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Depth resolved granular transport driven by shearing fluid flow
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We investigate granular transport by a fluid flow under steady-state driving conditions,
from the bed-load regime to the suspension regime, with an experimental system based on
a conical rheometer. The mean granular volume fraction φg , the mean granular velocity ug ,
and the fluid velocity uf are obtained as a function of depth inside the bed using refractive
index matching and particle-tracking techniques. A torque sensor is utilized to measure
the applied shear stress to complement estimates obtained from measured strain rates high
above the bed where φg ≈ 0. The flow is found to be transitional at the onset of transport
and the shear stress required to transport grains rises sharply as grains are increasingly
entrained by the fluid flow. A significant slip velocity between the fluid and the granular
phases is observed at the bed surface before the onset of transport as well as in the bed-load
transport regime. We show that ug decays exponentially deep into the bed for φg > 0.45
with a decay constant which is described by a nonlocal rheology model of granular flow
that neglects fluid stress. Further, we show that uf and ug can be described using the applied
shear stress and the Krieger-Dougherty model for the effective viscosity in the suspension
regime, where 0 < φg < 0.45 and where ug ≈ uf .

DOI: 10.1103/PhysRevFluids.2.024304

I. INTRODUCTION

The dynamics of a horizontal granular bed under the action of a fluid flow is an important model
to understand a wide range of problems, from sediment transport in streams and fractures to the
fluid-mediated delivery of powders and grains in various medical and engineering applications. In
the slow-flowing bed-load regime, grains are considered to move over the surface while maintaining
contact with the bed surface over a significant fraction of the time [1,2]. In the fast-moving suspension
regime, grains can be carried by the fluid for long periods of time. While there have been a number
of studies which have examined the onset of motion and the net granular flux as a function of
driving conditions and grain properties [3–7], the nature of the granular flux and the fluid flow as a
function of depth remains unresolved. This is because granular materials are typically opaque and
it is difficult to measure their packing properties and dynamics in the dense regions inside the bed.
Furthermore, numerical simulations have been developed [8–12], but remain challenging, because
of the multiple scales involved in simulating grain-fluid interactions.

Recently, experiments have been developed with transparent beads which can be index matched
using appropriate fluids to examine the bed structure and dynamics away from the direct influence
of side walls [6,13–15] to go beyond studies in horizontal and inclined quasi-two-dimensional beds
which were visualized through the side walls [16,17]. Most of these studies have been conducted
with acrylic beads which have densities similar to the shearing fluid and have been performed in the
viscous limit. Some of these studies have reported that the granular flow is confined to a moving
layer in which the velocity decays quadratically to zero at a depth which scales linearly with applied
shear stress [13]. Two-phase models combining Coulomb friction and linear drag, and its variations,
have been proposed [13,14] to explain the observed trends assuming that fluid velocity and granular
velocity are approximately equal inside the bed in a region where the granular volume fraction and
the effective viscosity of the fluid can be also assumed to be relatively constant. However, a critical
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examination of the reported trends and comparisons reveals systematic deviations that are further
highlighted by the report of creeping granular flows in a similar system [15]. Numerical simulations
using coupled discrete element method have been used to investigate the granular rheology in
bed-load transport [12] and appear to suggest that the inertial number dependent friction rheology
developed in the case of dry granular materials [18] can be used to describe the rheology of the
bed in the dense granular flow regime but not in the less dense layers above. Furthermore, the
depth resolved transport has not been reported in cases where the relative density of the grains is
significantly higher than the fluid, as in natural sand. The strength of the flow required to transport
grains can be expected to be higher under these circumstances, and thus it is possible that the flow
can be beyond the viscous regime when onset is reached. Thus, a satisfactory description of the
spatial distribution of granular transport is still lacking, and further studies are needed to develop a
description of the observed trends using appropriate constitutive laws.

