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Turbulent flows laden with inertial particles present multiple open questions and are a
subject of great interest in current research. Due to their higher density compared to the
carrier fluid, inertial particles tend to form high-concentration regions, i.e., clusters, and
low-concentration regions, i.e., voids, due to the interaction with the turbulence. In this
work we present an experimental investigation of the clustering phenomenon of heavy sub-
Kolmogorov particles in homogeneous isotropic turbulent flows. Three control parameters
are varied over significant ranges: Reλ ∈ [170–450], St ∈ [0.1–5], and volume fraction
φv ∈ [(2 × 10−6)–(2 × 10−5)]. The scaling of clustering characteristics, such as the
distribution of Voronoi areas and the dimensions of cluster and void regions, with the three
parameters is discussed. In particular, for the polydispersed size distributions considered
here, clustering is found to be enhanced strongly (quasilinearly) by Reλ and noticeably
(with a square-root dependence) with φv , while the cluster and void sizes, scaled with the
Kolmogorov length scale η, are driven primarily by Reλ. Cluster characteristic size

√〈Ac〉
scales up to ≈100η, measured at the highest Reλ, while void sizes

√〈Av〉, scaled also with
η, are typically twice as large as clusters at the same Reλ (≈200η). The lack of sensitivity
of the above characteristics to the Stokes number lends support to the sweep-stick particle
accumulation scenario. The non-negligible influence of the volume fraction, however, is
not considered by that model and can be connected with collective effects.

DOI: 10.1103/PhysRevFluids.2.024302

I. INTRODUCTION

Turbulent flows laden with inertial particles can be found in a broad range of engineering systems
and geophysical phenomena. Droplets in clouds, cleaning sprays, aerosol pollutants, marine snow,
and planetesimals are just a few examples of such flows. Unlike tracer particles, inertial particles
do not follow the flow velocity, but rather have their own dynamics resulting from the complex
interaction of the particle inertia, their gravitational settling velocity, and the fluid excitation across
the continuous turbulent spectrum. The behavior of turbulent flows laden with inertial particles is
an active field of theoretical, numerical, and experimental research. An important and unique aspect
of inertial particles interacting with a turbulent background is their tendency to cluster, creating
a inhomogeneous particle concentration field, a phenomenon known as preferential concentration.
Although several mechanisms, such as the centrifugal expulsion of particles from the core of the
eddies [1] or the sticking property of zero-acceleration points of the carrier flow [2,3], have been
proposed to explain preferential concentration, no clear picture has emerged yet regarding the
scaling and dominant parameters controlling the underlying physical processes at play. This lack
of quantitative understanding considerably limits our capacity to build physical models to describe
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and predict the phenomenon and its consequences, for instance, coalescence or evaporation and
condensation of droplets, in practical situations. Empirical models are also difficult to develop
as preferential concentration involves many ingredients whose specific roles have not been clearly
identified yet: particle inertia, turbulence characteristics, gravitational settling, disperse phase volume
fraction, etc. In this context, the present article reports a systematic experimental exploration
of preferential concentration as several control parameters known to influence this phenomenon
are varied over a wide range. These physical parameters can be related to several dimensionless
parameters.

(i) Inertia is characterized by the particle Stokes number St = τp/τη, the ratio between the
particle viscous relaxation time τp = 1

18
ρp

ρf

D2

ν
(where D is the drop diameter, ρp and ρf denote

the particle and carrier fluid densities, respectively, and ν is the fluid’s kinematic viscosity), and
the dissipation time of the carrier turbulence τη = √

ν/ε (where ε is the turbulent kinetic energy
dissipation rate). For small particles [with diameter D much smaller than the dissipative scale of
the flow η = (ν3/ε)1/4], the Stokes number can be related to the particle to fluid density ratio
	 = ρp/ρf and to the ratio between the particle diameter D and the Kolmogorov microscale η as

St = (D/η)2

36 (1 + 2	). The Stokes number is therefore bounded in this analysis by the assumption
of small particles (D/η � 1). Given a density ratio value (800 for water droplets in air), the
Stokes number cannot be larger than 5 (for a maximum value of D/η ≈ 0.3). Values of the Stokes
number beyond this value represent finite-size particles that cannot be studied based only on the
Stokes number, but require an independent measure of their finite size, as has been shown by the
impact of finite-size neutrally buoyant particles on the turbulent characteristics of the carrier flow
[4–10].

(ii) The strength of the turbulent excitation on the particles is related here to the Reynolds number
of the carrier flow Re = σuL/ν (with σu and L equal to the velocity rms and the correlation length of
the velocity fluctuations, respectively). In the present work we use the Reynolds number based on the
Taylor microscale Rλ = σuλ/ν, where the Taylor microscale λ is estimated as λ = √

15νσ 2
u /ε. Note

that this estimate for Rλ is preferred to the commonly used relation Rλ = √
15 ReL/Cε , where the

dimensionless dissipation rate Cε = εL/σ 3
u is assumed to be constant (independent of the geometry

and Reynolds number), an assumption that may indeed not always be justified [11].
(iii) Gravitational settling is characterized by the Rouse number: the nondimensional ratio of the

particle terminal velocity (taken as Stokes settling velocity in still fluid for Rep < 1 particles) to
the eddy velocity scale of the vortices that interact most strongly with the particles, in this case the
Kolmogorov velocity [12–14]. This parameter represents the influence of the crossing trajectories
effect [15,16] and preferential sweeping effect [1] on the interaction of inertial particles with the
carrier turbulence. These interactions impact the settling rate of the particles as well as their clustering
properties.

