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Simulations of surfactant-laden drops rising in a density-stratified medium
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We present simulations of the effects of insoluble surfactant on drops rising in unstratified
media and density-stratified media. We consider an oil drop rising in water, and we track
surfactant concentration on the drop surface. We first consider a drop coated with insoluble
surfactant rising through an unstratified ambient. The drop speed is computed for various
Marangoni numbers, and inertial and surface diffusion effects are also examined. In the
second setup, we compare clean and contaminated drops rising through a linear density-
stratified fluid. The entrained buoyancy is computed for various density gradients, and the
effects of inertia and Marangoni number are characterized. We find that the entrained fluid
slows the drop in a manner comparable to a vertical shift in the ambient density gradient.
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I. INTRODUCTION

In the 2010 Deepwater Horizon oil spill, millions of gallons of crude oil leaked from the ocean
floor and rose toward the surface. As the oil rose, it encountered a stratified water column, which
rendered accurate predictions of its location difficult. Moreover, in an effort to break down the oil,
dispersants, including surfactants, were sprayed on the affected areas. A reliable description of the
location of oil drops rising in the ocean thus requires the incorporation of both surfactant effects and
density changes in the ocean. We present here a numerical study of both effects.

In the past century, a considerable number of studies have focused on the motion of drops, bubbles,
and solid spheres in stratified and uniform ambients. Solid objects are usually assumed to be heavier
than the surrounding liquid and so to settle under the influence of gravity, while bubbles are rising,
propelled by buoyancy. Drops may be rising or settling depending on their density. However, the
two cases are symmetric, and observations of rising drops apply in a symmetric fashion to settling
drops. In this work, we consider drops that are lighter than the surrounding fluid, and thus we focus
on rising drops.

In the inertia-free case, the speed of buoyancy-driven solid spheres [1] and drops and bubbles
[2,3] has been calculated exactly. An approximate solution for flow past a solid sphere for low
Reynolds number was obtained [4] using a singular perturbation analysis. A similar analysis was
done for falling drops [5], including shape deformations due to inertia. The high Reynolds number
case has been investigated experimentally [6] and analytically [7] assuming an irrotational velocity
field.

Frumkin and Levich [8] (see also Refs. [9,10]) provided the theoretical framework for under-
standing surfactant effects on drop speed. Surfactants are surface-active agents that preferentially
reside at fluid-fluid interfaces and affect the local surface tension. When a surfactant-laden drop rises
in a uniform ambient, the surfactant is advected toward the rear of the drop, where it accumulates.
As a consequence, surface tension decreases from the top to the bottom of the drop. The resulting
tangential (Marangoni) stresses oppose the motion of the drop, thus decreasing its speed. Frumkin and
Levich’s work was subsequently confirmed by experimentalists, who observed velocity retardation
for contaminated drops and bubbles [11–13]. In particular, Horton et al. [13] observed streak lines
in rising drops using tracers and found that the flow detached from the drop surface toward the
bottom, indicating stagnation there. Once a drop becomes sufficiently contaminated, the entire
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surface becomes stagnant, and the drop behaves like a solid particle. In this regime, called uniform
retardation, the speed of the moving drop will remain constant if the contamination is further
increased.

More detailed experimental studies have since examined the steady-state speed of moving drops
against the degree of surfactant contamination [14], drop shape [15], and desorption rate [16].
Numerous studies have calculated the steady-state velocity of a buoyancy-driven drop or bubble in
the presence of surfactants, focusing on two main regimes. In the first regime, surface convection is
much faster than sorption and bulk diffusion, so that the surfactant may be treated as insoluble. If, in
addition, surface diffusion is negligible, there exists a region on the trailing end of the drop, called
a stagnant cap, over which the surface is rendered immobile [17–19]. For the case of Stokes flow,
an exact, closed form solution has been obtained for the linear [20] and nonlinear [21] surfactant
relation.