In this paper, we report an investigation of a granular bed sheared by a fluid flow with an
experimental system in which a bed of glass beads immersed in a fluid is sheared by means of
a rotating conical top surface. We obtain the depth resolved packing fraction and velocity of the
grains and fluid inside the bed, using refractive index matching techniques, from well below to well
above onset of transport under steady-state conditions. We deduce the applied shear stress from the
measured shear rate of the clear fluid phase well above the bed surface where grains are absent.
Further, we also obtain the applied shear stress as a function of rotation rate by measuring the
torque applied on the container. We compare and contrast the applied shear stress in the case of a
granular bed and a solid planar substrate to understand the flow regime and the relative contribution
of viscous and inertial forces in the system. The onset of transport is found to occur in the transitional
regime between laminar and turbulent. When the driving is increased above onset, bed-load transport
and bed creep are observed to occur with a growing suspension phase developing as the driving is
increased further. We find that the mean velocity of the grains decays exponentially into the bed and
can be scaled onto a single curve by using the velocity corresponding to a depth where the granular
fraction is 75% of the maximum value. We show that the velocity profile in this dense regime is
similar to the velocity profile observed in boundary sheared granular beds in gravity, where fluid
effects are negligible. Further, we show that mean grain velocity in the suspension regime can be
described using the Krieger-Dougherty model [19] for the effective viscosity of suspensions as a
function of grain volume fraction, provided the mean grain and fluid velocities are similar.

II. EXPERIMENTAL SYSTEM AND PROTOCOLS

The experimental apparatus is shown in Fig. 1(a) and consists of a circular glass container with
inner radius Rc = 95 mm and a textured bottom with roughness k = 0.5 mm. The container is filled
with a fluid with density ρf = 1002 kg m−3 and kinematic viscosity ν = 0.021 Pa s. Approximately
1.5 × 105 glass beads with density ρg = 2500 kg m−3 and diameter d = 1.05 ± 0.05 mm are added
in a 9-mm-deep flat layer. Thus, the relative density ρg/ρf is similar to typical sediment flow systems
[3]. The roughness of the container bottom prevents the grains from sliding easily on the substrate,
confining the studied movement to the interaction of the fluid with the individual granules of the bed.
A plate with a conical surface, which makes an angle β = 5◦ with the horizontal, is then lowered
into the container so that its apex coincides with the top of the horizontal granular bed. The linear
increase in the height of the top plate compensates for the fact that its tangential velocity increases
linearly with distance from the axis of rotation, resulting in uniform shear in the case of a solid flat
substrate. The top plate is rotated by a motor with prescribed frequencies f up to 3 Hz to then shear
the fluid under steady-state conditions.

The refractive index of glass beads and the fluid are matched to within 0.01% and a fluorescent
dye and fluorescent tracer particles with diameter 15 μm are added to the fluid to visualize the
system. A vertical cross section of the system is then illuminated with a 532-nm-wavelength laser
in a 0.2d-thick plane to contrast the glass beads and the fluid [20]. We image a plane at a distance of
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FIG. 1. (a) A side view of the schematic of the experimental apparatus. The conical top plate is rotated
about its axis with an angular frequency f . A laser sheet (dashed vertical line) illuminates the fluorescent dye
and the fluorescent tracers in the fluid. The applied torque is measured with a torsional sensor on which the
container rests. (b) A sample image showing grains which appear dark in contrast with the fluid which appears
gray and tracers which appear white. zb indicates the average depth below which φg > 0.45.

R/Rc = 0.78 from the axis of rotation to minimize side wall effects while allowing the mean flow
to be approximated as being planar within 1% over the viewing window.

Figure 1(b) shows an image taken with a 10-ms exposure using a high quantum efficiency
Hamamatshu ORCA-Flash 4.0 LT camera placed orthogonal to the illumination plane. The grains
appear relatively dark, while the tracer particles appear as bright dots or short streaks depending on
the fluid speed. We filter the image to remove the bright pixels due to the tracers, and identify grains
with cross sections which are at least 0.65d in diameter in the image plane. The centers are found
to within ±0.1d using the centroid of the dark pixels corresponding to the grain. In order to obtain
the fluid velocity, we use particle image velocimetry (PIV) with images acquired at 0.1–500 fps
in regions where the fluid velocities are less than 60 cm s−1. We further complement the fluid
velocity data in faster flowing regions by measuring the streak length made by the tracers over a
given exposure time, as well as by particle tracking inside the bed where the tracers do not move
significantly over the duration of the recording. The volume fraction of the grain φg is obtained from
the image average intensity measured as a function of depth z from the top plate and mapping it to
a known volume fraction of the grains [21].