(iv) The overall concentration of the disperse phase in the flow is characterized by the volume
fraction φv occupied by the particles. Volume fraction is known to impact particle-turbulence
interactions at various levels. In dilute situations φv � 10−4, it is primarily the turbulence that
affects the particles dynamics with no global modification of the properties of the turbulent carrier
flow due to the presence of the particles: the one-way coupling regime. At higher volume fractions
10−4 < φv < 10−3, two-way coupling effects emerge with a modification of the carrier turbulence
due to the presence of the particles. At even higher disperse phase concentrations 10−3 < φv ,
four-way coupling mechanisms with additional particle-particle interactions appear. The volume
fraction values used in the experiments are well within the dilute one-way coupling regime
φv � 2 × 10−5 and the mass loading is always less than 2%, so no significant modification of
the turbulence in the carrier phase is considered.

Other parameters, such as polydispersity (in particle size and/or density) and particle shape
anisotropy, can also influence clustering properties, but will not be addressed here.

As previously mentioned, although clear evidence of the effect of the control parameters studied
here on clustering has been shown in experiments and simulations, a quantitative measure of the
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impact of each of these parameters on preferential concentration over a wide range of values has
not been obtained to date. For instance, available numerical studies (mostly carried out under the
assumption of point particles [17]) and the few available experiments indicate that the Stokes
number directly influences the clustering phenomenon, with a maximum degree of clustering for
particles with St = O(1). Existing results also suggest that the clustering level increases with the
increasing Reynolds number of the carrier flow [18]. Similarly, it was recently shown that the
disperse phase volume fraction has a nontrivial effect on clustering [19], with a nonlinear dependence
of the accumulation within clusters with the global concentration (even in situations of one-way
coupling, where no global modulation of the carrier turbulence is expected due to the presence
of the particles). Aliseda et al. [14] have also shown that gravitational settling is nontrivially
connected to the preferential concentration phenomenon and to the global volume fraction and can
be collectively enhanced within clusters. Better insight into such behaviors is required in order
to clearly disentangle the role of the Stokes number, Reynolds number, and volume fraction and
eventually start paving the way towards possible strategies to develop predictive and accurate models
of preferential concentration.

One of the difficulties in characterizing the specific role of these parameters unequivocally lies
in the practical complexity of systematically disentangling each parameter’s contributions in actual
experiments. For instance, for a given class of particles (with fixed size and density), varying the
Reynolds number of the carrier flow (for instance, by reducing the viscosity ν of the fluid or increasing
the energy dissipation rate ε) also results in a change of the particle Stokes number [as the dissipation
scale η = (ν3/ε)1/4 and hence the ratio � = D/η also varies]. Similarly, even if the volume fraction
φv is varied within the one-way coupling regime (φv � 10−5), the concentration within clusters may
increase due to preferential concentration, inducing subtler particle-turbulence and particle-particle
interactions, which in turn may result in nontrivial collective dynamics of particles and of clusters
of particles that are out of reach for the commonly used point-particle models.

We present an experimental investigation of preferential concentration of water droplets in
homogeneous isotropic turbulence turbulence generated by an active grid, where St, Rλ, and φv

have been varied independently within a wide range of experimental available values. We report
the influence of these parameters on the degree of preferential concentration based on Voronoi
tessellation analysis [19,20] and on the cluster and void geometry. The article is organized as
follows. Section II presents the experimental facility and the strategy to explore the (St,Rλ,φv)
parameter space. Section III details the Voronoi tessellation method and proposes strategies to better
handle possible biases in this analysis due to illumination inhomogeneity in the experiment. In
Sec. IV we report the main results of this investigation, before proposing a detailed discussion in
Sec. V, with conclusions and future lines of research identified from this work.

II. EXPERIMENTAL SETUP

Experiments were conducted in a wind tunnel with a test section of 0.75 × 0.75 × 4 m3 (see
Fig. 1). Homogeneous isotropic turbulence is produced with an active grid located at the entrance
of the test section. The mean streamwise velocity U in the wind tunnel was varied in the range
U ∈ 2.5–10 m/s (corresponding turbulence properties are given below in Table I). Water droplets
are injected 15 cm downstream of the active grid using an array of 18 pressure injection nozzles
supplied with a controlled flow rate of water via a high-pressure pump. Three injector sizes (with
different orifice diameters Dinj = 0.3, 0.4, and 0.5 mm) were used to vary the size distribution of
droplets injected in the flow. The droplet volume fraction can be further controlled by varying the
flow rate of water Fwater injected, which in our experiment evolves in the range Fwater ∈ 0.8–1.9
l/min. Overall, the combination of the three control parameters (U,Dinj,Fwater) allows us to explore
the parameter space (St,Rλ,φv). The main properties of the carrier turbulence, the seeded water
droplets, and the accessible parameter space are described in the following section.
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FIG. 1. Schematic view of the experimental facility.

A. Turbulence generation

The details of the active grid in the wind tunnel have been published in [18]. Briefly, it is made up of
eight vertical and eight horizontal shafts on which square wings are mounted. Each axis is controlled
individually by a stepper motor, so the solidity of the grid can be actively and dynamically changed.
This turbulence generation technique was first introduced by Makita and Sassa [21] and has been
reproduced in multiple studies in the literature (see, e.g., [22,23]). When a random forcing protocol

TABLE I. Conditions of the experimental runs.