In the second regime, sorption and bulk diffusion occur over the same time scale as convection.
Several authors [22–24] have accounted for sorption from the bulk using boundary layer analysis
valid for low bulk diffusion. Holbrook and Levan published a two-part study of the steady-state
velocity of a buoyancy-driven drop in a surfactant bath, treating the stagnant cap limit and the limit
of uniform retardation asymptotically [25] and treating the intermediate regime numerically [26].
This was generalized to the full Frumkin surfactant relation in Ref. [27], and Ref. [28] studied the
effects of the bulk Péclet number on surfactant distribution for a variety of bulk concentrations.
More recent studies have examined the effects of a finite Reynolds number with [29–31] and without
[32,33] deformation and described the wake that forms behind the drop.

Nearly all studies of surfactant effects on moving drops and bubbles have focused on steady-state
motion in a uniform ambient, although a few [34,35] have examined transient motion in a uniform
ambient. Studies of settling in a stratified ambient have generally involved either surfactant-free
drops and bubbles or solid, spherical balls. Extensive work [36–41] has been done studying the
passage of drops and solid spheres through a layer between two immiscible fluids. In 1999 the first
study [42] of drops passing through a density-stratified fluid observed increased drag due to fluid
entrainment. In sufficiently sharp stratifications, falling balls were observed to reverse direction,
temporarily levitating before passing into the lower layer [43]. In the Stokes limit, the velocity of
a drop passing through a sharp stratification has been described theoretically [44,45]. For weakly
stratified media, such as are found in nature, entrainment effects on the drag have been carefully
quantified for solid spheres [46] and drops [47]. In this setup, drop deformation, oscillation, and
the flow field have also been examined [47]. The transient motion of solid spheres settling in a
linearly stratified fluid has also been studied [48]. Another substantial body of research concerns
the plumes generated by bodies passing through a stratification (see, for example, Refs. [49–51]).
Research has also been done concerning the oscillations of neutrally buoyant bodies [52,53]. Other
recent studies [54,55] have examined porous bodies settling in stratified fluid, due to their value in
modeling marine snow. One recent study [56] accounted for Marangoni effects due to compositional
differences between two layers of miscible fluid. However, to the best of our knowledge, no studies
have examined surfactant effects on drops rising in stratified media.

Here we present a numerical study of surfactant effects on rising drops as applicable to oil drops
in the ocean. We consider both a uniform and a density-stratified ambient, and we seek to understand
the combined effect of the surfactant and stratification on the drop velocity. Like the authors of
Ref. [47], we quantify entrainment effects, but we combine them with surfactant effects and analyze
these effects in terms of added buoyancy, rather than added drag. We examine a regime in which
inertia is non-negligible, but where the drop remains approximately spherical, and we consider the
insoluble regime. We would prefer to keep diffusion effects as small as possible. However, due
to limitations of our numerical method, the effects of surface diffusion are non-negligible and are
therefore quantified. In Sec. II we present the setup of our simulations and the equations governing
the system. We discuss our numerical method and its validation in Secs. III and IV, respectively.
Then we present our results for two setups: a surfactant-laden drop rising in a uniform ambient
(Sec. V) and a surfactant-laden drop rising in a linear density-stratified fluid (Sec. VI).
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FIG. 1. The axisymmetric computational domain, scaled according to the drop radius, R0. The drop is
shown near the axis, and the ambient density, �, is plotted to the right. The density-stratified fluid begins at
Z = 10R0.

II. SETUP AND GOVERNING EQUATIONS

We consider an axially symmetric system where a surfactant-laden drop is rising under the
influence of buoyancy in a cylindrical container. We apply a no-slip boundary condition on the top,
bottom, and side walls, but we keep the walls sufficiently far away as to not influence the dynamics
of the rising drop. The computational domain, shown in Fig. 1, begins at the axis, and extends 8 drop
radii in the radial direction and 32 drop radii in the vertical direction. Initially, the drop center is
located 1.5 drop radii above the bottom wall. The drop is allowed to rise to terminal velocity before
entering the layer of density-stratified fluid, which begins at 10 drop radii from the bottom of the
container. The surface of the drop, xs , moves with the local fluid velocity u:

dxs

dt
= u

∣∣∣
xs

. (1)