III. MEASUREMENTS

We initialize the bed by rotating the top plate at f = 3 Hz for 30 s to fully suspend the grains
in the fluid and then stopping the rotation suddenly. This protocol is found to result in a uniformly
sedimented bed with a horizontal surface. Then, by increasing the rotation frequency in small
increments and waiting for any transient motion to decay, we determine sustained granular transport
to occur above fc = 1.35 ± 0.05 Hz. Transient motion was observed to occur well below onset,
with grains rearranging and settling in place over a scale of less than a grain size. A few grains
at the surface were also observed to move over a significant distance before redepositing back
on the surface. However, this motion was not observed to lead to sustained transport of the bed
for f < fc with all activity ceasing given sufficient time under steady-state driving. The transient
time was observed to increase as fc was approached, similar to previous observations in a linear
pipe geometry [7], and thus fc can be interpreted as the driving parameter where the decay time
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FIG. 2. The positions of grains tracked over 1000 frames acquired at 60.1 fps (a) f/fc = 0.37, (b) f/fc =
1.04, (c) f/fc = 1.26, and (d) f/fc = 1.33. The grains appear stationary in the case of f/fc = 0.37 to within
the errors in determining their centers. Grains are observed to move significantly near the surface in the case of
f/fc = 1.04 and f/fc = 1.26, with creep motion deeper in the bed. Grains moving over smooth arcs that are
well over a grain scale can be observed near the surface in the case of f/fc = 1.33, indicating the development
of a suspension regime near the top of the bed.

scale has diverged. Furthermore, fc was observed to be history independent with the same range of
values observed whether the bed was resuspended or not between each increment of f .

The position of the grains inside the bed, recorded over 1000 frames acquired at 60.1 frames
per second (fps), are shown in Figs. 2(a)–2(d) at various rotation frequencies from well below to
above onset of transport under steady-state conditions. In the case of f/fc = 0.37, one finds that
the identified positions of the grains overlap to within the error in finding the centers, showing
that the grains are stationary over the recorded duration. (We further tested that the grains appear
stationary when examined over a day under the same conditions.) Just above onset at f/fc = 1.04,
one observes that the grains near the bed surface move by apparently rolling at the surface consistent
with the description of bed-load transport [2]. The grains at the surface are fully mobile at higher
f/fc = 1.26 and yet appear to be in contact with the bed because any arcs of points at the surface
appear to be of order of the grain size and thus indicative of bed-load transport. As f/fc is increased
to 1.33, grain positions describing arcs over several grain lengths become evident at the surface,
indicating the development of a suspension phase. The grains deep into the bed are clearly observed
to be mobile as the scatter of points appears extended along the flow direction with considerable
fluctuations in the vertical direction as the grains rearrange and move in relation to each other.

To quantify the granular packing and dynamics, we plot φg averaged in horizontal layers of
thickness 0.012d as a function of depth z from the top plate in Fig. 3. In plotting φg in log scale,
we have plotted the data starting from 0.01 as this represents the noise floor in determining φg . We
observe that φg increases sharply and fluctuates around a packing fraction φg ≈ 0.60 into the bed in
all cases. This packing is well below the maximum packing of spheres which is 0.74, as well as the
maximum random packing of spheres which is approximately 0.64, but comparable to that observed
in previous studies of frictional glass sphere packings before application of significant shear [21].
Examining the change in φg with z across the examples shown in Fig. 3, one observes that the bed
interface is sharper in the case of f/fc = 1.04 compared with f/fc = 0.37. This is consistent with
our earlier observation that grains dislodge and again lodge on the surface as f → fc. In Fig. 4,
we further plot the depths zo and zb corresponding to the depths where φg > 0 and φg > 0.45,
respectively, over the entire range of f/fc investigated. The relative sharpening of the interface
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FIG. 3. The volume fraction φg (—) and grain velocity normalized by the top plate velocity ug(z)/ut (-◦-)
and fluid velocity normalized by the top plate velocity uf (z)/ut (-�-) as a function of depth for (a) f/fc = 0.37,
(b) f/fc = 1.04, (c) f/fc = 1.26, and (d) f/fc = 1.33. The root mean square fluctuations in uf (z)/ut are noted
in gray. Panels (e)–(h): The data are plotted in log-linear scale to capture the wide variation observed in φg, ug ,
and uf . The range of errors are indicated by the shaded gray areas.

indicates that the grains which are relatively more exposed to the flow are preferentially dislodged.
These grains are then deposited in deeper pockets at the interface, leading to a decreasing surface
roughness as f → fc, before increasing again above the onset of transport. As f/fc is increased
further, φg decreases to zero at a relatively smaller depth as the suspension phase grows. From Fig. 4,
we observe that the dilation of the bed is relatively small. Nonetheless, the increasing entrainment
of even a small number of the grains is observed to have a significant effect on the fluid flow, as we
discuss next.

