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An analytical expression describing the unsteady pressure evolution of the dispersed
phase driven by variations in the carrier phase is presented. In this article, the term “dispersed
phase” represents rigid particles, droplets, or bubbles. Letting both the dispersed and
continuous phases be inhomogeneous, unsteady, and compressible, the developed pressure
equation describes the particle response and its eventual equilibration with that of the carrier
fluid. The study involves impingement of a plane traveling wave of a given frequency and
subsequent volume-averaged particle pressure calculation due to a single wave. The ambient
or continuous fluid’s pressure and density-weighted normal velocity are identified as the
source terms governing the particle pressure. Analogous to the generalized Faxén theorem,
which is applicable to the particle equation of motion, the pressure expression is also
written in terms of the surface average of time-varying incoming flow properties. The
surface average allows the current formulation to be generalized for any complex incident
flow, including situations where the particle size is comparable to that of the incoming flow.
Further, the particle pressure is also found to depend on the dispersed-to-continuous fluid
density ratio and speed of sound ratio in addition to dynamic viscosities of both fluids. The
model is applied to predict the unsteady pressure variation inside an aluminum particle
subjected to normal shock waves. The results are compared against numerical simulations
and found to be in good agreement. Furthermore, it is shown that, although the analysis
is conducted in the limit of negligible flow Reynolds and Mach numbers, it can be used
to compute the density and volume of the dispersed phase to reasonable accuracy. Finally,
analogous to the pressure evolution expression, an equation describing the time-dependent
particle radius is deduced and is shown to reduce to the Rayleigh-Plesset equation in the
linear limit.
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I. INTRODUCTION

Dispersed multiphase flows (as opposed to separated multiphase flows) concern fluid systems
where there exist discrete particles in an otherwise continuous fluid medium. It is important to note
that, throughout this study, by dispersed or particulate phase we mean air bubbles, liquid droplets,
or rigid solid particles such as sand, alumina, or dust particles, situated in a surrounding fluid,
termed the carrier or continuous phase [1]. A dispersed multiphase flow greatly simplifies when the
dispersed phase (particles) is in perfect equilibrium with the surrounding continuous phase. In other
words, in the limit where the dispersed phase pressure, velocity, and temperature are instantaneously
equal to the corresponding pressure, velocity, and temperature of the local surrounding continuous
phase, the multiphase system can be studied as a mixture, without needing to separately account for
the time evolution of the mass, momentum, and energy of the individual phases. In this limit, it is
sufficient to solve the governing equations of the mixture (or the carrier phase accounting for the
volume fraction of the different phases) and the particles are transported along with the fluid and this
limit is often called the dusty gas approach [2,3]. However, this approach is limited to particles of
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negligible inertia, since perfect pressure, velocity, and temperature equilibrium between the phases
is assumed and such perfect equilibrium is not satisfied in most multiphase applications.

In situations where the inertia of the dispersed phase (particles) is not negligible, there will be
disequilibrium between the two phases. We identify three primary equilibrium processes between
the dispersed and the continuous phases; these are equilibrium of pressure, velocity, and temperature.
For example, if the continuous-phase pressure suddenly changes within a reference volume of fluid
at the macroscale, the particles dispersed within this reference volume will respond by evolving
towards this new pressure with an appropriate change in density and specific volume, as dictated by
the equation of state. Similarly, if the continuous-phase velocity or temperature suddenly changes
within a reference volume, the velocity or temperature of the particles within that volume will evolve
towards their new values, due to momentum and energy exchange between the continuous and the
dispersed phases.

Starting from the pioneering work of Stokes [4], the velocity equilibrium process has been well
studied. In the quasisteady limit, where the unsteady effects can be ignored, the relative velocity
between the dispersed or particulate and the continuous phases leads to the simplest particle equation
of motion

dud

dt
= uc − ud

τpV

, τpV = (2ρ̃ + 1)R2

9νc�V

, (1)

where ud denotes the particle velocity and uc denotes the fluid velocity at the particle location and t

denotes time. In the definition of particle velocity time scale ρ̃, R, νc, and �V are the particle-to-fluid
density ratio, particle radius, kinematic viscosity of the fluid, and nonlinear correction to Stokes
drag respectively. The equation of motion describes the approach to velocity equilibrium (or linear
momentum equilibrium), where τpV denotes the time scale on which the dispersed phase approaches
the continuous-phase velocity uc. If the time scale on which the continuous-phase velocity changes
is τcV , then a Stokes number can be defined as the time scale ratio StV = τpV /τcV . Only in the
limit StV � 1 the dispersed phase (particles) can be taken to be in near-perfect equilibrium with
the continuous phase (i.e., ud ≈ uc). Otherwise, the dispersed phase is not in local instantaneous
equilibrium with the continuous phase and the dispersed phase dynamics will be given by the
equation of motion.

If unsteady effects, arising from the acceleration of the continuous or the dispersed phase,
become important, then the dispersed phase (particle) velocity is governed by the more involved
Basset-Boussinesq-Oseen (BBO) [5–7] equation of motion. Further improvements to the BBO
equation exist and they rigorously include the effects of finite particle size, internal motion within
the dispersed phase (rigid particles, bubbles, or droplets), and compressibility [8–12]. Empirical
extensions that account for the nonlinear effects of finite Reynolds and Mach numbers have also been
advanced [13–16]. In essence, the approach to velocity equilibrium is well understood and expressed
in terms of rigorous equations of motion in the linear limit and reliable empirical extensions in the
nonlinear regime.

Analogous to velocity, the approach to thermal equilibrium arising from the temperature difference
between the particle and the surrounding fluid is given by [17]

dT d

dt
= T c − T d

τpT

, τpT = ρ̃R2C̃p

3κc�T

, (2)

where T d represents the dispersed phase temperature and T c denotes the temperature of the
continuous medium. Here τpT is the thermal response time of the particle. Analogous to the velocity
response time, it denotes the time required for the dispersed phase to attain thermal equilibrium
with the continuous phase. In Eq. (2), C̃p, κc, and �T denote the particle-to-fluid specific heat ratio,
thermal diffusivity of the continuous phase, and nonlinear correction to Nusselt number, respectively.

While there are explicit equations governing the evolution of particle velocity and temperature
[Eqs. (1) and (2)], an equation that governs the dispersed phase pressure evolution (i.e., pressure
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interior of the particle) is lacking. In many dispersed multiphase flow applications in the
incompressible regime, such as sediment transport, turbidity currents, and fluidized bed reactors,
the pressure of the dispersed phase is taken to be equal to that of the continuous phase, even when
the dispersed phase (particle) velocity and temperature are taken to be different from those of the
continuous phase, and the evolution of the dispersed phase velocity and temperature are given by
equations of the form (1) and (2). The time scale of pressure equilibration is of the order of the
acoustic time scale, which is given by τpa = R/a, where a is the speed of sound, assuming the speed
of sound within the dispersed and the continuous phases to be of the same order. In many applications
the time scale ratios τpa/τpV and τpa/τpT are small and the assumption of pressure equilibrium is
well justified. However, in applications such as bubbly flows, cavitation, and propagation of an
intense shock over a bed of particles, the assumption of pressure equilibrium between the dispersed
and the continuous phases becomes inappropriate. In these situations, we require an equation for
the evolution of the dispersed phase pressure, similar to those for dispersed phase velocity and
temperature. Obtaining such an evolution equation for the dispersed phase pressure is the focus of
the present work.

There is extensive literature [18–22] that investigates the behavior of isolated and dispersed
bubbles in liquids, where the evolution of pressure within the bubble plays an important role. In the
study of bubbly flows, the rapid growth and collapse of air or vapor bubbles are of significance since
cavitation causes major damage to turbine blades and propellers. In such cases, the compressibility of
the flow is important and one is interested in the time history of the bubble radius and pressure [23,24].
The growth rate of bubbles is governed by the Rayleigh-Plesset equation [25,26] and it has been
observed from both theory and experiments [27–29] that their evolution is highly oscillatory. This
nonmonotonic behavior also translates to a nonmonotonic evolution for the dispersed phase (bubble)
pressure. Thus, there is an interesting difference between the process of pressure equilibration and
the evolution of dispersed phase velocity or temperature towards equilibrium. A sudden change in
the continuous-phase velocity or temperature leads to a monotonic change in the dispersed phase
(particle) velocity or temperature, as represented by Eqs. (1) and (2). However, a step change in
the continuous-phase pressure leads to a nonmonotonic, oscillatory evolution of dispersed phase
pressure along its path to equilibrium.