The fluid is assumed Newtonian and incompressible, and so it is described by the incompressible
Navier-Stokes equations. We nondimensionalize the equations using the drop radius, R0, as a length
scale and the drop density, �d , as a density scale. For a velocity scale, we use the Hadamard-
Rybczynski speed [2,3] of a clean drop rising in creeping flow, assuming for simplicity that the drop
and the ambient have the same viscosity, μ:

UHR = 4g(�a − �d )R2
0

15μ
. (2)
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Here g is the gravitational acceleration and �a the density of the ambient fluid at the bottom of the
container (absent any stratifying agent). With this choice of scales, the Navier-Stokes equations can
be written in dimensionless form as

∇ · u = 0, (3)

ρ
∂u
∂t

+ ρu · ∇u = −∇p + 1

Re
∇2u + 15

4Re
�ρk, (4)

where p is the dimensionless fluid pressure, ρ is the dimensionless fluid density, k is a vertical unit
vector, and

Re = �dR0UHR

μ
(5)

is the Reynolds number, measuring inertial against viscous forces. In the momentum equation (4), the
left-hand side contains the convective and advective derivatives of the momentum, and the right-hand
side contains forcing terms—specifically the pressure gradient, viscous force, and buoyancy force.
The buoyancy term depends on a normalized density difference between the drop and the ambient:

�ρ = �a − �dρ

�a − �d

= D − ρ

D − 1
where D = �a

�d

. (6)

We track the surfactant concentration on the drop surface, γ , using an advection-diffusion equation
restricted to the interface [57]. This can be expressed in dimensionless form using a Péclet number:

∂γ

∂t
+ ∇s · (γ u) = ∇s ·

(
1

Pe�

∇sγ

)
where Pe� = UHRR0

kγ

. (7)

The constant kγ is is a diffusion coefficient on the drop surface. We denote a gradient tangential to
the surface at xs using ∇s . The surfactant concentration is scaled by its initial uniform value, �0.

For simplicity, we use a linear elasticity relation between surface tension, σ , and surfactant
concentration on the surface [57,58], given in dimensionless form as

σ = 1 + β(1 − γ ). (8)

Here both surface tension and surfactant concentration are normalized by their equilibrium values,

0,�0. The elasticity coefficient, β = −∂σ/∂γ , written here in terms of the dimensionless surface
tension and surface surfactant concentration, measures the rate of change of surface tension with
changes in surfactant concentration. Writing β in terms of the dimensional surface tension 
 and
surfactant concentration �, as β = −(�0/
0)∂
/∂� reveals that β also depends on the equilibrium
surfactant concentration and the surface tension scale.

The effects of surface tension on the dynamics of the system can be described as boundary
conditions on the stress:

n · [∇u + ∇uT ] · n = Re

We
σκn, (9)

n · [∇u + ∇uT ] · t = Re

We
∇sσ = −Mg

∂γ

∂s
. (10)

Here κ is the total (twice the mean) curvature, n is the unit normal to the surface, and t is the unit
tangent in the direction of increasing s. The new dimensionless number appearing in both of Eqs. (9)
and (10) is the Weber number, which measures inertia against surface tension and is given by

We = �dR0U
2
HR


0
. (11)
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TABLE I. Definition and range of parameters in our simulations.

Range

Parameter Definition Sec. V Sec. VI

Re UHRR0�d/μ 1,10 1,20
We U 2

HRR0�d/
0 0.05–0.2 0.05–0.2
β −∂σ/∂γ 0–0.2 0–0.2
Mg 
0β/μUHR 0–2 0,2
D �a/�d 1.1 1.1
Pe UHRR0/kρ NA 104

Pe� UHRR0/kγ 10,100 100
S −(R0/�d )∂�/∂Z 0 5×10−4 to 5×10−3

In this context, the Weber number quantifies shape deformation of the drop and is kept small
(see Table I) so that the drop remains approximately spherical. In particular, in all our simulations
the drop’s aspect ratio varied by less than 2%. The expression on the far right of Eq. (10) is obtained
by differentiating Eq. (8). The dimensionless number appearing there is the Marangoni number,
defined by