FIG. 4. The measured depth zo = z|φg=0 and zb = z|φg=0.45 denoting the thickness of the bed interface as a
function of f/fc. The error in determining the depths is less than the symbol size. zo can be observed to increase
by a grain diameter at the onset of transport and further increase to the top of the container when grains are
entrained rapidly into suspension at f/fo ≈ 1.25.
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We then obtain the magnitude of the horizontal component of the mean grain velocity ug and the
fluid velocity uf normalized by the top plate tangential velocity ut = 2πf R and plot it along with
φg in Fig. 3. Because of the wide range of velocities observed, we have included both a linear-linear
plot and a log-linear plot of the ug and uf as a function of z. In the case of f/fc = 0.37, where
the bed is immobile and ug/ut = 0, we observe that uf decreases linearly from the top plate and
then decays rapidly over three orders of magnitude near the bed surface over the scale of grain
diameter, consistent with previous studies of fluid flow near granular interfaces by Golharzadeh
et al. [22]. In the case of f/fc = 1.04, uf appears to decrease nonlinearly with z. Then the local
shear rate of the fluid γ̇f = duf /dz can be observed from Fig. 3(b) to be greater near the top plate
compared to near the bed surface. We also observe that the difference between γ̇f at the top and at the
bed surface grows with f/fc. Comparing uf and ug , we observe a significant slip between the fluid
and the granular phase at the bed interface, expect well above onset of transport [see Figs. 3(a)–3(c)].
However, uf and ug appear to approach each other in the fast-moving regions at higher f/fc [see
Fig. 3(d)].

IV. ANALYSIS

A. Reynolds numbers

To understand the flow regime, we estimate the flow Reynolds number Ref = ρf UL/ν using
the characteristic flow speed U = 2πf R and the measured depth of the fluid layer zb as the size
scale L. The observed Ref is plotted in Fig. 5(a) as a function of f/fc and ranges approximately
from 30 to 80 for 0.5 < f/fc < 1.5. This range of Ref implies that the flow is transitional over
the range of f where grains are transported. Thus, inertial effects can be important to determining
the flow. We also estimated the particle Reynolds number Rep, which is often used to characterize
the flow regime relevant for erosion [5]. Using the measured uf at the bed surface where φg = 0.45
and L = d, we find Rep to be less than 0.1 over the entire range of f/fc investigated.

B. Applied shear stress

We now relate the experimental driving parameter f to the shear stress acting on the bed using
two complementary experimental methods. In one method, we use the measured uf as a function
of z as a result of the motion of the top plate, to estimate the shear stress τ well above the bed in
the clear region where the stress-strain relation may be given by viscosity of the fluid. In this case,
τ = νγ̇o, where γ̇o is the shear rate measured up to depth zo where φg = 0 as shown in Fig. 4. Then
one notes that τ along the flow direction is constant with z under steady-state conditions. Using the
normal stress due the buoyancy subtracted weight of the grains σg = (ρg − ρf )gd, where g is the
acceleration due to gravity, as a relevant scale, we then deduce a nondimensional shear stress, also
known as the Shields number, acting in the horizontal direction τ ∗ = τ/σg .

Figure 5(b) shows a plot of τ ∗ as a function of f/fc. It can be observed that τ ∗ increases linearly
at first before increasing more rapidly above the onset of transport. To understand the observed τ ∗
in relation to that for a uniformly sheared fluid in the conical geometry, we also plot τ ∗ = νγ̇ /σg ,
where γ̇ = 2πf/ tan β. We observe that the initial increase in τ ∗ agrees with this estimate, before
systematic deviations set in at higher f/fc. These deviations can occur because of the inertial effects
in the flow as indicated by the estimate of Ref over the same range of f . However, it is also
possible to interpret the increase in τ ∗ as occurring due to an effective increase of viscosity due to
an increasing concentration of grains in suspension. Then, a higher shear stress would be required
to maintain similar strain rates.