D Fwater U u′ η τη ε Dmax σ (D) D32 φv

(mm) (l/min) (m/s) (m/s) (μm) (s) (m2/s3) (μm) (μm) (μm) StDmax Stmax (×10−4) Reλ

0.3 0.8 2.36 0.30 431 0.011 0.20 35 17 60 0.3 0.26 0.09 200
0.3 0.8 4.11 0.59 250 0.004 1.35 32 19 61 0.7 0.5 0.05 300
0.3 0.8 6.42 1.00 162 0.002 6.12 24 18 60 1.0 0.29 0.03 400
0.3 0.8 9.19 1.49 114 0.001 20.73 37 18 58 5.0 2.3 0.02 490

0.3 1.2 2.37 0.33 429 0.011 0.21 21 17 52 0.1 0.05 0.14 240
0.3 1.2 4.03 0.62 255 0.004 1.26 27 17 59 0.5 0.17 0.08 350
0.3 1.2 5.95 0.92 174 0.002 4.74 24 17 57 0.9 0.22 0.06 390
0.3 1.2 8.85 1.41 118 0.001 18.27 28 16 57 2.7 2.15 0.04 470

0.4 1.9 2.32 0.32 439 0.012 0.19 36 19 62 0.3 0.2 0.22 240
0.4 1.9 3.95 0.56 260 0.004 1.17 45 20 65 1.4 0.68 0.13 290
0.4 1.9 5.95 0.95 174 0.002 4.74 32 20 66 1.6 0.42 0.09 420
0.4 1.9 8.64 1.40 121 0.001 16.83 30 20 69 2.8 0.77 0.06 480

0.4 1.4 4.07 0.59 252 0.004 1.31 26 21 66 0.5 0.19 0.10 300
0.4 1.4 6.27 1.00 166 0.002 5.64 28 21 67 1.4 0.94 0.06 420
0.4 1.4 8.82 1.43 118 0.001 18.02 29 20 66 2.7 1.84 0.04 480

0.5 1.9 2.30 0.30 442 0.012 0.19 23 23 67 0.1 0.05 0.23 200
0.5 1.9 4.13 0.58 249 0.004 1.37 32 23 72 0.8 0.4 0.13 290
0.5 1.9 6.16 0.96 168 0.002 5.32 37 22 70 2.3 1.02 0.08 400
0.5 1.9 8.68 1.40 120 0.001 17.05 33 21 70 3.5 2.3 0.06 480
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FIG. 2. Typical Eulerian energy spectrum of velocity fluctuations produced downstream of the active grid,
obtained from classical hot-wire anemometry at the position where the water droplet’s preferential concentration
is investigated (3.5 m downstream of the grid). The typical distribution of 2π/D, where D is the droplet diameter,
shown in magenta on this graph (with arbitrary units on the ordinate axis), demonstrates that all droplets are
indeed smaller than the Kolmogorov length scale.

is used to drive the rotation of the shafts and flapping of the wings, it generates stronger turbulence
than a passive grid (turbulence intensity in our active grid flow is of the order of 15%–20%, while it
is typically 2%–4% in passive grid wind-tunnel turbulence) while keeping good homogeneity and
isotropy. It is worth mentioning that in spite of this high fluctuation level, active grid generated
turbulence is often characterized using hot-wire anemometry under a frozen field Taylor hypothesis.
We follow here the usual procedure, although it will be interesting in further studies (beyond the
scope of the present work) to actually quantify the validity of the Taylor approximation in this
situation. Figure 2 shows a typical spectrum (measured with classical hot-wire anemometry) of the
carrier flow velocity fluctuations for U = 10 m/s, where a well-defined inertial range can be clearly
identified over about two decades in wave-number space. We note that two small peaks can be seen
in the lower-frequency part of the spectrum. The first peak is related to the rotation rate of the flaps of
the active grid (which randomly varies in the range 1–3 Hz). The second peak is the first harmonic.
In terms of spatial scales, using Taylor’s hypothesis, the first peak corresponds to scales in the range
0.8–2.5 m for the lowest investigated velocity (U ≈ 2.5 m/s) and to scales in the range 3.3–10 m
for the highest explored velocity (U ≈ 10 m/s). The second peak (first harmonic) represents spatial
scales equal to one-half those given for the main frequency. Therefore, these peaks correspond to
modulations of the carrier velocity field at wavelengths above 0.40 m in the worst-case scenario and
above 1 m for the highest velocities explored. This is significantly larger than the region explored in
the present study, which focuses on clustering properties at inertial scales (our measurement volume
is of the order of 7 cm in its larger dimension), and such large-scale behavior is beyond the scope
of the present work, although it may have an impact on large-scale clustering properties (such as
superclustering [24]). Table I summarizes the main properties of the turbulence and the disperse
phase, for the different values of mean stream velocity U .

B. Generation of water droplets

The 18 spray nozzles for water injection are fixed on 8 vertical bars at the same positions in
the cross section as the vertical bars of the active grid, in order to minimize the flow disturbance
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FIG. 3. Typical diameter distribution of water droplets in the wind tunnel (produced by the 0.4-mm injectors
at a flow rate of 1.9 l/min). The inset shows the corresponding distribution of Stokes numbers for Rλ = 172.
Dashed lines indicate the Stokes number defined on the most probable diameter and the most probable Stokes
number.

due to the injector array. Hot-wire anemometry shows that the presence of the injector array does
not modify the turbulence properties at the measurement location (3.5 m downstream of the grid);
the turbulence spectra with and without injectors are undistinguishable. The size distribution of the
droplets is controlled by the injector orifice size (Dinj = 0.3, 0.4, and 0.5 mm) and depends only
weakly on the flow rate Fwater. Thus, the volume fraction φv was varied with a combination of
four different liquid flow rates and four different wind-tunnel speeds, for a range of 210−6–210−5,
without significantly affecting the droplet mean size, which was varied independently. The ranges
of dimensional and nondimensional parameters spanned in the experiments are shown in Fig. 4.