Mg = βRe

We
= 
0β

μUHR
∼ tangential stress

viscous stress
. (12)

We do not enforce the boundary conditions (9) and (10) directly but instead supplement the
right-hand side of the momentum equation (4) with a surface force, multiplied by a delta function.
In particular, we use

ρ
∂u
∂t

+ ρu · ∇u = −∇p + 1

Re
∇2u + 15

4Re
�ρk + δsFs , (13)

where δs is a delta function that is nonzero only on the surface, and

Fs = 1

We
(σκn + ∇sσ ). (14)

In the presence of a stratifying agent, the density obeys an advection-diffusion equation, given,
in dimensionless form, by

∂ρ

∂t
+ u · ∇ρ = 1

Pe
∇2ρ where Pe = UHRR0

kρ

. (15)

In the above Péclet number, kρ is the diffusion coefficient of density. We note that Eq. (15) applies
only outside the drop; the fluid density is held constant inside the drop. We neglect diffusion inside
the drop because we have in mind salt diffusion, which is negligible in oil over the time scale
we consider. A Péclet number of Pe = 104 is used. Péclet numbers associated to salt diffusivity
in the ocean are typically much larger, but Péclet numbers greater than 104 are difficult to resolve
numerically.

We consider two setups. Both setups involve a drop rising to terminal velocity in a uniform
ambient with dimensionless density ρ = D. In the first setup the drop maintains its terminal velocity
in a uniform ambient, while in the second setup the drop enters a linear density-stratified fluid,
beginning at z = z0. The initial density of the ambient fluid is thus

ρ(z) =
{
D if z < z0

D − S(z − z0) if z � z0
, (16)
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where

S = −∂ρ

∂z
= −R0

�d

∂�

∂Z

is the gradient of the density, given in dimensionless form. Here � and Z are the dimensional density
and vertical position coordinate, respectively. The case of a uniform ambient is recovered by setting
S = 0.

To facilitate keeping track of all the dimensionless numbers involved, we have summarized them
all in Table I, along with their definitions and the range used for each setup considered.

III. NUMERICAL METHOD

We use a finite difference volume of fluid (VOF) method [59], in which the Navier-Stokes
equations are solved on a staggered marker and cell (MAC) grid. The viscous and advection terms
in the Navier-Stokes equations are computed using centered finite differences, and the system is
advanced in time using an Euler time step. We use a projection method [60] to compute a pressure
that automatically enforces continuity. This results in a Poisson equation for the pressure, which is
solved using iterative methods.

We track the interface using markers that are advected with the fluid in a Lagrangian manner,
via Eq. (1). Cubic splines are employed for interpolating between the markers and for computing
a smooth curvature on the interface. The moving front is related to the fixed grid using linear
interpolation. The markers are redistributed at every time step, to maintain a distance between
markers of roughly one grid square. We eliminate parasitic currents by making corrections to
account for the discontinuous pressure jump at the interface [61].

We track the surfactant using a Lagrangian approach that automatically conserves mass [62,63].
We begin by computing the mass mt−1

k of surfactant near the kth marker at time t − 1:

mt−1
k = γ t−1

k �A(st−1), (17)

where γ t−1
k is the surfactant concentration at the kth marker, and �At

k represents the area of the
interface associated to the kth marker as a function of the arc length st−1 at time t − 1. On the axis,
this is �At

k = π (�st
k)2, and away from the axis, it is �At

k = 2πrt
k�st

k , where rt
k is the distance to

the axis. After the markers are advanced, and a new arc length st is computed, but before the markers
are redistributed, we update surfactant concentration to a temporary value γ ∗

k , by inverting Eq. (17):

γ ∗
k = mt−1

k /�A(st ). (18)

We then redistribute the markers so as to ensure that they remain equally spaced. We begin
simultaneously at the top and bottom of the drop and leave the surfactant concentration at the first
marker unchanged. We then move toward the center from one marker to the next, choosing the
surfactant concentration of the redistributed kth marker so as to conserve the total surfactant mass
up to that point. In particular, we choose a point sk+1/2 midway between the kth marker and the
(k + 1)-st marker and compute the total mass Mold

k+1/2 from the poles of the drop to that point for
the unredistributed markers. Then we choose a point sk−1/2 midway between the (k − 1)-st marker
and the kth marker and compute the surfactant mass, Mnew

k−1/2, up to that point. Last, we choose the
redistributed concentration, γk , to enforce the condition

Mnew
k−1 + 2πrk(sk+1/2 − sk−1/2)γk = Mold

k .