To further check this interpretation and the robustness of the estimated shear stress, we next
performed measurement of torque T exerted by the rotating plate using a second complementary
method. Here, assuming a constant shear stress τT as a function of distance from the rotation axis,
one can integrate τT along the radius to obtain a relation between the applied shear stress and torque.
Inverting this relation, we can express τT in terms of T , i.e., τT = 3T/2πR3

c . Accordingly, we plot
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FIG. 5. (a) The flow Reynolds number Ref shows that the system is in the transitional regime at the onset of
transport indicated by the vertical dashed line. (b) The nondimensional shear stress τ ∗ obtained from measured
strain rates γ̇o (◦) increases rapidly above onset of transport. τ ∗ obtained using torque measurements is plotted
with dashed line and triangle symbols (-�-). The torque measurement errors are smaller than the symbol size
and thus are not plotted. τ ∗ measured from the torque in a flat container with no grains is plotted with solid
line (—), and τ ∗ = νγ̇ /σg with γ̇ = 2πf/ tan β assuming viscous flow and a flat solid substrate with dotted
line (· · · ).

τ ∗ = τT /σg corresponding to a granular substrate in Fig. 5(b). The error bars associated with the
measurement are smaller than the symbol size, and significantly smaller compared to the errors,
which start building up in obtaining τ ∗ from the strain rate measurements due to particle tracking
errors at high speeds. For this reason, we are able to present the data corresponding to the torque
up to higher f/fc. We further plot τ ∗ obtained from torque measurements as well as for a flat solid
substrate to understand the trends associated with the fluid alone.

We observe that τ ∗ obtained using both methods in all cases overlap at low f/fc with the viscous
limit. Further, systematic deviations start to develop from the linear trend at higher f/fc which are
similar whether using the torque or the direct strain rate methods for estimating τ ∗. One can observe
that τ ∗ in the case of the flat substrate also follows the deviations from the linear trend as in the
granular case showing that the initial deviation from linearity occurs due to the growth of inertial
effects in the fluid flow. At still higher f/fc, τ

∗ both increase rapidly well above the trend in the
case of solid substrate.

While the rapid increases τ ∗ using the two methods do not completely coincide, it is noteworthy
that they are within an order of magnitude of each other. The discrepancy likely arises because the
assumption that the shear stress is uniform with R in estimating τ ∗ from the torque measurement
fails systematically above the onset of transport, as the moving layer gets deeper. Nonetheless, the
rapid increase of τ ∗ can be interpreted as arising due to an increase in volume fraction of grains in
the suspension phase, which can lead to an effective increase in its viscosity [23].
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FIG. 6. (a) Nondimensional Einstein flux q∗ as a function of τ ∗ is observed to increase rapidly over four
orders of magnitude above the onset of transport. The vertical dashed line corresponds to τ ∗

c . (b) Nondimensional
Einstein flux q∗ as a function of τ ∗ − τ ∗

c , where the critical Shields number τ ∗ above τ ∗
c = 0.242 ± .018. The

dashed line with slope 3/2 corresponds to the Meyer-Peter and Müller law [4]. The area shaded in gray
corresponds to the error in determining the flux and the shear stress.

C. Critical Shields number and granular flux

We now examine the development of granular transport as a function of τ ∗. We use τ ∗ obtained
using the strain rate measurements in the following as it is a better measure compared with τ ∗ obtained
using the torque as outlined above. The measured granular mass flux is obtained by integrating the
product of the granular volume fraction φg and the mean granular velocity ug as a function of depth.
This flux is scaled by

√
(ρg/ρf − 1)gd3 to give the Einstein flux [4]

q∗ =
∫

φg(z)uz(z) dz√
(ρg/ρf − 1)gd3

.

The error in determining q∗ increases with flux because of the difficulty in tracking particles at
high speed. This affects the measurement of the speed as well as the volume fraction, both of
which contribute significantly to the errors in determining the flux. Figure 6 shows a plot of q∗ as a
function of τ ∗ along with associated error in determining q∗. The flux is measured to rise rapidly as
τ ∗ increases above the critical value τ ∗

c = 0.242 ± .018, and then more slowly at higher τ ∗ as the
suspension phase develops. This measured critical value is within the range of values given by the
empirical Shields curve, which characterizes the trend observed in the critical Shields number versus
the particle Reynolds number data reported in the literature based on measurements in flumes and
in the field [3]. Furthermore, the reported value is consistent with our group’s previous observations
with a different system but with similarly sized glass grains [7]. In that study, conducted with a
bed of glass grains inside an enclosed linear flume with a rectangular cross section, the critical
Shields number was found to increase systematically as the bed was sheared over prolonged periods.
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FIG. 7. The grain velocity ug/ub as a function of depth z − zb corresponding to the region where φ > 0.45.
ub is the granular speed at the top of the bed where zb = z|φ=0.45. The data are described by the dashed line
given by Eq. (1). This form is described by a secondary rheology model of a horizontally sheared granular bed
which considers the fluid stress to be negligible in determining the velocity profiles [24]. The area shaded in
gray corresponds to the error in determining the velocities.