In applications involving shock-particle interaction, as the shock sweeps over the particle, the
pressure within the particle is driven by a rapid change in the fluid pressure surrounding the particle.
A micron-sized particle, initially at equilibrium with the preshock ambient condition, when subjected
to an intense shock wave will undergo pressure change on the order of mega- to gigapascals in a few
nanoseconds. In this scenario, the external postshock pressure serves as the source term and drives
the dispersed phase (rigid particles, bubbles, or droplets) towards a new pressure equilibrium. The
time scale of pressure variation within the particle is of the same order as the time scale on which
the continuous-phase pressure changes.

In Eq. (1), the right-hand side is the point-particle model for the quasisteady force exerted on a
particle by the surrounding continuous phase, scaled by the mass of the particle. It is an approximation
to the actual force on a particle, which could be calculated with a fully resolved simulation. However,
the advantage of the point-particle model is that it encapsulates the net effect of all the details of
the flow around the particle at the microscale and expresses the quasisteady force entirely in terms
of the undisturbed continuous-phase velocity at the macroscale. Point-particle force models such
as the BBO equation and the Maxey-Riley-Gatignol (MRG) equation are systematic improvements
upon Eq. (1). By taking into account additional effects such as unsteadiness and finite particle size,
they provide a better approximation for the net momentum exchange between the particle and the
continuous-phase flow. Similarly, Eq. (2) is a point-particle model for the net energy exchange
between the particle and the continuous phase. However, there appears to be no physical model or
equation that dictates the pressure equilibration process.

The primary objective of the current work is to rigorously develop an equation for the time
evolution of pressure of the dispersed phase (i.e., pressure inside the particle) purely in terms of the
undisturbed macroscale flow properties of the continuous phase. We accomplish this by considering
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an arbitrary time-dependent spatially varying ambient flow past a spherical particle and solving the
linearized Navier-Stokes equations for both the inside and outside flows with appropriate matching
at the interface. We allow both the dispersed and continuous phases to be compressible and viscous.
Therefore, the pressure model to be developed in the present study can be regarded as analog to the
MRG equation for particle motion.

Towards this goal, in Sec. II, we begin by considering an acoustic wave of a given frequency and
wave number to impinge on a stationary sphere. We solve the linearized compressible Navier-Stokes
equations both inside and outside the sphere, thus allowing for transmitted and scattered waves.
The velocities are expressed as flow potentials (sum of infinite terms) and the monopole term alone
dictates the volume-averaged pressure inside the particle. In this work we allow only for radial
pulsations of the particle and no shape deformation is permitted. We impose no restriction on the
particle size compared to the length scale of the incoming flow. Subsequently, in Sec. III, the volume-
averaged particle pressure is computed for a given wave number and frequency. Following our
earlier work on the generalized Faxén theorem [30], we establish (in Laplace space) the equivalence
between volume-averaged pressure inside the particle (monopole term) corresponding to a single
wave number or frequency and surface average of the incident pressure and velocity. The resulting
expression is transformed to the time domain (Laplace inverse) and the particle pressure is found to
be the sum of two integral contributions arising from (i) undisturbed pressure and (ii) undisturbed
radial velocity of the continuous phase. Furthermore, each of the contributions is a convolution
integral made up of a temporal part, termed the kernel, and a spatial part arising from the surface
average of the undisturbed fluid quantity of the continuous phase. The behavior of the kernels
for various combinations of continuous and dispersed phase media is analyzed. These kernels are
found to be oscillatory, leading to the nonmonotonic behavior seen in the particle pressure or radius
evolution. Additionally, the dependence of the kernels on the particle-to-medium impedance ratio is
also presented.

On having evaluated the pressure evolution, equations for the temporal variation of particle
volume and density are discussed in Sec. IV. The reduction of the present model to the linearized
Rayleigh-Plesset equation in the limit of (i) a linear approximation and (ii) an incompressible ambient
is discussed in Sec. V. As a consequence, we compare the Rayleigh-Plesset equation with our linear
formulation and assess the effects of nonlinearity. In Sec. VI we apply the present pressure model
to predict the pressure inside a finite-sized aluminum particle subjected to normal shock waves of
varying strengths and compare against the direct numerical simulation results [31]. A summary is
presented in Sec. VII.

II. ACOUSTIC SOLUTION

Our interest in this section is to obtain an equation for the time evolution of volume-averaged
pressure within a spherical medium (particle, droplet, or bubble) in terms of the undisturbed
macroscale flow of the continuous phase, which will be taken to be varying in both time and
space on the scale of the sphere. We will solve the linearized compressible viscous Navier-Stokes
equations both inside and outside the sphere with appropriate matching at the interface. To a linear
approximation the arbitrary time- and space-dependent ambient flow approaching the sphere can
be considered as a superposition of planar waves. Thus, we start with the classical problem of an
incident planar sound wave in a viscous compressible, but otherwise stationary, medium scattered
by a sphere of finite radius. The incident and the disturbance fields are described by the compressible
Navier-Stokes equations

∂ρ

∂t
+ ∇ · (ρu) = 0, (3)

∂(ρu)

∂t
+ ∇ · (ρuu) = ∇ · σ , (4)
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where σ is the stress tensor and is defined as

σ = {−p I + μ[∇u + (∇u)T] + (
μb − 2

3μ
)
(∇ · u)I

}
. (5)

In the above equations, ρ is the fluid density, p is the pressure, u represents velocity, μ and μb

denote the dynamic and bulk viscosities of the medium, respectively, t represents time, and I and
the superscript T are the identity tensor and transpose operator, respectively.

In the literature, most elementary discussions [32,33] on acoustic wave solutions involve only
a homogeneous and stationary medium. However, since we are interested in accounting for an
inhomogeneous ambient, the background medium (before the passage of the acoustic wave) is
allowed to be a function of space and time. In addition, since we are considering a plane (one-
dimensional) traveling wave, the background flow variation is restricted to be only in the direction
of the wave. Further, in order to limit ourselves to linearized flows, we assume the background to be
nonmoving. These conditions allow us to express the flow field as the sum of the base or background
flow (ρ0,p0,u0 = 0) and perturbation flow (ρ1,p1,u1). In other words,

ρ(r,t) = ρ0(r,t) + ρ1(r,t),

p(r,t) = p0(r,t) + p1(r,t),

u(r,t) = u1(r,t),

(6)

where the subscripts 0 and 1 represent the base and perturbation quantities, respectively. Further, the
perturbation field can be written as a linear superposition of the incident and scattered components.
Therefore, the flow field can be viewed as a summation of the undisturbed flow Q0 + Qin

1 and
disturbed flow Qsc

1 , where Q could represent density, velocity, or pressure. The superscripts in and
sc indicate flow properties concerning the incident and scattered fields in general. On substituting
Eq. (6) in Eqs. (3) and (4) and linearizing, the first-order equations are given by

∂ρ1

∂t
+ ∇ · (ρ0u1) = 0, (7)

∂(ρ0u1)

∂t
= ∇ ·

{
−p1 I + μ[∇u1 + (∇u1)T] +

(
μb − 2

3
μ

)
(∇ · u1)I

}
. (8)

Solutions can readily be found in the literature for homogeneous background flows [34–36].
Nevertheless, to employ the same technique in the present context of a nonuniform background
medium, we define a density weighted velocity [37]

w1 = ρ0u1

ρref
, (9)

where ρref is some constant reference density. However, this leads to density appearing in the viscous
terms as well. To overcome this, we assume the kinematic viscosity ν of the fluid to be a constant
such that