The second term on the left-hand side is the surfactant mass in an axially symmetric strip centered
at the kth marker. For convenience, we choose the number of markers to be odd and choose the
surfactant concentration at the middle marker (near the “equator”) to conserve exactly the total
surfactant mass on the drop. After redistributing, the new concentration is computed by adding a
diffusive term, which is a finite difference discretization of the surface Laplacian ∇2

s .

023602-6



SIMULATIONS OF SURFACTANT-LADEN DROPS RISING . . .

TABLE II. Variations in drop mass, �Md , total energy, �E, and surfactant mass, �Mγ , against mesh size
h. The number of time steps for which the simulation was run is also shown.

h Time steps �Md �E �Mγ

1/4 689 0.0126 0.1077 0
1/8 2858 0.0061 0.0753 0
1/16 11 656 0.0020 0.0362 0
1/32 38 000 0.0010 0.0161 8.75×10−7

Equation (15) is solved similarly to the Navier-Stokes, using centered differences and an Euler
time step. To keep surfactant from diffusing across the fluid interface, we impose symmetric boundary
conditions at the interface. We implement these conditions using a discrete approximation, �i,j to
the indicator function φ, which is unity in the drop and zero outside. The value of grid function �i,j

equals the percentage of the cell that is inside the drop. Whenever �i,j � 0.5, but adjacent cells have
�i±1,j±1 > 0.5, the values of the stratification agent in the adjacent cells are set equal to the value in
cell i,j , which prevents the stratification outside the drop from diffusing into the drop. The resulting
spurious stratification agent inside the drop is neglected in computing the fluid density, which is set
to unity inside the drop.

IV. VALIDATION

A. Conservation properties

We begin by demonstrating that our method conserves drop mass Md , surfactant mass, Mγ , and
the total energy, E, of the system. Energy can be tracked using an energy budget [64] for a multiphase
flow system involving two immiscible fluids. Conservation is demonstrated by convergence of the
quantity

�X = maxt [X(t)] − mint [X(t)]

X(0)
, (19)

where X(t) is Md (t), Mγ (t), or E(t). We tested the code by simulating a drop rising through a sharp
density transition. For validation purposes, we used a cylindrical domain with a nondimensional
radius of four, a height of eight, and a sharp density transition in the middle of the domain. In
particular, ρ(t = 0) transitions from 1.1 to 1.05 as z increases from 3.95 to 4.05.

The results, shown in Table II, show first order convergence for drop mass and energy conservation,
as the mesh size is decreased from h = 1/8 to h = 1/32, where h is the width of one square cell
in the MAC grid. Surfactant mass is conserved exactly, except when h = 1/32, where the failure of
exact conservation can be explained by round-off error. All simulations performed in Secs. V and VI
use h = 1/32.

B. Oscillations of an irrotational drop

The oscillations of a perturbed spherical drop have been calculated for the case in which the
perturbation is small relative to the drop radius. For a liquid drop immersed in a gas of negligible
density and viscosity, the second mode of frequency is given by [65]

ω2
2 = 8σ

ρR3
0

. (20)

We ran simulations of a perturbed drop, measuring the primary mode of oscillation with an initial
aspect ratio of 1.05, surrounded by a gas, whose density and viscosity are 10% of those of the drop.
On a cylindrical domain of radius 2.5R0 and height 5R0, with h = 5/512, the computed oscillation
frequency differed from the theoretical frequency by no more than 0.33%.