1. Droplet Stokes number

Figure 3 shows a typical size distribution of water droplets obtained from phase Doppler
interferometry (PDI) measurements. The spray is strongly polydispersed, with a well-defined
most-probable diameter. The droplet size distributions have been measured using PDI for all
experimental conditions considered. The most-probable diameter Dmax, the Sauter mean diameter
D32, and the standard deviation σ (D) are reported in Table I. The most probable diameter
evolves in a narrow range, from 21 to 45 μm. Otherwise, all conditions exhibit a comparable
degree of polydispersity as σ (D)/D32 = 0.31 ± 10% and σ (D)/Dmax = 0.66 + (50%–30%). The
inset in Fig. 3 represents the distribution of droplet Stokes numbers corresponding to the size
distribution shown. A reference Stokes number for each experimental condition is defined using the
most probable droplet diameter Dmax in the distribution. Thus, for each experimental condition,
the most representative particle Stokes number is estimated as StDmax = Dmax/η)2

36 (1 + 2	), with
	 = ρwater/ρair 	 830. Alternative choices are possible. For example, one may also refer to the
most-probable Stokes number Stmax (see the inset in Fig. 3) that slightly differs from the Stokes
number based on Dmax. For the experimental conditions explored here, the difference between the
most-probable Stmax and StDmax based on Dmax varies between 12% and 75% (see Table I). As pointed
out earlier, since St depends on both D and η, for a given droplet distribution the Stokes number
varies with the flow Reynolds number. Thus, St is sensitive to both wind-tunnel speed and injector
orifice size as experimental controls.

2. Droplets volume fraction

The volume fraction φv of the droplet disperse phase in the wind tunnel is given by the ratio
between the water flow rate Fwater through injector array and the total flow rate of air and water
across the tunnel cross section Ftot = Fair + Fwater with Fair = SU where S = (0.75 m)2 	 0.56 m2
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FIG. 4. (a) Map of control parameters explored. (b) Corresponding map of experimental parameter space.

is the area of the tunnel cross section: φv = Fwater
Ftot

. Note that in all experiments Fwater < 2 l/min while

Fair > 1.4 m3/s 
 Fwater, so Ftot 	 Fair and φv 	 Fwater
Fair

= Fwater
SU

. Therefore, the volume fraction φv

depends on both the liquid injection flow rate and the wind-tunnel mean speed.

C. Parameter space

The previous discussion shows the difficulty of independently varying the three parameters
studied in this work (St,Rλ,φv), as they are sensitive to changing more than one experimental
control parameter (U,Dinj,Fwater). By independently varying the injector diameter, the liquid phase
flow rate and the mean wind-tunnel speed, the present study explores the parameter space (St,Rλ,φv)
(see Fig. 4) in the range St ∈ [0.1,5], Rλ ∈ [170,460], and φv ∈ (2 × 10−6)–(2 × 10−5). Figures 4(a)
and 4(b) represent the experimental parameters and the nondimensional control parameters that were
accessible in the experiments.

By taking advantage of the experimental parameters that modified primarily one nondimensional
number with no or weak influence on the other two, the influence of one parameter could be
investigated, tracing horizontal or vertical lines in Fig. 4(b). Thus, the effect of the Stokes number
(horizontal lines) can be studied, keeping a relatively constant volume fraction and with a moderate
variation of Reynolds number. Similarly, the effect of volume fraction (vertical lines) can be teased
out while keeping the Stokes and Reynolds numbers to small variations. Two sets of experimental
conditions yielded almost identical Stokes number and volume fraction while changing the Reynolds
number by 50%, hence allowing a limited exploration of the effect of Reynolds number.

D. Visualization of particle locations and time-resolved trajectories

The particles in the flow are illuminated by a laser sheet along the streamwise-vertical directions,
at the midplane of the test section (Fig. 1). The thickness of the laser sheet is ≈1 mm, or a few η.
Because of the Gaussian profile of the laser beam, the illumination is inhomogeneous in the vertical
direction (a slight inhomogeneity also exists in the horizontal direction, mostly due to sheet formation
near the waist of the laser). Therefore, the laser intensity is maximum at midheight. Sequences of
images are recorded using a high-speed camera (Phantom V12, Vision Research Inc., Wayne, NJ).
A 105-mm Nikon macrolens on a Scheimpflug mount was used to visualize the laser sheet in
forward-scattering conditions, improving the brightness of the droplets while keeping good focusing
conditions over the entire image. The dimensions of the visualization area are 	10× 	 7 cm2

(covering a significant fraction of the integral scale of the carrier turbulence, which is of the order of
Lint ≈ 15 cm). For each experimental condition, defined by one triplet (St,Rλ,φv) in the parameter
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FIG. 5. (a) Typical raw image, (b) detected particles, and (c) probability of detected particles. The large-scale
inhomogeneity of the detection reflects the Gaussian intensity profile in the laser illumination.

space in Fig. 4, we recorded 20 movies at full resolution (1280 × 800 pixels) at an acquisition rate
of 2600 frames per second; the duration of each movie is ≈3.27 s (8500 frames). The high frame
rate was selected to enable particle tracking between consecutive images. The number of particles
per image typically ranges between 500 and 2000 depending on flow conditions.

The measurement location is 3.5 m downstream the injection of the droplets, where turbulence
is fully developed and sufficiently far away from the injection location for cluster formation to have
reached a stationary state. The time required for clusters to form is indeed not well understood.
If we consider the duration of transients observed in direct numerical simulations as an estimate,
two options are available: either transients are of the order of the integral time scale Tint of the
carrier turbulence (provided the particle response time is much smaller than Tint [12], as is the case
in this study) or they depend on a combination of turbulent and particle characteristic time scales.
For instance, Yang and Lei [13] proposed 8 times the dissipation time scale τη plus 5 times the
particle viscous realization time scale τp. In all our experimental conditions, the transit time of
droplets between the injection plane and the measurement location ranges from 60 to 600 particle
response times, or several integral time scales (from 1.8 to 2.5). Thus, particle residence times in the
turbulence are expected to be long enough for clusters to be have reached equilibrium.