μ = ρ0μref

ρref
, μb = ρ0μbref

ρref
, (10)

where μref and μbref are reference dynamic and bulk viscosities, respectively (also taken to be
constants). Substituting Eqs. (9) and (10) in Eqs. (7) and (8) and assuming the variation in background
density ∇ρ0 to be of the order of the perturbation quantities, one obtains

∂ρ1

∂t
+ ρref∇ · w1 = 0, (11)

ρref
∂w1

∂t
= ∇ ·

{
−p1 I + μref[∇w1 + (∇w1)T] +

(
μbref − 2

3
μref

)
(∇ · w1)I

}
. (12)
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We place no restriction on the base state and thus p0 and ρ0 can be related by any equation of state
appropriate for the material. However, we require the perturbation density and pressure to be related
by the constant ambient speed of sound a0 corresponding to the base state:

p1 = a2
0ρ1. (13)

The generality of the present approach to any arbitrary equation of state for the base flow will
become important later when we consider the average thermal evolution inside the sphere. Now
Eqs. (11)–(13) resemble the equations governing uniform background flows. For the purposes of
this study, the flow properties corresponding to the carrier and dispersed phases will be represented
by the superscripts c and d, respectively. Subsequently, the density weighted velocity field can be
expressed in terms of the Helmholtz decomposition

wl
1 = ∇φl + ∇×	l, (14)

where the superscript l could represent either the carrier or continuous (c) or dispersed (d) phase,
φl represents the scalar velocity potential, and 	l is the vector velocity potential. It is important to
reiterate that any first-order quantity of the outside fluid may be written as the sum of incident and
scattered quantities, for example, wc

1 = win
1 + wsc

1 . Now we consider a plane wave propagating in
the axial direction (z), given by

win
1 (ω) = win

1 ez = exp{i(kcz − ωt)}ez, (15)

where ez denotes the unit vector in the axial direction and ω is the angular frequency of the incident
acoustic wave, which is related via the ambient speed of sound to its wave number kc, which in turn
is given by

kc = ω

ac
0

[
1 − iωνc

ac
0

2(μc
bref

μc
ref

+ 4

3

)]−1/2

. (16)

Subsequently, the incoming potential can be written in spherical coordinates as [38]

φin =
∞∑

n=0

An(2n + 1)injn(kcr)Pn(cos θ )e−iωt , (17)

where jn represents spherical Bessel function of the first kind of order n, Pn denotes Legendre
polynomials of the first kind of degree n, and An represents the complex amplitude of the incoming
wave. Here r and θ represent the radial and circumferential directions respectively. Similarly, the
scattered scalar wave potential can be described as [39]

φsc =
∞∑

n=0

An(2n + 1)inSc
nhn(kcr)Pn(cos θ )e−iωt , (18)

where hn is the spherical Hankel function of the first kind of order n. For the inside flow however,
the constraint that the flow needs to be bounded at the origin leads to

φd =
∞∑

n=0

An(2n + 1)inSd
n jn(kdr)Pn(cos θ )e−iωt , (19)

where

kd = ω

ad
0

[
1 − iωνd

ad
0

2(
μd

b ref

μd
ref

+ 4

3

)]−1/2

. (20)
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Considering the fact we are dealing with an axisymmetric problem, the vector potential 	l can be
reduced to a scalar potential ψl that satisfies

∇2ψl + kl
ν

2
ψl = 0, (21)

where kl
ν = (1 + i)/δl =

√
iω/νl , with δl denoting the momentum boundary layer thickness and

∇2 = ∇ · ∇. The solution of Eq. (21) yields

ψl =
∞∑

n=0

An(2n + 1)inSl
νnhn

(
kl
νr

)
Pn(cos θ )e−iωt . (22)

In Eqs. (18), (19), and (22), Sc
n, Sd

n , and Sl
νn are known as the scattering coefficients, which are

evaluated using the boundary conditions at the surface of the sphere. Once the scattering coefficients
are computed, the complete flow field can be described.

A. Boundary conditions

In this study we only allow for radial pulsations and all other deformations of the sphere surface
are ignored. Subsequently, noting that the n = 0 (monopole) term accounts purely for the radial
pulsation, we segregate the boundary conditions as (i) applicable to n = 0 and (ii) applicable to
n �= 0. Since for n = 0 the flow is independent of θ (independent of viscosity), the scattering
coefficients Sc

ν0
and Sd

ν0
are rendered irrelevant. As a consequence, we only need two interface

matching conditions, given by

wc
1r

∣∣
n=0 = wd

1r

∣∣
n=0 at r = R0, (23a)

σ c
1rr

∣∣
n=0 = σd

1rr

∣∣
n=0 − pST

1

∣∣
n=0 at r = R0, (23b)

where wc
1r (wd

1r ), σ c
1rr (σd

1rr ), and pST denote the carrier (dispersed) phase radial velocity, the normal
shear stress of the carrier (dispersed) phase, and the surface tension pressure, respectively. It must
be noted that, before the acoustic wave is incident on the particle, equilibrium conditions exist such
that

pc
0 = pd

0 − pST
0 , (24)

where pST
0 = 2�/R0 is the equilibrium surface tension pressure, with � denoting the surface tension

coefficient. Similarly, pc
0 and pd

0 represent the equilibrium hydrostatic pressures outside and inside
the particle, respectively.

Note that the purpose of this study is to obtain an expression for the time-dependent variation of
the volume-averaged pressure inside the sphere in terms of the undisturbed flow properties. Since
the pressure variation corresponds to the monopole behavior, the analysis of nonmonopole modes is
unnecessary for the current purposes. However, we present them here for the sake of completeness.
For all nonmonopole modes (n �= 0), at the interface of the two fluids, the normal and tangential
velocities must match. Ignoring variation in surface tension all along the interface, we assume the
normal and tangential stresses to be identical. These can quantitatively be written as, at r = R0,

wc
1r = wd

1r , wc
1θ = wd

1θ , σ c
1rr = σd

1rr , σ c
1rθ = σd

1rθ , (25)

where wc
1θ (wd

1θ ) and σ c
1rθ (σd

1rθ ) correspond to the tangential velocity and shear stress of the particle
(medium), respectively. It should be noted that the boundary conditions (23a), (23b), and (25) are
applied at the mean radius of the sphere R0 as opposed to the instantaneous radius R(t). However,
we argue that this approximation is valid in the linear framework under consideration and such an
approximation has been carried out in the past [40–42].
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B. Scattering coefficients

The general expression for the velocity and stress components (with μbref = 2μref/3) in terms of
the scalar and vector potentials is given as

wl
1r = ∂φl

∂r
−

[
r∇2 − 1

r

∂

∂r
r2 ∂

∂r

]
ψl, (26)

wl
1θ = ∂φl

∂θ
+

[
1

r

∂

∂r
r

∂

∂θ

]
ψl, (27)

σ l
1rr = ρl

ref
∂φl

∂t
+ 2μl

ref

[(
− ∇2 + ∂2

∂r2

)
φl +

(
r

∂3

∂r3
+ 3

∂2

∂r2
− r

∂

∂r
∇2 − ∇2

)
ψl

]
, (28)

σ l
1rθ = 2μl

ref

[(
∂2

∂r∂θ

1

r

)
φl +

{
∂

∂θ

(
∂2

∂r2
+ 1

r

∂

∂r
− 1

r2
− 1

2
∇2

)}
ψl

]
. (29)

To compute the monopole coefficients using Eqs. (23a) and (23b), the appropriate definitions in
Eqs. (26)–(29) are used. However, we also need to express the surface tension pressure in terms of
velocity potentials (or radial velocity). Therefore, we write, in general,

pST = 2�

R
. (30)

Assuming the amplitude of the oscillation of the sphere Rε to be small compared to the mean particle
radius, we can write R(t) = R0 + Rεe