023602-7



DAVID W. MARTIN AND FRANÇOIS BLANCHETTE

TABLE III. Error in scalar field mass conservation, defined in Eq. (19) (second
column) against mesh width h (first column). The third column shows the duration
of the simulation in dimensionless time, and the last column shows the order of
convergence, defined as α, such that �Mf = O(hα).

h �Mf t Order

1/4 3.73×10−4 25.16 NA
1/8 3.68×10−5 22.12 3.34
1/16 2.26×10−6 20.70 4.02
1/32 1.93×10−7 20.04 3.54

C. Conservation of the stratifying agent

We validate our method for tracking scalar fields by modeling a drop rising through a sharp
density stratification and measuring how well the mass of the stratifying agent is conserved over
time for different resolutions. For validation purposes, we use a small cylindrical domain with a
radius of 4 drop radii and a height of 8 drop radii. After beginning our simulation with the drop a
distance of 1.5 drop radii above the bottom of the container, we allow the drop to rise through a sharp
density stratification at z = 4, and we stop the simulation when the drop is 1.5 radii away from the
top of the container. In this validation, we allow the stratifying agent to diffuse in both the drop and
the ambient, with a Péclet number of Pe = 4000. The error in mass conservation is the percentage
variation in the mass Mf of the scalar field, defined as a volume integral of the concentration function
over the cylindrical domain. The results, shown in Table III show an objectively small error and
better than second order convergence. The dimensionless time, t , of the simulation is also given.

V. A DROP RISING IN A UNIFORM AMBIENT

We begin by studying a drop covered with an insoluble surfactant moving a uniform medium.
We have conducted simulations for Reynolds numbers of Re = 1,10 and surface Péclet numbers of
Pe� = 10,100. We compare our results to theoretical solutions in the limit case of zero Reynolds
number and infinite Péclet number to highlight the effects of inertia and surface diffusion.

In the absence of sorption, and when Pe� � 1, Eq. (7) implies γ us = 0 for a steadily rising drop
[17]. There are thus only two possibilities along the drop surface: either the surface is locally clean
(γ = 0), with a free-slip condition, or the surface is locally covered with surfactants and stagnant
(us = 0). In practice, surfactant is convected to the bottom of the drop where it forms a stagnant cap.
The transition from a clean drop to the spherical cap takes place at some fixed angle, θc, traditionally
measured from the bottom axis (see Fig. 2).

On the surface of the drop, viscous stresses drive the surfactant toward the base of the drop and
are opposed by tangential stresses which seek to bring the surfactant into equilibrium. Balancing the
two, one obtains the Marangoni number, Mg. When Mg � 1, we expect Marangoni effects to be
negligible, so that the drop behaves like a clean drop. On the other hand, when Mg � 1, Marangoni
effects will dominate viscous effects, forcing the surface velocity of the fluid to zero, so that the drop
behaves like a solid sphere. We therefore expect the system to transition from clean drop behavior
to solid sphere behavior as the Marangoni number increases above one.

Sadhal and Johnson [20] obtained exact solutions for the flow field, the surfactant distribution,
and the drag coefficient as functions of the cap angle for an inertia-free, diffusion-free rising drop.
The velocity USJ that they found is given by [20]

USJ = UHR

CD(θ )
, (21)
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FIG. 2. A surfactant-laden drop rising in a uniform ambient, with negligible surface diffusion. The surfactant
appears in white as a cap on the bottom of the drop, which transitions to a clean surface at a cap angle, θc.

where

CD(θc) = 1 + μa

2π (2μa + 3μd )

(
2θc + sin θc − sin 2θc − 1

3
sin 3θc

)
(22)

is a drag coefficient that depends on the respective dynamic viscosities μa and μd of the ambient
and drop, and UHR is the familiar Hadamard-Rybczynski velocity of a rising drop in Stokes flow.
They found that the surface tension as a function of angle is described by [20]

∂


∂θ
= μaUSJh(θ,θc), (23)

where

h(θ,θc) = 2

π
tan

(
θ

2

){
3

2
(1 + cos θ )

[
arcsin

(
cos θ − cos θc

1 + cos θ

)1/2

+ (cos θ − cos θc)1/2(1 + cos θc)1/2

1 + cos θ

]
+ (1 + cos θc)3/2

(cos θ − cos θc)1/2

}
. (24)