III. VORONOI TESSELLATION ANALYSIS

Voronoi tessellations, which have been proven to be a good estimator to quantify the clustering
of particles [18–20,25–27], are used to diagnose the appearance and the strength of preferential
concentration.

Illumination inhomogeneity correction

Illumination inhomogeneity, shown above in Fig. 5(c), requires additional image processing to
calibrate the particle detection prior to diagnosing preferential concentration. As a consequence of
the Gaussian intensity profile across the laser plane, particles are statistically more probable to be
detected in the center of the visualization domain. Figure 5(a) shows an example of a raw recorded
image and Fig. 5(b) indicates the corresponding particle detection. The map of probability of particle
detection [Fig. 5(c)] clearly shows that particles are more likely to be detected in the center of the
image. Analyzing the clustering properties of particles in such conditions, without calibration, may
lead to errors in the diagnosis of the existence of clustering, simply due to the illumination bias.
To prevent such a bias, previous studies have cropped images [18], limiting the analysis to the
central region, where illumination is relatively homogeneous. Doing so, however, requires many
more images for statistical convergence of the analysis and also biases the cluster or void analysis, as
large structures cannot be detected. We use an alternative approach, allowing the use of the full image
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FIG. 6. (a) Example of randomly distributed particles, with a centered large-scale Gaussian modulation of
the probability of particle locations (particles are more likely to be detected near the center than near the image
edges), mimicking the experimental illumination nonhomogeneity due to the Gaussian profile of the laser sheet.
(b) Coarse-grained field of the average local Voronoi area Amean(x,y), estimated from 1000 realizations as in
(a). (c) PDF of Voronoi areas, estimated from 1000 synthetic images (with a few hundred particles in each
image) for a random homogeneous RPP reference situation (black dashed line), a random but nonhomogeneous
distribution as illustrated in (a) (yellow solid line), and the same random nonhomogeneous distribution where
Voronoi areas are locally corrected by the contraction field Amean(0,0)/Amean(x,y) shown in (b) (purple
solid line).

with an appropriate correction to undo the bias in the estimation of the area of Voronoi areas where
illumination is nonhomogeneous. A corrective local contraction factor is applied to the raw Voronoi
cells in regions with lower illumination to correct for them being statistically larger. We illustrate
the method using a synthetically generated random distribution of particles with a smooth Gaussian
modulation. Figure 6(a) represents a realization of the synthetically generated particle field. Particles
are randomly distributed following random Poisson process (RPP) distribution, but with a large-scale
Gaussian modulation mimicking the experimental bias in the center of the images. Figure 6(c) shows
that, although no clustering mechanism is present, the probability distribution function (PDF) of
normalized Voronoi areas V = A/〈A〉 deviates significantly from the RPP case, simply because of
the large-scale modulation of the probability of particle location. The standard deviation of V is
σV 	 1.5 > σ RPP

V = 0.53. To correct this bias, the coarse-grained field of the local average Voronoi
area 〈A(x,y)〉/〈A(0,0)〉 [Fig. 6(b)] is estimated from an ensemble of 1000 realizations. The color
of each rectangular zone in Fig. 6(b) represents the average value of the Voronoi area of particles
detected within that zone. For smooth and large-scale inhomogeneities, the number of zones used
for the coarse-grained field is not a critical parameter. This coarse-grained field is then used as a
contraction factor, normalized to be maximum and equal to one where the particle probability is
maximum, so the Voronoi area A of a particle P , detected at a position (x,y), is corrected to become
A∗ = A〈A(0,0)〉/〈A(x,y)〉. The PDF of the corrected Voronoi areasV∗ = A∗/〈A∗〉 is shown in
Fig. 6 and found to exactly match the reference RPP PDF, proving that the calibration with this
correction method effectively removes the bias. This procedure is used to unbias the Voronoi area
statistics from the experimental images.

IV. RESULTS

A. Deviation from randomness of the particle concentration field: Standard deviation σν

of the Voronoi area distributions

Figure 7 represents a typical Voronoi diagram from an experimental image. Colored structures
represent detected clusters, further discussed below. Thousands of such tessellations are obtained
for each experimental condition. Pair distribution functions of normalized corrected Voronoi areas
are shown in Fig. 8(a), where the departure from the RPP case can be clearly observed. Figure 8(c)
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FIG. 7. Example of Voronoi diagram for one typical image of our experiment. Colored regions indicate
clusters, defined following the procedure described in Sec. IV C.

FIG. 8. (a) PDF of the corrected normalized Voronoi areas V for all experiments. The solid black line shows
the RPP distribution. (b) Centered normalized PDF of ln(V) (decimal logarithm). The solid black line shows a
Gaussian distribution with variance 1.
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FIG. 9. (a) Standard deviation σ vs St. Symbol colors represent the Reynolds number, while the size of the
symbols encodes the volume fraction (larger symbols correspond to experiments at larger volume fraction).
(b) Standard deviation σ vs Reλ. Symbol colors indicate the volume fraction, while the size of the symbols
encodes the Stokes number (larger symbols correspond to experiments with larger Stokes numbers). (c) Standard
deviation σ vs φv . Symbol colors reflect the Reynolds number, while the size of symbols encodes the Stokes
number (larger symbols correspond to experiments with particles at larger Stokes number).

shows the PDF of ln(V) (decimal logarithm, centered by the mean and normalized by the standard
deviation), emphasizing the quasi-log-normal distribution of the statistics of Voronoi areas, as
previously reported [18,19]. This quasi-log-normality justifies the idea that the statistics of V can
be described by a single parameter (recall that 〈V〉 = 1 by construction), generally the standard
deviation of V , σV , to quantify the departure from the RPP distribution.