−iωt . Substituting this expression of radius in Eq. (30), with
Rε � R0, we obtain, up to first order in Rε ,

pST = 2�

R0

[
1 − Rε

R0
e−iωt

]
. (31)

Further, velocity at the interface due to volume pulsation of the sphere is nothing but

Ṙ = dR

dt
= wd

1r

∣∣
n=0. (32)

Also, from the definition of R(t),

Ṙ = −iωRεe
−iωt . (33)

Equating Eqs. (32) and (33), we obtain an expression for Rε . Substituting the resulting expression
of Rε in Eq. (31), we obtain

pST
1

∣∣
n=0 =

(
2�/R0

iωR0

)
wd

1r

∣∣
n=0, (34)

where pST
1 is a first-order quantity (in surface tension pressure). On substituting the above expression

for pST
1 |n=0 in Eq. (23b), one may notice that the boundary conditions for n = 0 are completely

defined and can be expressed in terms of the velocity potentials.
Since our objective is to obtain an explicit expression for volume-averaged pressure inside the

sphere and as stated earlier this quantity depends only on the n = 0 mode, we will rewrite the
monopole boundary conditions (neglecting surface tension effects) as

−ŵsc
1r + ŵd

1r = ŵin
1r ,

−p̂sc
1 + 2μc

ref
∂ŵsc

1r

∂r
+ p̂d

1 − 2μd
ref

∂ŵd
1r

∂r
= p̂in

1 ,

(35)

where flow properties corresponding to mode n = 0 at the sphere surface r = R0 are denoted by the
caret. In other words, for notational simplicity, we write, for example, w1r |r=R0,n=0 = ŵ1r . Note that
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the viscous terms corresponding to the incoming flow have been neglected, as they can be considered
to be flow properties away from the sphere where viscous effects are negligible. Now expressing the
boundary conditions above in terms of scattering coefficients, we have[

f1 f2

g1 g2

]{
Sc

0

Sd
0

}
=

{
ŵin

1r

p̂in
1

}
, (36)

where for simplification purposes we define the following:

f1 = kcA0h1(kcR0)e−iωt , g1 = kcA0

[
−iρc

refa
c
0h0(kcR0) + 4μc

ref

R0
h1(kcR0)

]
e−iωt ,

f2 = −kdA0j1(kdR0)e−iωt , g2 = −kdA0

[
−iρd

refa
d
0 j0(kdR0) + 4μd

ref

R0
j1(kdR0)

]
e−iωt .

(37)

The pressure variation inside the sphere can thus be computed by solving for the scattering
coefficients in Eq. (36). Note that the right-hand side of Eq. (36) involves the zeroth mode of
the incoming density weighted radial velocity and pressure as source terms, which dictate the inside
pressure.

III. VOLUME-AVERAGED PARTICLE PRESSURE

In this section we obtain an expression for the average pressure inside the sphere in terms of
the time-dependent variation of the incoming undisturbed ambient flow. We begin by considering
the inviscid limit, where the wave number kl reduces to kl

0 = ω/cl
0 and μl

ref = 0. This leads to
pd

1 = ρd
ref∂φd/∂t . Therefore, the volume-averaged pressure inside the sphere due to an incoming

wave of a given frequency ω is

pd
1

V

(ω) = ρd
refiωA0S

d
0 ,inv

3

kd
0 R0

j1
(
kd

0 R0
)
e−iωt , (38)

where (·)V represents the quantity (·) averaged over the sphere volume (based on mean radius) and
defined as

∫
V d (·)dV/V d and the subscript inv denotes that the corresponding quantities have been

computed in the inviscid limit. Our objective here is twofold: (i) to express the inside pressure solely
in terms of the undisturbed flow quantities and (ii) to provide an expression that is applicable to any
complex incident flow field as opposed to an incoming wave of a given frequency.

In pursuit of the first goal, we will replace the dispersed phase scattering coefficient Sd
0 ,inv with

the carrier phase scattering coefficient Sc
0 ,inv using the normal velocity boundary condition. In other

words, we undertake the following replacements:

Sd
0 ,inv = ŵin

1r

f2,inv
− f1,inv

f2,inv
Sc

0 ,inv, ρd
ref = ρ̃ρc

ref, kd
0 = 1

ã
kc

0, (39)

where ρ̃ and ã represent particle-to-medium density and speed of sound ratios, respectively.
Substituting Eq. (39) in Eq. (38) leads to

pd
1

V

(ω) = ρc
refiω

3ρ̃ã2

kc
0R0

[
A0S

c
0 ,invh1

(
kc

0R0
)
e−iωt − ŵin

1r

kc
0

]
. (40)

Further expanding Sc
0 using Eq. (36), we have

pd
1

V

(ω) = ρc
ref(iω)

3ρ̃ã2

kc
0R0

⎡⎣ 1
kc

0

h0(kc
0R0)

h1(kc
0R0)

ρ̃ã
j0(kc

0R0/ã)
j1(kc

0R0/ã) − h0(kc
0R0)

h1(kc
0R0)

ŵin
1r +

1
ρc

refiω

ρ̃ã
j0(kc

0R0/ã)
j1(kc

0R0/ã) − h0(kc
0R0)

h1(kc
0R0)

p̂in
1

⎤⎦. (41)

Now, to allow for any nonuniform flow, we express the zeroth mode (monopole) density weighted
normal velocity and pressure as surface averages of the total incoming velocity and pressure.
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However, since we began with an incoming flow of a given frequency, the expressions for surface-
averaged velocity and pressure will be in the Laplace space, where we define the Laplace variable
s = −iω. We argue that the variation in pressure inside the sphere has to depend on the time variation
of the surface-averaged pressure and normal velocity at the sphere surface. Therefore, it is best to
express the volume-averaged interior pressure as a function of ∂ŵin

1r/∂t and ∂p̂in
1 /∂t as opposed to

ŵin
1r and p̂in

1 itself. Moreover, since the sphere considered here is assumed to be stationary, ∂/∂t may
be replaced by a time derivative following the sphere, denoted by d/dt . It can be shown that (see
the Appendix)

ŵin
1r = L

(
win

1r (r,t)
S)

, p̂in
1 = L

(
pin

1 (r,t)
S)

, (42)

where win
1r (r,t) = win

1 (r,t) · n is the radial component of the velocity vector, L (·) denotes the Laplace

transform, and (·)S represents the quantity (·) averaged over the sphere surface and is defined as∫
Sd (·)dS/Sd . In addition to the above transformations, combining −iω with ŵin

1r and p̂in
1 in Eq. (41)

leads to

L
(
pd

1

V

(t)
) = R0

ac
0

GpL

(
d

dt
pin

1
S
)

+ R0GwL

(
d

dt
ρc

refw
in
1r

S
)

, (43)

where

Gp = 3iρ̃ã2

s̃2

[
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)

]−1

, Gw = −3ρ̃ã2

s̃2

h0(is̃)

h1(is̃)

[
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)

]−1

, (44)

with s̃ = sR0/a
c
0 being the nondimensional Laplace variable. Here we define Gp and Gw as the

pressure and velocity transfer functions, respectively, in the Laplace space. Now, noting that (i)
ρc

refw
in
1r = ρ0u

in
1r from Eq. (9) and u1r = ur from Eq. (6), ρc

refw
in
1r may be written as (ρur )un to a linear

approximation and (ii) similarly, pin
1 may be replaced by pun. Note that the pressure expression

derived above is the deviation in pressure from that of the initial base pressure. Therefore, the total
inside pressure is

pd
V

(t) = pd
0

V + pd
1

V

(t). (45)

Now taking the Laplace inverse of Eq. (41) leads to a convolution integral and together with Eq. (45),
the volume-averaged inside pressure can be written in the time domain as

pd
V

(t) = pd
0

V + R0

ac
0

∫ t̃

ξ̃=−∞
Kp(t̃ − ξ̃ )

d

dt
punS

∣∣∣∣
t̃=ξ̃

dξ̃ + R0

∫ t̃

ξ̃=−∞
Kw(t̃ − ξ̃ )

d

dt
(ρur )unS

∣∣∣∣
t̃=ξ̃

dξ̃ ,

(46)

where t̃ = tac
0/R0 and ξ̃ = ξac

0/R0. Further, Kp = L −1(Gp) and Kw = L −1(Gw) are the pressure
and velocity kernels, respectively, and L −1 denotes the Laplace inverse operator.

