerable to collisions and merging. It is evident that polydispersity
increases the chance of obtaining larger droplets. We observe an increase in standard deviation of
droplet size by more than 4% for � = 10 m2/s in less than 0.2 s (0.2% for � = 1 m2/s in 0.4 s) in
the case of a polydisperse system.

C. Evolution of droplet size at large times

Using high values of vorticity corresponding to highly intermittent events allowed us to
demonstrate the effects of caustics in simulation times as short as ≈0.01 s, as opposed to the
bottleneck timescale of 15 minutes. For large times, we may use Eq. (5) to make an analytical
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FIG. 4. Initial (solid line) and final (dashed line) probability distribution of droplet size for an initial
polydisperse population. (a) � = 1m2/s, simulation time = 0.044 s. (b) � = 10 m2/s, simulation time = 0.024 s.
The same color coding as in Fig. 1 is used.
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FIG. 5. An estimate of the evolution of droplet size distribution at later times. A monodisperse initial
population of droplet radius 10 μm and a representative � = 1.6 m2/s are used.

estimation of droplet growth. In turbulent flows, a given droplet can participate in a succession of
caustics of different vortices. We allow 5×108 droplets to grow through caustics up to a distance
of 10 times the caustics radius. At this distance, we deem the droplets to be in the thrall of another
vortex, randomize their locations, and allow growth again in a new cycle. Just for demonstration,
we take Nc/N = 0.1 in Eq. (5), amounting to assuming that about 10% of the flow has coherent
structures. We show in Fig. 5 the evolution of the droplet size distribution under such a sequence.
Taking the time for each cycle to be determined by droplets in the bin of largest inertia, the 20
cycles shown in Fig. 5 would take about 1000 s, or about 15 minutes, at which time there are ≈2000
droplets of 22 μm, and ≈40 000 droplets of 20 μm.

D. Collisions due to inertial-range vortices

From the results shown in Fig. 4, we obtain maximum droplet radius growth rates of the order
of tens of μm/s for � of order 1 m2/s or more (contrast this with the average droplet growth rate
of ≈0.01 μm/s needed to explain the cloud bottle-neck problem; e.g., see Ref. [25]). But such a
high growth rate is obtained from simulations carried out with intense vorticities; hence in reality
we expect much lower droplet growth rates. We now discuss typical vortices consistent with the
classical Kolmogorov picture, where the circulation of a vortex is fixed by its length scale (� ∝ r

4/3
v ).

Here collisions in a monodisperse population would be very rare during the vortex lifetime T (which
we take to be 10 times the rotation time of the vortex). In the more realistic case of polydisperse
populations, the caustics zone has been seen to be orders of magnitude larger, and in Appendix B,
the number of collisions in a bidisperse population is estimated analytically. In Fig. 6 we present the
number of bigger droplets per unit volume that undergo at least one collision, NC>0, as a function of
� and T for a bidisperse system. It is seen that the number of droplets which undergo collisions scales
as �5/8. In Appendix B, we show in detail that the reason for this scaling is that for a dilute system,
NC>0 will scale as the radius where the inner (and bigger) particle reaches in time T , ri(T ), which
itself can be shown to scale as �5/8. From the foregoing discussion, it is clear that the concerted
action of caustics and polydispersity in the vicinity of moderate vortices results in non-negligible
number of droplet collisions and thus could provide a mechanism to bridge the bottleneck.
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FIG. 6. Number of bigger droplets (per unit volume) in an initial bidisperse system (ξ = 0.81) which
undergo at least one collision as a function of circulation and lifetime of the vortex. Markers: Eq. (B6); solid
line: power law, NC>0 ∝ �5/8. Half of the 108 droplets present in 1 m3 volume of a typical cloud is assumed to
be bigger particles and the rest smaller.

V. CONCLUSIONS

We have shown that caustics near a planar time-independent vortex can contribute significantly to
rapid growth of small droplets. An overwhelming majority of small-droplet collisions involve at least
one caustics droplet. Since the caustics region is very large with even small polydispersity, droplets
which have undergone at least one coalescence have a far superior chance of repeated collisions
and runaway growth in a very short time, even in a dilute suspension. The strength of our theory
is its simplicity, and it explores a droplet dynamics regime where few direct measurements have
been made. We hope that our findings will motivate such efforts, in particular to estimate the role
of caustics, not only in clouds, but in other applications as well. Finally we remark that it would be
presumptuous to claim that we have solved the bottleneck problem using our simplified picture of
turbulent flows; however, it is fair to say that we have been successful in demonstrating the potential
of caustics-induced coalescence for producing large droplets in short times by strong vortices. The
growth of droplets in a realistic cloud setting, accounting for the effect of caustics, is yet to be
explored.
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APPENDIX A: PROBABILITY OF PRODUCTION OF A q-MER
IN A MONODISPERSE POPULATION