Equation (24) can be integrated analytically to get

H (θ,θc) =
∫ θ

θc

h(ψ,θc) dψ = − 2

π

[(
3

2
η − ηc

)
arcsin

(
η − ηc

η

)1/2

+ 3

2

√
ηc(η − ηc)

]
, (25)

where η = 1 + cos θ and ηc = 1 + cos θc. This gives us an explicit formula for the surface tension
on the stagnant cap:


(θ ) = 
max + μaUSJ(θc)H (θ,θc), (26)

where 
max is the maximum surface tension, obtained on the clean part of the drop.
Putting Eq. (8) into Eq. (23) and integrating, we find the surfactant concentration

�(θ )

�0
= − 1

Mg

H (θ,θc)

CD(θc)
. (27)

The constant of integration was evaluated using the condition �(θ = θc) = 0, which is valid so long
as the drop is not completely stagnant, i.e., θc < π .

Figure 3 shows the computed and theoretical surfactant distributions of a steadily rising drop
plotted against the angle measured from the bottom of the drop. As expected, surface diffusion
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FIG. 3. Surfactant distribution against angle from the bottom of the drop, for different Reynolds numbers,
Péclet numbers, and Marangoni numbers. The solid black line shows the theoretical distribution, while the
dashed and dotted colored curves show computed distributions. The cap angle, θc, is shown as a vertical black
dotted line.

(inverse Péclet number) smooths out the surfactant distribution. Otherwise, the agreement between
the theoretical and computational surfactant profiles is excellent. Inertial effects tend to reduce the
departure from a uniform surfactant distribution. For Mg = 1, the effect is relatively weak: for
Re = 10, the concentration departed from the inertia-free case, shown by the solid black line in
the figures, by no more than 20%, decreasing at the pole and increasing slightly at the equator. For
Mg = 0.1, the effect is larger, resulting in a significant redistribution of surfactant from the bottom
of the drop toward its sides.

Integrating Eq. (27) over the surface of the drop, we obtain a formula for the total surfactant mass:

Mγ (θc) = − 2πR2
0�0

MgCD(θc)

∫ θc

0
H (θ,θc) sin θ dθ = �0R

2
0(2θc − 4θc cos θc − sin 2θc + 4 sin θc)

MgCD(θc)
. (28)

Although Ref. [20] derived this formula, they did not present Eqs. (25)–(27) for the surfactant
and surface tension distribution. An alternate expression for the total surfactant mass comes from
considering the drop at rest (equilibrium). Then the surfactant is uniformly distributed and Mγ (θc) =
4πR2

0�0. Equating the two expressions for total surfactant mass, we obtain a formula for the
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FIG. 4. Tangential velocity against angle from the bottom of the drop, for different Marangoni numbers
and Reynolds numbers.

Marangoni number in terms of the cap angle:

Mg = 2θc − 4θc cos θc − sin 2θc + 4 sin θc

4πCD(θc)
. (29)

Equation (29) can be inverted numerically to obtain the surfactant distribution and steady-state speed
as functions of the Marangoni number.

Figure 4 shows the tangential velocity profiles of a drop rising in a uniform ambient for differing
Reynolds and Marangoni numbers. The velocity profiles for Re = 1 and Re = 10 are similar, except
that for the larger Reynolds number, the velocity peaks closer to the top of the drop, due to inertial
effects. For Marangoni number Mg > 0, we see the effect of the stagnant cap in suppressing the
tangential velocity toward the bottom of the drop. As the Marangoni number increases, the tangential
velocity on the entire drop decreases dramatically. For Mg = 2, we expect the drop to be nearly
stagnant. The flow that is present can be explained by diffusive effects (Pe� = 100), which smooth
out the surfactant gradients that suppress flow on the surface. The noise that is visible on the velocity
profile can be explained by small errors in computing the tangential velocity. This effect is due to
the fact that the velocity decreases rapidly near the surface of the drop. Since we related the velocity
field to the front using bilinear interpolation, this introduces a noticeable error.