Finally, the effects of viscosity both inside and outside the sphere can be included. In Eq. (39)
the complete expressions for f1, f2, kl , and Sl

0 are used instead of the inviscid counterparts and the
process detailed above is repeated. This results in exactly the same expression as in Eq. (46) except
that the transfer functions are modified by the viscosity ratio (μ̃ = ρ̃νd/νc) and are given by

Gp = 3iρ̃ã2

s̃2

[
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)
+ 4i

Re
(1 − μ̃)

]−1

,

Gw = −3ρ̃ã2

s̃2

[
h0(is̃)

h1(is̃)
+ 4i

Re

][
h0(is̃)

h1(is̃)
− ρ̃ã

j0(is̃/ã)

j1(is̃/ã)
+ 4i

Re
(1 − μ̃)

]−1

,

(47)

where Re = ac
0R0/ν

c is the sphere Reynolds number based on the carrier phase speed of sound. The
corresponding kernels Kp and Kw to be used in (46) are obtained from the Laplace inverse of the
above viscous transfer functions.
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TABLE I. Properties of the dispersed and carrier phases
considered in this study.

Material ρ0 (kg/m3) a0 (m/s)

air 1.21 343.23
water 1000 1482
nitromethane 982 1647
aluminum 2783 5350
sand 2600 1780

Pressure and velocity kernels

Equation (46) for volume-averaged pressure inside the sphere is analogous to the evolution
equations (1) for the velocity and (2) for the temperature. However, the pressure equation (46) is
somewhat more complicated by the convolution integrals and can be interpreted in the following

way. The perturbation pressure pd
V

(t) − pd
0

V

has two contributions, one from the ambient pressure
variation and the other from the time variation of ambient density weighted velocity. A step change
(denoted by �) in the undisturbed ambient pressure averaged over the surface of the sphere [i.e.,

dpunS
/dt = (ac

0/R0)�pδ(t̃ − ξ̃ )] will result in a pressure variation of pd
V

(t) = pd
0

V + �pKp, with
δ denoting the Dirac delta function. Similarly, a step change in the undisturbed ambient density

weighted velocity averaged over the surface of the sphere [i.e., d(ρur )unS
/dt = (ac

0/R0)�(ρur )δ(t̃ −
ξ̃ )] will result in a pressure variation of pd

V
(t) = pd

0

V + �(ρur )ac
0Kw. Thus, the kernels Kp and

Kw can be interpreted as a response to the unit step change in the undisturbed ambient pressure and
density weighted velocity, respectively.

With this interpretation, we now explore the temporal behavior of the kernels Kp and Kw. Note
that the transfer functions Gp and Gw defined in Eq. (47) depend only the following four parameters:
(i) ρ̃, the particle-to-medium density ratio; (ii) ã, the particle-to-medium speed of sound ratio; (iii)
μ̃, the particle-to-medium viscosity ratio; and (iv) Re. In the inviscid limit the dependence on the last
two parameters is lost. These parametric dependences also apply to the time domain kernel functions
Kp and Kw. The reference density and speed of sound of the various materials considered in the
present analysis are summarized in Table I. In particular, in Sec. VI we consider shock propagation
over an aluminum particle situated in nitromethane. The density and speed of sound ratios are listed
in Table II for the nitromethane-aluminum and air-aluminum combinations in addition to sand in
water and air bubble in water conditions relevant for underwater applications.

The kernels are obtained by numerically computing the inverse Laplace transform [43,44] of
Eq. (44) and are plotted in Fig. 1 for the cases mentioned in Table II as a function of dispersed-phase
time t̃d = tad

0 /R0. As can be seen from Fig. 1, the kernels are problem dependent (arising from
dependence on ρ̃ and ã) and need to be recomputed if a different particle and/or ambient material is

TABLE II. Particle-to-medium density ratio, speed of sound ratio, amplitude, and time period of oscillation
of the kernels Kp and Kw of the various particle–continuous-phase combinations considered in this study.

Ã

Medium-Particle ρ̃ ã R0 T̃ Kp Kw

nitromethane-aluminum 2.84 3.25 5 μm 2 1.4655 − 1.21
air-aluminum 2311.16 15.59 40 mm 2 1.5 − 1.439
water-sand 2.60 1.20 2 mm 2 1.4595 − 0.9077
water-air 1.21 ×10−3 0.232 4 μm 104 1.978 − 0.0137

024301-11



ANNAMALAI, BALACHANDAR, SRIDHARAN, AND JACKSON

td

K
p
, K

w

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

Kp

Kw

~

(a)
td

K
p
, K

w

0 2 4 6 8 10

-1.5

-1

-0.5

0

0.5

1

1.5

Kp

Kw

~

(b)

td

K
p
, K

w

0 2 4 6 8 10

-1

-0.5

0

0.5

1

1.5

Kp

Kw

~

(c)
td

K
p
, K

w

0 100 200 300 400 500
-0.5

0

0.5

1

1.5

2

Kp

Kw

~

(d)

FIG. 1. Pressure and velocity kernels as a function of nondimensional particle acoustic time t̃d passing over
(a) an aluminum sphere situated in nitromethane with ρ̃ = 2.84 and ã = 3.25, (b) an aluminum sphere situated
in air with ρ̃ = 2311.16 and ã = 15.59, (c) a sand particle situated in water with ρ̃ = 2.6 and ã = 1.2, and (d)
an air bubble in water with ρ̃ = 1.21 × 10−3 and ã = 0.232. Any viscous effects are neglected.

considered for example. Nevertheless, the late time behavior (t̃d → ∞) is problem independent and
Kp and Kw reach 1 and 0, respectively, as can be seen from Fig. 1(c). It will be shown analytically
later in Sec. V A that the late time behavior of the kernels (i.e., Kp → 1 and Kw → 0) is the same
irrespective of the particle-medium combination chosen.

For the different particle-medium combinations considered, the first maximum Ã and the
nondimensional time period of oscillations T̃ of the kernels are listed in Table II. The time
scale used to nondimensionalize the time period is R0/a

d
0 . It must be noted that for a given

dispersed-carrier-phase mixture, while T̃ is identical for both Kp and Kw, the first maximum
depends on the kernel under consideration. Irrespective of the particle-medium combination, the
nondimensional peak value of the pressure kernel is approximately about 1.5. However, the first
maximum of the velocity kernel varies considerably. For example, as can be seen from Fig. 1(d), for
the air bubble in water, since Kw is negligible compared to Kp, only the pressure variation of the
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external fluid affects the particle pressure and any change in ambient fluid velocity is immaterial.
For the other three cases, however, both external pressure and velocity variations are significant.

As mentioned above, the time period of oscillation or frequency is the same for both kernels given
a particle-medium combination and the frequency of the kernels is dependent on the impedance ratio
Z = ρ̃ã, as shown in Fig. 1. If we consider an acoustic wave sweep past the particle and if Z > 1, T̃
is identical to the time taken by the acoustic wave within the particle to traverse one particle diameter.
Noting that the nondimensional time taken by an acoustic wave to travel one particle diameter is
t̃d = 2, it can seen from Figs. 1(a)–1(c) and Table II that T̃ = 2 for nitromethane-Al, air-Al, and
water-sand scenarios. This is because for these three cases the impedance ratio is greater than unity.
While the frequency of oscillation is a constant provided Z > 1, the impedance ratio dictates the
decay rate of the kernels. In particular, for the air-Al case, Z ≈ 35 000; for the nitromethane-Al
combination, Z ≈ 10; and for the water-sand scenario, Z ≈ 3 and the decay rate of kernels are
found to be inversely proportional to the impedance ratio (Fig. 1). On the other extreme, Z � 1 for
the air bubble in water case and, as can be seen from Fig. 1(d), the contribution of Kw is negligible
since ρ̃ãj0(is̃/ã)/j1(is̃/ã) � h0(is̃)/h1(is̃) [Eq. (44)]. Moreover, the time period of oscillation is
much larger than the other three cases considered. Finally, it is worth mentioning that the time period
of oscillations in the kernels gets translated to the time period of the particle pressure, as will be
shown later in Sec. VI for the particular case of the nitromethane-Al combination.