Figure 9 represents the difference between the experimental σV and the RPP value [σrel =
(σV − σ RPP

V )/σ RPP
V ] as a function of Stokes number, Reλ, and φv . It is found that, for all experiments,

σrel > 0, consistent with the existence of clustering. The most outstanding feature from these figures
is the clear dependence of σV on the volume fraction, observed in Fig. 9(c), where, for every Reynolds
number, σrel is observed to increase quasilinearly with φv . Trends with Reynolds and St numbers are
more difficult to extract from this simple projection, although Fig. 9(a), where the Reynolds number
dependence is encoded in the color of the symbols, suggests an increase of σV with St and/or Reλ.

To further quantify the dependences of σrel with the three control parameters (St,Reλ,φv), power-
law fits are computed from the entire experimentally sampled space

σrel = K StαReβ

λφγ
v . (1)

Based on the observations from Fig. 9, we first determine β and γ by a two-variable fit of σrel as a
function of Reλ and φv , neglecting the dependence on St in a first approximation. The corresponding
data and fit are shown in Fig. 10(a), where the best fit is obtained for β 	 0.97 ± 0.2 and γ 	
0.7 ± 0.15. The dependence of σrel with St is then explored by plotting the compensated quantity

σrel

Reβ

λφ
γ
v

as a function of St in Fig. 10(b). The data present very little scatter around a constant value

(best power-law fit results in an exponent α 	 0.02 ± 0.03). Overall, the dependence of the standard
deviation of the Voronoi area distribution on the three controlling parameters (St,Reλ,φv) results in
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FIG. 10. (a) Plot of σrel as a function of φv and Reλ with a power-law fit σrel ∝ Reβ

λφγ
v . (b) Plot of σrel

compensated by Reβ

λφγ
v . The best fit is obtained for β 	 0.88 and γ 	 0.5.

the empirical scaling

σrel = σV − σ RPP
V

σ RPP
V

	 0.68 St0.02Re0.97
λ φ0.47

v . (2)

Interestingly, our results point towards a dominant dependence of the clustering on the turbulent
Reynolds number, with an intermediate dependence on volume fraction and no dependence on
Stokes number.

B. Contribution of clusters and voids to the standard deviation of the Voronoi area distribution

We define clusters and voids in Fig. 8(a), from the thresholds Vc and Vv [19,20], corresponding
to the points where the experimental Voronoi area PDF is above (more probable than) the RPP.
Clusters are defined as particle ensembles with adjacent Voronoi cells whose area V < Vc, while
voids are identified as cells whose area V > Vv . In the experiments reported here, the two cutoffs are
insensitive to flow conditions and their values Vc = 0.6 and Vv = 2.1 are equal to those in previous
studies at lower turbulent Reynolds numbers [18,24]. The invariance of these intersections remains
to be understood.

The standard deviation σV of Voronoi areas represents the second moment of the PDF of V . One
can therefore argue that large areas (i.e., voids) contribute more to σV than small areas (i.e., clusters).
We can indeed write σ 2

V as

σ 2
V =

∫ Vc

0
(V − V̄)2PDF(V)dV +

∫ Vv

Vc

(V − V̄)2PDF(V)dV +
∫ ∞

Vv

(V − V̄)2PDF(V)dV, (3)

where the three terms give the contribution of clusters, intermediate areas, and voids (denoted
by σc, σi , and σv), respectively, to the total standard deviation of Voronoi areas. For the RPP,
the three contributions are comparable: σ RPP

c = 0.29, σ RPP
v = 0.30, and σ RPP

i = 0.32. Obviously,

σ RPP
c

2 + σ RPP
i

2 + σ RPP
v

2 = 0.532, as expected. The questions are how these contributions change for
inertial particles and how they evolve with the controlling parameters. The experimental data show
that σ 2

v represents on average ≈75% (69%–78%, depending on the experimental conditions) of the
total variance σ 2

V , σ 2
c is only ≈17% (14%–18%), and σ 2

i ≈ 8% (6%–12%). This partition clearly
shows a stronger contribution of voids to the total variance compared to clusters, in contrast to
the random case, and as expected from the extended tails of the inertial particle Voronoi PDF. The
standard deviation of Voronoi areas, as commonly discussed in particle preferential accumulation,
is therefore essentially a measure of the distribution of voids. From this point of view, we have
analyzed how each of the three contributions—clusters, voids, and intermediate areas—evolves
with flow parameters. For each contribution, the relative deviation is compared to the RPP case
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FIG. 11. (a) PDFs of cluster areas Ac and (b) PDFs of cluster areas normalized by the mean. (c) and (d)
Same PDFs for the void areas.

(σrel,∗ = σ∗−σ RPP
∗

σ RPP∗
, with ∗ = c, i, or v) and their dependences on Reynolds number, Stokes number,

and volume fraction are, respectively,

σrel,c = 0.11 Reλ
1.09±0.5φv

0.43±0.25St−0.06±0.06, (4)

σrel,v = 0.78 Reλ
0.84±0.24φv

0.41±0.12St0.0±0.03, (5)

σrel,i = 0.35 Reλ
0.66±0.16φv

0.35±0.08St−0.03±0.07, (6)

These power-law fits show that although the strongest contribution comes indeed from the voids,
the dependences on experimental parameters are comparable for all zones, with a leading role for
the Reynolds number, a lesser influence of the volume fraction, and practically no dependence on
Stokes number, within the range of explored parameters.