Because the critical Shields number in the current study is obtained after steady-state conditions
are established, we observe that the observed value is consistent within experimental error with the
armored value observed in that system.

To further characterize the rapid increase in granular transport, we plot q∗ as a function of the
excess stress τ ∗ − τ ∗

c in Fig. 6(b). A dashed line corresponding to the Meyer-Peter and Müller law
in which q∗ ∝ (τ ∗ − τ ∗

c )3/2 is also plotted to guide the eye. While the flux is observed to range over
many orders of magnitude, a clear scaling is difficult to obtain because the error in determining the
flux is significant. Nonetheless, the data are observed to be roughly consistent with that trend within
errors of the measurements. We found it impractical to take still longer imaging data sets to reduce
the error because it quickly overwhelmed our image storage and processing capacity. Therefore, we
do not focus on the scaling of the granular flux in the following but rather on the depth-dependent
flow profiles as a means to understanding the transport.

V. ANALYSIS OF VELOCITY PROFILES WITH DEPTH

With the above discussion of the relative importance of fluid viscosity, fluid inertia, and
entrainment of grains as a function τ ∗, we now develop a description of the velocity profiles
observed in the experiments based on the rheology of the material.

A. Dense deep flow regime

We first focus on the slow flowing region z > zb where φg � 0.45. As noted in the introduction,
this region has been described by using a model which incorporates Coulomb friction and drag forces
which predicts a quadratic velocity decay into the bed [13]. However, from Figs. 2(g) and 2(h), one
notes that ug appears to decay exponentially into the bed in this region. Indeed, exponential decay
of granular motion across shear bands are commonly noted in dry as well as submerged granular
flows [15,20,25,26].

We plot (z − zb)/d versus ug(z) normalized by the velocity observed at zb in Fig. 7(a) for
τ ∗ = 0.35,0.49,0.5, and 0.82 where the flow could be measured over an appreciable depth. All four
data sets in this regime are observed to collapse onto a single line corresponding to an exponential
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decay. Fitting the data to the function

ug(z)/ub = exp

[
− (z − zb)

δ

]
, for z > zb, (1)

we find the decay constant δ/d = 2.5 ± 0.1. This functional form of velocity decay into the bed with
the same decay constant was found previously in horizontally sheared granular materials in gravity
[20]. Those experiments were performed in the quasistatic limit where the fluid was measured to
not have any effect on the effective friction. Thus, the time scale over which grains move past each
other, because of shear, is much longer compared to the time scale for the grains to come in contact
by draining fluids near grain contacts.

Furthermore, those measured velocity profiles and decay were described more recently by a
nonlocal rheology model which incorporates the scale of the grain in predicting the decay of the
velocity from a sheared wall [24]. In this model, the flow in a region is affected not only by the
local granular stress but also by the flow in the neighboring regions, giving rise to the exponential
behavior shown in Fig. 7. Thus, we conclude that the functional form of the creep flow into the
bed in the region z > zb is entirely due to the granular stress, and the fluid flow and stress, while
important above the bed, are irrelevant to determining the creep motion observed deep into the bed,
where φg > 0.45.