IV. TIME EVOLUTION OF PARTICLE DENSITY AND VOLUME

In the current analysis, since mass is not allowed to enter or leave the sphere, by mass conservation
for the entire sphere

∂

∂t

∫
V d (t)

ρddV = 0. (48)

Integrating the above equation in time from t = 0 to any time t leads to

Ṽ d (t) = V d (t)

V d
0

=
⎡⎣1 + ρd

1

V

ρd
0

V

⎤⎦−1

, (49)

where V d
0 is the initial volume of the sphere. Since the perturbation density and pressure are linearly

related via Eq. (13), we substitute for ρd
1

V

from Eq. (13) in Eq. (49), which in combination with
Eq. (6) yields the time evolution of the sphere volume and is given by

Ṽ d (t) =
⎡⎣1 + pd

V
(t) − pd

0

V

ρd
0 ad

0
2

⎤⎦−1

, (50)

where the expression for pd
V

(t) was obtained earlier in Sec. III [Eq. (46)]. The inverse of the above
equation will yield the density evolution in time and is given by

ρd
V

(t) = ρd
0

V + R0/a
c
0

ad
0

2

∫ t̃

ξ̃=−∞
Kp(t̃ − ξ̃ )

d

dt
punS

∣∣∣∣
t̃=ξ̃

dξ̃

+ R0

ad
0

2

∫ t̃

ξ̃=−∞
Kw(t̃ − ξ̃ )

d

dt
(ρur )unS

∣∣∣∣
t̃=ξ̃

dξ̃ . (51)
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V. LIMITING CASES

A. Long-time behavior

Having obtained an explicit expression for the particle pressure, we now investigate the limiting
behavior of the kernels Kp and Kw. We begin by noting that we are unable to obtain the analytical
Laplace inverse of the transfers functions Gp and Gw and therefore we resort to numerical inversion
[43]. Further, it can be seen that the kernels depend on the density and speed of sound ratios. Since
Kp and Kw are responses to the unit step change in the incoming pressure and density weighted
normal velocity, respectively, let us consider a pressure pulse (with the corresponding density and
velocity jump) to impinge on the sphere at time t = 0 such that

punS = pc
0 + �pH (t), (ρur )unS = �(ρur )H (t), (52)

where pc
0 is the ambient pressure before the impulse, �p is the jump in pressure after the impulse, and

H (t) is the Heaviside step function. Let �(ρur ) be the corresponding change in the density weighted
normal velocity. Substituting Eq. (52) in Eq. (46) and noting that dpunS

/dt = ac
0/R0�pδ(t̃ − ξ̃ ) leads

to

pd
V

(t) = pd
0

V + �pKp(t̃ − ξ̃ ) + �(ρur )ac
0Kw(t̃ − ξ̃ ). (53)

Let us consider the limiting behavior of the kernels at late times. As t̃ → ∞ (s̃ → 0), the spherical
Bessel and Hankel functions appearing in Eq. (44) reduce to

h0(is̃)

h1(is̃)
= is̃

1 + s̃
,

j0(is̃/ã)

j1(is̃/ã)

∣∣∣∣
s̃→0

= −3iã

s̃
. (54)

The above substitutions in Eq. (44) lead to

Gp = 1

s̃
⇒ Kp(t̃ − ξ̃ → ∞) = 1, Gw = −1

1 + s̃
⇒ Kw(t̃ − ξ̃ → ∞) = −e−(t̃−ξ̃ )

∣∣∣
t̃→∞

= 0.

(55)

Substituting Eq. (55) in Eq. (53), we obtain

pd
V

(t) = pd
0

V + �p. (56)

Therefore, we observe from Eq. (56) that the particle pressure eventually equilibrates with that of

the carrier phase as it should, since in the absence of surface tension pd
0

V = pc
0
V

from Eq. (24) and

�p is the difference between the postshock pressure and pc
0
V

. While the kernels decay exponentially
with time, the presence of spherical Bessel functions (which may be written as a combination or
summation of trigonometric functions) in the transfer functions will lead to an oscillatory behavior
at early and intermediate times, as will be shown in Sec. VI. Therefore, in summary, any disturbance
in the external pressure (and/or normal velocity) will propagate into the particle via sound waves
reflecting back and forth inside the sphere or particle before reaching the modified external pressure
(caused by the pressure pulse).

B. Reduction to the linearized Rayleigh-Plesset equation

The pressure equation derived is applicable to any particle subjected to complex incoming flows.
The problem of a pulsating spherical bubble in water is of prime importance in the field of underwater
explosions and cavitation. Typically in such studies, the dynamic parameter is the bubble radius,
which is governed by the celebrated Rayleigh-Plesset (RP) equation. The bubble radius is in turn
related to the pressure inside the bubble. While the work by Rayleigh [25] ignores the effect of
interface surface tension and viscosity of the carrier fluid, a discussion including these effects can be
found in the classic review article by Plesset and Prosperetti [45]. The reader is referred to the works
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of Leighton [46] and Brennen [23] for a detailed analysis in addition to the work of Prosperetti and
Lezzi [19], which discusses the effects of compressibility. The classic nonlinear RP equation in the
limit of negligible surface tension and vapor pressure is given by

pL − p∞
ρc

0

= RR̈ + 3

2
Ṙ2 + 4νcṘ

R
, (57)

where pL = pc(r = R), since we assume surface tension � = 0, and p∞ = pin(r → ∞). In the
above equation, an overdot represents the time derivative following the particle. The above equation
is derived from first principles and does not linearize the governing equations. However, the bubble
pressure is explicitly specified by assuming the interior to be an adiabatic or isothermal lumped
system of constant pressure and only the outside flow is solved assuming incompressibility and
spatial variation to be purely in the radial direction.

In comparison, in the present work, we solve the flow both within and outside the spherical
particle allowing for compressible effects. Therefore, in order to derive the RP equation from our
current analysis in terms of bubble radius, we begin by revisiting the boundary conditions. We
consider a step change in the ambient fluid pressure causing the undisturbed pressure to be p∞ for
t > 0 throughout the medium, while keeping the ambient fluid stationary. Additionally, the viscosity
within the air bubble and surface tension is ignored. Subsequently, the boundary conditions given in
Eq. (35) can be written as

− ŵsc
1r + Ṙ = 0, (58a)

−p̂sc
1 + 2μc

ref
∂ŵsc

1r

∂r
+ p̂d

1 = p̂in
1 . (58b)

Taking the time derivative of Eq. (58a) by using the definitions in Eqs. (18) and (26) as applied to
the scattered potential, one obtains

− iωf1S
c
0 = R̈. (59)

It must be noted that in obtaining the above expression only the n = 0 term survives and as a
consequence the viscous portion of the scattered potential (ψ) is rendered irrelevant. Further, using
the definition psc

1 = ρc
ref∂φsc/∂t and substituting Eq. (59) in Eq. (58b), we obtain

p̂d
1 − p̂in

1 = ρc
ref

[
1

kcR0

h0(kcR0)

h1(kcR0)

]
R0L (R̈) − 2μc

ref

[
kcR0

h′
1(kcR0)

h1(kcR0)

]
L (Ṙ)

R0
. (60)