C. Geometry of clusters and voids in the particle concentration field

Figure 11 presents the PDF of cluster and void areas, before (left) and after (right) normalization.
The cluster PDFs exhibit a distinct peak, indicating the existence of a typical characteristic cluster
dimension, in agreement with other previous experimental findings [14,18,24,28]. Figure 11(c)
shows that the PDFs of the normalized cluster areas Ac/〈Ac〉 follow an algebraic decay with an
exponent nc ≈ −5/3, for areas larger than the most-probable value. Similar trends are observed for
the void areas PDFs, although the range of sizes of the voids is naturally larger than that of the
clusters (by a factor about 10). The exponent nv for the decay of the PDF of normalized void area
follows a trend similar to the clusters (nv ≈ −5/3). These qualitative features are found to be robust
for all experimental conditions. Algebraic decay of the cluster and void areas have been previously
reported in several previous experimental and numerical studies [18,19,24,29,30] and is in agreement
with a simple model proposed in [30], which predicts an algebraic decay for the PDF of void areas
with a −5/3 exponent. In this model, the distribution of voids mimics the self-similar distribution
of eddies across the turbulent energy cascade, suggesting that clustering (and voiding) of inertial
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FIG. 12. Dependence of the average cluster size on (a) Stokes number, (b) Reynolds number, and (c) volume
fraction. In (a) the color of the symbols indicates the Reynolds number and the size of the symbols reflects
the volume fraction. In (b) the color of the symbols indicates the volume fraction and the size of the symbols
reflects the Stokes number. In (c) the color of the symbols indicates the Reynolds number and the size of the
symbols reflects the Stokes number.

particles is not only driven by small scales but reflects the self-similarity of the carrier turbulence.
Unlike in the original work proposing the model, where it applied across the entire spectrum (from
η to Lint), in these experiments, the −5/3 decay holds between a lower length scale between 3η and
10η, depending on flow conditions, and an upper length scale slightly below Lint. The largest length
scales are not fully resolved in the experiments since the images are about Lint, so the tails on the
right-hand side of the distributions (Fig. 11) are not statistically significant.

Figure 11 shows that the characteristic cluster size varies with the Reynolds number. Figure 12
quantifies the dependence of

√〈Ac〉
η

on St, Reλ, and φv . At first sight, these plots seem to suggest
that cluster size increases with increasing Stokes and Reynolds number and decreases with
increasing volume fraction. However, as for the previous discussion on σV , these trends are complex.
Figure 12(a) shows that the increase of

√〈Ac〉
η

with St is very much connected to that in Reλ (whose
value is encoded in the colors of the symbols). Similarly, Figs. 12(b) and 12(c) also point towards a
direct connection between trends of

√〈Ac〉
η

and Reλ and φv . To obtain better insight into the specific
sensitivity to each controlling nondimensional parameter, power-law fits are computed, in the form

√〈Ac〉
η

= K ′Stα
′
Reβ ′

λ φγ ′
v . (7)

First, the joint dependences on Reλ and φv , shown in Fig. 13(a), are computed. The best fit is
obtained for β ′ = 4.7 ± 1.5 and γ ′ = 1.2 ± 0.7. The dependence of cluster size on volume fraction
therefore appears to be marginal compared to the Reynolds number dependence. The remaining
dependence on St is then probed by fitting the normalized quantity

√〈Ac〉/η
Re4.7

λ φ1.2
v

, shown in Fig. 13(b).
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FIG. 13. (a) Scaling of
√〈Ac〉

η
with φv and Rλ. (b) Reducing the original variable

√〈Ac〉
η

shows the weak
dependence on St.

The Stokes-number dependence of the cluster size α′ = −0.24 ± 0.15 is relatively weak. Overall, the
cluster size dependence on (St,Reλ,φv) can be approximately quantified by the empirical expression

√〈Ac〉
η

= (2.1 × 10−5)St−0.25Re4.7
λ φ1.2

v , (8)

which shows the dominant role of the Reynolds number, a superlinear dependence on volume
fraction, and a negligible dependence on Stokes number. This suggests that the cluster size is
primarily controlled by the carrier flow turbulence rather than by the disperse phase properties.

Similar trends are also obtained for the size of voids, with sensitivities to Reλ and to φv similar
to those obtained for the average cluster dimension (see Fig. 14). The Stokes-number dependence
is also weak. Since the spatial extension of the void regions is about ten time larger than that of
clusters, this ratio carries into the prefactors in Eqs. (8) and (9),

√〈Av〉
η

= (1.3 × 10−3)St−0.06±0.1Re3.8±1.5
λ φ0.98±0.5

v . (9)

V. DISCUSSION

Application of Voronoi area statistical analysis to quantifying the geometry of cluster and voids of
inertial particles in homogeneous isotropic turbulence has revealed the dependence of the preferential
concentration on St, Reλ, and volume fraction φv . The standard deviation σ of the distribution of
particle Voronoi areas, as well as the length scales of clusters and voids, has a strong dependence

FIG. 14. (a) Scaling of
√〈Av 〉

η
with φv and Rλ. (b) Reducing the original variable

√〈Av 〉
η

shows the weak
dependence on St.
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on the Reynolds number, an intermediate dependence on the volume fraction, and no significant
dependence (within experimental error) on the Stokes number. This strong dependence of clustering
on the Reλ reveals the dominant role of carrier flow turbulence in the clustering process, consistent
with the assumption that the turbulent structures are the ones responsible for the formation of clusters.