B. Suspension regime

We now focus on the observed flow profile in the suspension regime which develops clearly
for f/fc above 1.33. As discussed in Sec. IV B in interpreting the rise of shear stress with f ,
the entrainment of the grains can lead to an effectively higher viscosity of the fluid. We use the
Krieger and Dougherty form [19] used to model the viscosity of a suspension containing solids in a
Newtonian fluid as a function of their volume fraction,

η(φg) = η0

[
1 − φg

φm

]−Bφm

, (2)

where B = 2.5 is the Einstein coefficient and φm is the maximum packing of the solid phase where
viscosity diverges. This form reduces to the linear relation derived by Einstein in the dilute limit
φg → 0 with η0 = ν. Although this form was initially proposed for neutrally buoyant particles, it
has been used even when this condition is not met. In particular, the Krieger and Dougherty form has
been found to be consistent with rheology measurements in the case of dilute suspension of glass
beads in viscous fluids [23]. From our experimental measurements we assume φm ≈ 0.6 and focus
on the regime where uf ≈ ug to neglect the relative motion of the grains and the fluid. Then,

ug(z) ≈ uf (z) = 1

η0

∫ z

0

[
1 − φg(z)

φm

]Bφm

dz. (3)

We plot the experimental data along with ug(z) from Eq. (3) for f/fc = 1.26, 1.33, and 1.43 in
Fig. 8. Good agreement is observed provided ug ≈ uf , f/fc � 1.33 and assuming η0 = 1.5ν. This
higher value of η0 appears to be consistent with the higher effective drag in the transitional regime
compared to the viscous regime. One can estimate an effective viscosity 1.9 ± 0.3 Pa s by dividing
the measured τ in the case of the flat substrate by γ̇ . In the case where significant slip exists between
the granular phase and the fluid as in τ ∗ = 0.38 shown in Fig. 8(a), this approximation does not
capture ug or uf , but rather goes in between the two across the bed-fluid interface.

One can understand the range over which the Krieger and Dougherty form captures the observed
flow field by considering the time scale over which a grain settles over the scale of its diameter and the
advection time scale over which the grains move past each other due to the shear present in the system.
By balancing the gravitational force with drag force acting on the grain, we have the time scale
associated with gravity as a tg = 18ν/(ρg − ρf )gd. Then, assuming the advection time scale
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FIG. 8. Panels (a)–(c): The grain velocity ug(z) (◦) and fluid velocity uf (z) (�) plotted using Eq. (3) for
τ ∗ = 0.49,50, and 0.82. The dashed line (- - -) corresponds to calculating the velocity profile uf using Eq. (3)
and can be seen to describe the flow when the particles are pulled into suspension, and when uf and ug are
approximately the same. The dotted horizontal lines (· · · ) correspond to the depth above which φg < 0.45. The
area shaded in gray corresponds to the error in determining the velocities.

ta ≈ 1/γ̇ , we have the ratio of the time scales ta/tg ≈ (ρg − ρf )gd/18νγ̇ . Substituting the values
corresponding to the physical constants and the shear rate corresponding to our experiments, we find
ta/tg is of order 0.1 in the region above the granular surface above the onset of granular transport and
decreases further as shear rate is increased. Thus, this form appears to describe the data in regions
where the volume fraction of the grains is sufficiently small.

VI. CONCLUSIONS

In conclusion, we have developed an understanding of the flow profiles observed in a granular
bed sheared by a fluid flow with experiments that enable depth-resolved flux measurements. By
measuring the shear stress with two different techniques using torque and direct particle tracking,
we find that the flow is in the transitional regime at onset of granular transport. The experiments are
performed with grains and a fluid with density contrast which is similar to natural sand. However,
in making a connection to sediment transport in rivers and streams, it should be noted that the fluid
used for index matching is more viscous than water. This implies that the relevant flow in rivers
and streams for similar size and density grains will be even further into the transitional regime.
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Nonetheless, it is possible that these results apply to finer grains in a lower viscosity fluid with
appropriate scaling.

From these measurements, we find that the shear stress required to transport grains increases
rapidly as grains are suspended by the shearing fluid above the onset of transport. From the applied
shear stress and the Krieger-Dougherty model for the effective viscosity, we are able to describe
the overall form of the velocity profiles in the rapidly moving suspension regime. Further, in the
slow-flowing dense granular regime, we show that mean velocity of the granular phase decays
exponentially into the bed with a decay constant which is described by a nonlocal rheology model of
granular flow that neglects fluid stress. Although the shear due to the fluid flow above is the overall
reason for the granular flow, the presence of the fluid is found to be unimportant to the dynamics
deep inside the slow dense granular flow regime.

Finally, we note that while we have measured the velocity of the grains moving at the surface of
the bed and described the subsequent decay of granular flow into the bed, we have not described
the functional increase of the grain velocity or the flux as a function of shear stress in the bed-load
regime. We hope that our report will stimulate further research in this direction.
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