Since the ambient flow is incompressible, the reference densities and viscosities can be considered
to be that of the base flow itself, i.e., ρc

ref = ρc
0 and μc

ref = μc
0. Using Eq. (42), we can write

p̂in
1 = L (pin

1
S
). Moreover, L (pin

1
S
) = L (pun

1
S
) − L (pc

0
S
). In the incompressible limit, i.e., as

ac
0 → ∞, any change in pressure at far field is immediately felt throughout the fluid. As a consequence

of this, p̂in
1 = L (p∞) − L (pc

0
S
). Further, the incompressibility condition leads to kcR0 → 0 and

as a result we have
1

kcR0

h0(kcR0)

h1(kcR0)

∣∣∣∣
kcR0→0

= 1, kcR0
h′

1(kcR0)

h1(kcR0)

∣∣∣∣
kcR0→0

= −2. (61)

Similar to the expression of p̂in
1 above and noting that the fluid inside the bubble is considered

homogeneous, p̂d
1 = L (pd ) − L (pd

0

S

). Finally, in the absence of surface tension we note that

L (pd ) = L (pL). From the equality of pc
0
S

and pd
0

S

we obtain p̂d
1 − p̂in

1 = L (pL) − L (p∞).
Taking the Laplace inverse, we finally obtain

pL − p∞
ρc

0

= R0R̈ + 4νcṘ

R0
, (62)
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which precisely is the RP equation in the linear limit. Note that the above equation is linear in the
bubble radius. In the classic RP equation (57) the term 3Ṙ2/2 arises from the convective term of the
Navier-Stokes equation. Since the current work is restricted to linear regime, (i) the nonlinear term
has been ignored and (ii) the time-dependent radius only appears with the time derivative, while the
radius itself otherwise shows up as the mean radius. In both Eqs. (57) and (62), if the gas inside the
bubble is assumed to follow adiabatic law, then pL = pd

0 (R0/R)3γ .
As specified earlier, in the current work, we allow for both fluids to be viscous and compressible

and thereby allow propagation of both acoustic and viscous waves in both the carrier and dispersed
phases. With all such complexities accounted for, the evolution of the bubble radius follows directly
from Eq. (50) and is given by

R(t) = R0

⎡⎣1 + pd
V

(t) − pd
0

V

ρd
0 ad

0
2

⎤⎦−1/3

. (63)

In Eq. (63), the effects of viscosity can be taken into account if the kernels in Eq. (47) are used
when evaluating the volume-averaged particle pressure. Note that the bubble radius derived above
[Eq. (63)] is expressed in terms of the bubble pressure. However, it is possible to obtain an expression
for bubble radius starting from Eq. (33) and purely using the linear theory. The procedure is similar to
that outlined in Sec. III, where the time derivative of the particle radius is first expressed in terms of
dispersed phase flow quantities and then is transformed in terms of flow quantities that depend explic-
itly on undisturbed properties. Therefore, carrying out the above-mentioned linear analysis leads to

R(t) = R0

[
1 − R0/a

c
0

3ρd
0 ad

0
2

∫ t̃

ξ̃=−∞
Kp(t̃ − ξ̃ )

d

dt
punS

∣∣∣∣
t̃=ξ̃

dξ̃

− R0

3ρd
0 ad

0
2

∫ t̃

ξ̃=−∞
Kw(t̃ − ξ̃ )

d

dt
(ρur )unS

∣∣∣∣
t̃=ξ̃

dξ̃

]
. (64)

It is worth mentioning that Eqs. (63) and (64) are identical in the linear limit. When nonlinear effects

are negligible [pd
V

(t) − pd
0

V

]/ρd
0 ad

0
2 � 1. Therefore, after substituting Eq. (46) in Eq. (63), we

perform a binomial expansion on the right-hand side of Eq. (63) and consider only the leading-order
term, neglecting higher-order terms. The resulting expression is the same as that of Eq. (64).
However, it must be noted that Eq. (63) is only approximate and therefore in the current work,
Eq. (64) is used to compute the instantaneous particle radius.

Now we consider the example provided in Ref. [47] of a time-varying ultrasound wave impinging
on an air bubble in water and compare the bubble radius obtained using Eqs. (57), (62), and
(64). The initial bubble radius R0 is 2 mm and the pressure in the carrier phase is sinusoidally
varied as p∞ = pc

0 − pacos(2πf t), with pc
0 = pd

0 = 1 atm and pa = 2.7 atm. The frequency of the
driving pressure f = 10 kHz and the dynamic viscosities of water and air are taken to be 10−2 and
1.8 × 10−4 P, respectively. The air is taken to be adiabatic with γ = 1.4, while the effects of surface
tension are ignored. All of the above parameters are taken from Ref. [47]. As can be seen from
Fig. 2, the linearized Rayleigh-Plesset equation [Eq. (62) obtained from our analysis by solving
only the carrier phase in the incompressible limit] is in good agreement with the model that takes
into account details of the acoustic and viscous waves traveling within and outside the particle.
The results compare well even with the classical nonlinear RP equation (57), except at certain time
instances when nonlinearity becomes important.

To study the behavior of a much smaller bubble, where the effects of nonlinearity becomes
prominent, the application of the present model with either Eq. (63) or (64) requires some care.
As the bubble base pressure pd

0 in itself varies substantially over time, one needs to first obtain the
time-evolving base density ρd

0 and speed of sound ad
0 . Subsequently, these base quantities must be

fed to compute the kernel, which now become parametrically time dependent. In other words, the
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FIG. 2. Time evolution of the bubble radius initially at 2 mm subjected to a driving frequency of 10 kHz
and amplitude of 2.7 atm. The base pressures in the medium and air bubble are both taken to be 1 atm. The
other parameters are γ = 1.4, μc

ref = 10−3, μd
ref = 1.8 × 10−5, and � = 0.

density ratio ρ̃ and speed of sound ratio ã that determine the kernels to be used in Eq. (46) for the
volume-averaged pressure or in Eq. (64) for the bubble radius are themselves time varying. As a
consequence, the evaluation of the convolution integral becomes more involved, where the kernels
have to be updated at every time instant as ρd

0 and ad
0 change over time.

VI. APPLICATION: SHOCK PROPAGATION OVER A SPHERE

In this section we consider passage of a planar normal shock wave over a stationary aluminum
particle situated in nitromethane to validate our pressure formulation. While the properties of
nitromethane and Al are detailed in Table I, the Mach numbers and their corresponding postshock
properties under study are tabulated in Table III. Note that the size of the aluminum particle
(5 μm radius) and the postshock properties are taken from Ref. [31]. Nevertheless, there are two
important differences worth mentioning. First, the time evolution of the various dispersed phase
quantities presented in Ref. [31] are averaged over the particle mass; however, these are transformed
to volume-averaged quantities to compare against the current analysis. Second, the simulations
presented in Ref. [31] are rerun by taking both nitromethane and Al to follow the stiffened gas
equation of state. The reader is referred to Ref. [48] for a brief overview of the stiffened gas equation
of state used in these simulations. While the simulations allow for shape changes, the model or theory

TABLE III. Preshock and postshock properties of air and nitromethane for the varying shock Mach numbers
Ms considered.

Postshock properties Preshock properties

Medium Ms p (MPa) ρ (kg/m3) u (m/s) p (MPa) ρ (kg/m3) u (m/s)

nitromethane 1.11 200 1045.6 111.3 0.101325 982 0
nitromethane 1.25 500 1116.9 248.0 0.101325 982 0
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FIG. 3. Undisturbed surface-averaged pressure and radial momentum of the carrier phase as a function
of nondimensional shock time t̃s as a normal shock of Ms = 1.11 traverses an aluminum sphere situated in
nitromethane with ρ̃ = 2.84 and ã = 3.25.

considered here assumes the particle to remain spherical and allows only for volumetric pulsations
without any shape change. The viscous effects are neglected in this context and therefore μ̃ = 0.