The most likely collisions are those between droplet A of radius aj and droplet B of radius a1.
The subscript j indicates a droplet made up of j initial droplets. As droplet A moves from r ′ to
r ′ + 	r ′, the probability, p, of colliding (and coalescing) is given by

pj = n2πr ′	r ′ aj + a1

2πr ′ = n	r ′a1(j 1/3 + 1) ≡ fj	r ′. (A1)

Mass conservation on every coalescence event stipulates aj/a1 = j 1/3. The probability of survival
of droplet A, i.e., of retaining its size as aj , is (1 − pj ). With r ′

j−1 being the radial distance where
the (j − 1)-th collision has occurred, the probability of survival up to r ′, in the limit of small 	r ′,
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becomes S(r ′,r ′
j−1) = exp[−na1(r ′ − r ′

j−1)(1 + j 1/3)]. Since all droplets within the caustics region
reach r ′

c at a very short time, we prescribe this as the starting location. For multiple successive
collisions, the probability of a flung-out monomer (of size a1) growing to a q-mer (of size of aq) at
a distance r ′, due to the (q − 1) collisions it has undergone while traveling out from r ′

c to r ′, is given
by

P (aq,r
′) =

∫ r ′

r ′
q−1=r ′

c

∫ r ′
q−1

r ′
q−2=r ′

c

...

∫ r ′
3

r ′
2=r ′

c

∫ r ′
2

r ′
1=r ′

c

q−1∏
j=1

[S(r ′
j ,r

′
j−1)fj ]S(r ′,r ′

q−1)
q−1∏
k=1

dr ′
k. (A2)

APPENDIX B: COLLISIONS IN A BIDISPERSE SYSTEM DUE
TO INERTIAL-RANGE VORTICES

Consider an inner particle of radius ain that starts from a radius r0 and an outer particle of radius
aout starting from r . As seen in Fig. 3, if ain > aout, the caustics radius could be of the order of 100.
We restrict this discussion to r > 1, which allows us to use the far-field expressions [Eq. (3)] for
the droplet velocity. In this case, since both the droplets will have comparable velocities, we cannot
assume the target (outer) particles to be stationary, unlike in the monodisperse case. If

√
�τi is taken

to be the length scale for nondimensionalization, the radial position of the inner particle, rin at time
t is obtained from Eq (3), while that of the outer particle is given by

r4
out(t) = r4 + 4ξ t. (B1)

A collision is possible when the two particles reach a radius rcoll simultaneously. From the two
equations, we may get this radial location as

rcoll = r0

[
η4 − ξ

1 − ξ

] 1
4

, (B2)

where η = r/r0. Then the probability of collision of the inner particle with an outer particle which
started from within a ring of width 	r at r is given by

PC(r,r + 	r) = nout2πr	r
ain + aout

2πrcoll
= noutη	rain(1 + √

ξ )(1 − ξ )
1
4

(η4 − ξ )
1
4

, (B3)

where nout is the number density of the outer particles.
In a given time T , the inner particle will reach ri(T ) and will overtake all the outer particles which

started initially from within a cutoff radius given by

rmax =
{
ξ + (1 − ξ )

[
ri(T )

r0

]4} 1
4

. (B4)

Dividing the disk from r0 to rmax into m rings, each of width 	r , the probability of survival (no
collisions) of the inner droplet as it moves from r0 to ri(T ) is obtained as the product:

PS(r0,ri(T )) =
m∏

k=1

[1 − PC(r0 + (k − 1)	r,r0 + k	r)]. (B5)

Subsequently, the number density of the bigger droplets that undergoes at least one collision in time
T is

NC>0 = [1 − PS(r0,ri(T ))]nin, (B6)

where nin is the number density of the bigger droplets.
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Consider a time T proportional to the vortex turnover time τf = 2π/ω, where ω = 2�/r2
v is

the vorticity. From Kolmogorov scaling, we have r2
v ∼ �3/2r2

k /ν3/2; hence T ∝ �1/2. Note that
T/τi ∼ 1/St. In dimensional terms, ri(T ) = (r4

0 + 4τi�
2T )1/4 and hence, for large enough ri(T ),

we have ri(T ) ∝ �5/8. Since ξ < 1, Eq. (B4) implies that rmax ∼ ri(T ). Given the low volume
fraction of cloud droplets, the probability of collision PC in Eq. (B3) is very small and essentially
invariant across the m rings. Therefore the product reduces to A exp[−Brmax], where A and B are
constants for a given r0. Using a linear approximation for this exponential leads to NC>0 ∝ �5/8.
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