The dependence of clustering on the particle volume fraction φv is reminiscent of collective
effects due to particle interactions and is in agreement with previous observations of such collective
effects [14,19]. A very weak, almost nonexistent, dependence of cluster geometry on the Stokes
number, based on the maximum probability diameter in the polydisperse particle distributions used
in these experiments, has been found. It has been consistently reported from studies of monodisperse
particle-laden flows [12,31–33] that clustering is maximum for Stokes number of order unity,
invoking a better resonance between particle response time and small turbulent eddies. Most metrics
used to characterize the level of clustering are based on small-scale quantities, for instance, the
correlation dimension that measures the increase of probability of finding two particles at vanishing
distance compared to a random distribution. Such metrics are only relevant to quantify small-scale
clustering at subdissipative scales, which has been shown to be driven by Reynolds number and to
be essentially independent of Stokes number [33]. This analysis is very different from that used in
experiments with metrics that focus on inertial scales (most accessible Voronoi cells in experiments,
such as the one shown in Fig. 7, have dimensions within the inertial range of scales). In line with
previous numerical studies [29,30,33], our experimental results point towards clustering of inertial
particles being not only a small-scale phenomenon, but one that occurs at all scales of turbulence.
This is revealed, for instance, by the algebraic decay of the PDF of cluster areas and by the fact
that average cluster dimensions, up to 100η, can be found for experiments at the highest Reynolds
numbers. The importance of multiscale clustering has also been recently emphasized by Coleman
and Vassilicos [3], who showed that the usual centrifugation mechanism [1], which is by essence
a small-scale preferential clustering mechanism based on the negative effective compressibility
of high-strain–low-vorticity regions of the carrier turbulence, is not the primary mechanism for
preferential concentration of particles in turbulence when the Stokes number exceeds unity. Their
numerical study shows that for particles with Stokes number larger than unity, clustering is primarily
driven by the sweep-stick mechanism [3] by which particles tend to preferentially sample the
zero-acceleration points of the carrier flow. It is important to note that, contrary to the centrifugation
mechanism, which is indeed a clustering mechanism, the sweep-stick mechanism is a preferential
sampling mechanism and clustering only emerges as a consequence of the low-acceleration points
in a turbulent flow organizing in multiscale clusters [30]. In this framework, clustering properties
are driven by turbulence characteristics across scales, while particle properties only influence the
ability of particles to preferentially stick to the aforementioned zero-acceleration points. The main
constraint for particles to efficiently stick to zero-acceleration points is that their viscous relaxation
time τp be small compared to the lifetime of those zero-acceleration points. These points are known
from numerical simulations to be very persistent [30] and this can be related to the experimental
finding that the correlation time of the acceleration magnitude of tracer particles is of the order of
the integral time scale Tint of the carrier turbulence [34]. As a consequence, as long as τp � Tint,
no significant dependence of clustering by the sweep-stick mechanism on the Stokes number is
expected. A significant decrease of the efficiency of the mechanism will only occur for particles
with response times approaching the integral time scale of the flow. In our experiment, Tint is at
least of the order of 100 ms or more. For water droplets, such high response times would require
particles with diameter of the order of 100 μm or more. Interestingly, the sweep-stick scenario also
suggests that the impact of Stokes number should be more visible at lower Reynolds number as
the condition St � Tint/τη becomes more stringent for lower Reynolds numbers. This may explain
why, in low-Reynolds-number simulations [12], where Rλ ≈ 30, and experiments [19], a decrease
of clustering was indeed observed when the Stokes number exceeds unity.

Finally, we also point out that the polydispersity of our droplet distribution would also be very
likely to smear out possible weak Stokes-number dependences, in particular for the experiments at the
lowest Reynolds numbers for which some dependence may still have been expected. Monchaux has
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addressed several possible biases, including the effect of polydispersity, on clustering diagnoses [35].
By combining numerical data from [36], where inertial particles dynamics is investigated for different
Stokes numbers in turbulence at Rλ ≈ 200, he has shown indeed that for St � 1, the dependence of the
standard deviation of Voronoi areas on Stokes number (which is already small for the monodisperse
situation) is further reduced (see Fig. 6 in [35]) when particles at different Stokes numbers are mixed.

The sensitivity of clustering to the volume fraction identified here is clearly beyond any
measurement uncertainty. If, as discussed above, the sweep-stick mechanism is driving the cluster
formation, any volume fraction influence is not captured in that picture. A possible scenario could
rely on collective effects that are known to lead to denser regions sinking in the mixture with
an enhanced settling velocity. Such denser regions could thus collect extra particles during their
motion relative to the fluid and therefore built up clusters of higher concentration and of larger
size. Such a process would be clearly favored at higher volume fractions. In this scenario, the
sweep-stick mechanism will act as the trigger of cluster formation, with subsequent growth driven
by the collective dynamics. Another alternative view is that the presence of clusters modifies the
local turbulent structure and favor the multiplication of sticking points in the flow (note that at the
largest concentrations in clusters, the mass loading exceeds 0.1 and can even become close to unity):
More particles could then either activate more zero acceleration points or help bring new particles in
the sticking region. These scenarios, hypothetical as they are, may serve for planing new experiments
to help understand how collective effects become efficient in clustering. Clearly, an investigation
of the effect of disperse phase volume fraction on the microscale mechanism for accumulation of
particles would be worth undertaking.

VI. CONCLUSION

Overall, our findings of a dominant role of the Reynolds number compared to the Stokes number is
consistent with a leading multiscale clustering process driven by a preferential sampling mechanism,
such as the sweep-stick mechanism, in agreement with previous experimental results [18]. In a
broader framework, this finding also supports the necessity to distinguish small-scale mechanisms
of clustering and multiscale mechanisms [37].

The investigation of clustering in regard to its effect on settling of inertial particles is another
important aspect that can be studied via conditioned joint statistics of settling velocity and Voronoi
analysis. This study should ideally provide the dependence of the settling velocity of inertial particles
on turbulence fluctuations and a final expression for the connection between settling and clustering.

We finish by emphasizing that, due to intertwining of all three control parameters St, Reλ, and
φv , the separation of their influence on clustering is an extremely difficult task. More experiments
need to be conducted to extend quantitative understanding to a broader range of parameter values,
in particular regarding the role of volume fraction and collective effects.
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