We begin by considering a planar shock propagation over an aluminum particle in nitromethane.
The volume-averaged particle pressure is computed using Eq. (46). The necessary kernels Kp

and Kw have been computed and are presented in Fig. 1(a). For the nitromethane-Al case under

consideration, the preshock ambient pressure and the initial volume-averaged interior pressure (pd
0

V

)
are chosen to be 0.1 MPa. Similarly, at time t = 0, the particle is said to be in thermal equilibrium
with the ambient at 300 K. As the shock wave sweeps over the particle, Fig. 3 shows the time history

of punS
and (ρur )unS

that appears within the integrals in Eq. (46). We can observe that both the
surface-averaged pressure and density weighted radial velocity rapidly increase from their preshock
to postshock values on the acoustic scale. Since the kernels also evolve on the acoustic scale, the

convolution integral must be accurately computed [change in punS
and (ρur )unS

cannot be assumed
to be step functions].

The time evolution of particle pressure is plotted in Fig. 4(a) due to a shock wave of Mach
number Ms = us/a

c
0 = 1.11, where us is the shock velocity. The results are plotted as a function of

nondimensional shock time t̃s , defined as tus/R0. Note that as the shock traverses the particle, the
volume-averaged particle pressure begins at 0.1 MPa and eventually equilibrates with the postshock
pressure of 0.2 GPa for t̃s � 9. In Fig. 4(a), while the pressure Kp contribution is always positive,
the normal velocity contribution Kw becomes both positive and negative over time, depending on the
direction of pulsation of the particle surface. The sum of these two contributions in addition to the
initial interior pressure leads to the time history of the total particle pressure. However, it undergoes
oscillations as it goes from the preshock to postshock pressure and this arises from the oscillatory
kernels and correspond to the waves traveling back and forth inside the particle. If one ignores the
oscillatory behavior, the volume-averaged particle pressure can be observed to reach the postshock
pressure exponentially beginning from the initial undisturbed pressure as shown by the black dashed
line in Fig. 4. In other words, the nonoscillatory approach to the final pressure can be described by

pd
V = pfinal[1 − exp(−t̃s)] + pinitialexp(−t̃s), (65)
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FIG. 4. Volume-averaged particle pressure as a function of nondimensional shock time t̃s for a normal
shock of (a) Ms = 1.11 and (b) Ms = 1.25 passing over an aluminum sphere in nitromethane with
ρ̃ = 2.84 and ã = 3.25. Also shown is the comparison of the current pressure formulation with results in
Ref. [31].
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FIG. 5. Volume-averaged particle density as a function of nondimensional shock time t̃s for a normal shock
of Ms = 1.11 passing over an aluminum sphere in nitromethane with ρ̃ = 2.84 and ã = 3.25. Also shown is
the comparison of the current density formulation with results in Ref. [31].

where pinitial and pfinal denote, respectively, the initial and final pressures attained by the particle,
which happen to be the preshock and postshock pressures listed in Table III. The above can be
rewritten in a form similar to the equation of motion or the temperature evolution equation as

dpd
V

dt
= pfinal − pd

V

τpP

, (66)

where τpP = R0/us is the shock propagation time scale.
Also shown in Fig. 4(a) is the comparison of the current model with that of the direct numerical

simulation in Ref. [31]; as can be observed, the prediction is reasonable. The differences can be
attributed to several factors: While the theoretical model developed here is based on a linear pertur-
bation assumption, clearly the shock-induced flow around the sphere in the numerical simulation is
strongly nonlinear. Furthermore, at the strong postshock pressure the aluminum particle is observed
to undergo some shape deformation, while the theoretical model assumes a spherical shape at all
times. Finally, the simulations employ a nonideal gas equation of state, which is not accounted for
in the current model of the linearized perturbation flow. The time period of oscillation based on the
shock speed Ts = �tsR0/us observed in both the simulations and the present model is found to be
approximately 1.85 ns. Here �ts denotes the difference in shock time between any two successive
pressure peaks. The time taken by an acoustic wave inside the particle to travel one diameter is given
byT = 2R0/a

d
0 = 1.87 ns, which is consistent with the time period of oscillationTs computed above.

The observations made for Ms = 1.11 hold true for Ms = 1.25 as well and are shown in Fig. 4(b).
However, the discrepancy between simulation and the pressure model is higher, perhaps owing to
increased nonlinearity and the fact that the speed of sound of the ambient and particle used to compute
the kernels begins to vary from its base value when a shock of finite strength traverses the sphere.

The density evolution of the dispersed phase as computed from Eq. (51) is plotted in Fig. 5 and the
results are in good agreement with the simulations [31]. As can be seen from the figure, the density
change is minimal in comparison with the pressure change. Note that the particle pressure reaches
the postshock pressure of 0.2 GPa for shock time scales t̃s � 9 since it is the pressure difference that
acts as the driver in our model.
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VII. CONCLUSION

An equation that models the particle pressure in response to any complex, time-dependent,
nonuniform flows in a compressible medium was presented. A plane acoustic wave of a given
frequency and wave number was assumed to impinge on the particle. The zeroth mode (monopole)
of the carrier phase density weighted normal velocity and pressure was identified as the source term
affecting the particle pressure. Subsequently, the volume-averaged dispersed phase pressure was
expressed as a function of density weighted normal acceleration and time derivative of the external
pressure. The monopole terms were further formulated as the surface average of the incoming flow
properties, thus allowing for any complex incident flow field. A Laplace inverse of the resulting
expression was carried out to obtain the pressure expression in the time domain. Analogous to the
particle equation of motion, the pressure was also expressed as a convolution integral, comprising two
parts: one arising due to flow unsteadiness, termed the kernel, and the other arising from the spatial
flow inhomogeneity. The kernels obtained were found to depend on the particle-to-medium density
ratio ρ̃, speed of sound ratio ã, viscosity ratio μ̃, and Reynolds number Re. A similar equation was also
derived to compute the time evolution of the particle volume or radius and density. Further, the current
formulation reduced to the linearized Rayleigh-Plesset equation in the limit of (i) an incompressible
medium and (ii) homogeneous flow behavior within the particle. The present formulation was applied
to study the pressure history inside an aluminum particle as normal shock waves of varying strengths
passed over it; the results obtained are in good agreement with the direct numerical simulations [31].
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APPENDIX: EQUIVALENCE BETWEEN THE MONOPOLE COMPONENT
OF RADIAL VELOCITY AND PRESSURE AND SURFACE-AVERAGED INCOMING

RADIAL VELOCITY AND PRESSURE

The radial component of the incoming velocity can be obtained using Eq. (26) as

win
1r = kc

∞∑
n=0

An(2n + 1)inj ′
n(kcr)Pn(cos θ )e−iωt . (A1)

Now if we consider only the monopole component of the density weighted radial velocity above we
obtain

ŵin
1r = A0k

cj0
′(kR0)e−iωt . (A2)

The surface average of the incoming radial velocity can be obtained by integrating Eq. (A1) as

L
(
win

1r (r,t)
S) = 1

2
A0k

cj ′
0(kR0)e−iωt

∫ π

0
sin θ dθ

= A0k
cj0

′(kR0)e−iωt . (A3)

In obtaining the above expression, we note that of all the terms in the summation in Eq. (A1) only
one term (n = 0) survives the integration in Eq. (A3). In addition, we have used the definition of
Legendre polynomial P0(cos θ ) = 1. Subsequently, comparing Eqs. (A2) and (A3), we arrive at their
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equivalence mentioned in Eq. (42). The pressure equivalence can also be proved as follows. Starting
from Eq. (28), the incoming pressure equation can be expressed as

pin
1 = ρc

ref
∂φin

∂t
= −ρc

refiω

∞∑
n=0

An(2n + 1)injn(kcr)Pn(cos θ )e−iωt . (A4)

The monopole component of Eq. (A4) yields

p̂in
1 = −ρc

refiωA0j0(kR0)e−iωt . (A5)

The surface average of the incoming radial velocity can be obtained by integrating Eq. (A4) and
noting that only n = 0 survives the integration, we obtain

L
(
pin

1 (r,t)
S) = −ρc

refiω
1

2
A0j0(kR0)e−iωt

∫ π

0
sin θ dθ

= −ρc
refiωA0j0(kR0)e−iωt . (A6)

Thus the equivalence referred to in Eq. (42) has been achieved.
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