Figure 5 shows theoretical and computational steady-state speeds of a drop rising in a uniform
ambient, measured as departures from the surfactant free case (Mg = 0). They are plotted against
the Marangoni number, Mg, for varying Reynolds and Péclet numbers. We see that surfactant effects
are inhibited at larger Reynolds numbers. This can be explained by considering the drag on the drop.
Surfactant on the drop surface increases drag by partially immobilizing the surface, thus creating a
no-slip boundary condition there for the ambient fluid. Increased viscosity favors increased drag by
causing a larger volume of exterior fluid to be affected by the drop motion. If the Reynolds number
were to become very large, a boundary layer of decreasing width would form around the region
region of stagnation, the width of which would measure the amount of fluid being affected by the
no-slip condition there. Thus, for smaller Reynolds numbers, such as we consider here, it is to be
expected that the effect of the stagnant cap on the drop speed decreases with Reynolds number.
McLaughlin [30] presents evidence that this trend reverses for larger Reynolds numbers (Re > 100),
due to the formation of large wakes. In our simulations, no wake was observed for Re � 10 and
Mg � 2.

On the other hand, surface diffusion, measured by 1/Pe� , counters the effect of the Marangoni
number, so that the transition from a clean drop to a stagnant surface is much slower. This is to be
expected, since surface diffusion smooths out the surfactant distribution, as seen in Fig. 3. For a
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0 0.5 1 1.5 2

Mg

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

(U
(M

g)
−

U
(0

))
/U

H
R

Re = 0 (theory)
Re = 1.0
Re = 10.0

0 0.5 1 1.5 2

Mg

-0.18

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

( U
(M

g)
−

U
(0

))
/U

H
R

PeΓ = ∞ (theory)
PeΓ = 100
PeΓ = 10

FIG. 5. Steady-state speed of surfactant-laden drops against Marangoni number, Mg, in a uniform ambient,
for various Reynolds numbers (left) and surface Péclet numbers (right). For the computed results on the left,
Pe� = 100; for the computed results on the right, Re = 1. In the theoretical case (solid black) the Reynolds
number is given by Re = 0 and the Péclet number on the surface is given by Pe� = ∞.

smoother distribution, the surface tension gradient, ∂σ/∂θ , is decreased, resulting in an equivalent
decrease in tangential stress. Since the tangential stress acts to reduce the rising speed, a lower Péclet
number will result in an increased rising speed. In the absence of surface diffusion, the tangential
stress increases with the Marangoni number, so that the effect of surface diffusion is to counteract
the Marangoni effect.

For completeness, we also record the rising speed of clean drops for different Reynolds numbers
(Table IV). We note that although the terminal speed of a clean drop varies significantly with the
Reynolds number, the terminal speed of a contaminated drop (Mg = 2) remains approximately 80%
of the clean drop speed. In the theoretical case, this ratio is exactly 5/6 = 83.3%. We expect that the
difference between our computed results and the theory is due to wall effects and possibly surface
diffusion.

VI. ENTRAINMENT EFFECTS IN A FLUID WITH LINEARLY STRATIFIED DENSITY

The terminal speed of a rising drop is proportional to the density difference between the drop
and the ambient. The speed of a drop rising in a density-stratified fluid can therefore be expected to
decrease with the density gradient, S. This effect is amplified by the process of entrainment, where
a rising drop lifts heavier fluid into the lighter overlying ambient fluid, which further decreases the
drop speed [44]. If the change in ambient density is sufficiently sharp, the direction of motion may
even reverse [43].

We set t = 0 to correspond to when the center of the drop reaches the level z = z0. The density
gradient S is chosen so that the drop never reaches its neutral buoyancy level. We simulate
various Reynolds numbers (Re = 1,20), Marangoni numbers (Mg = 0,2), and density gradients

TABLE IV. Speed relative to the Hadamard-Rybczynski speed for a clean drop
(second column) and a contaminated drop (third column). The fourth column shows
the ratio of a contaminated to clean drop speed.

Re Uclean/UHR U (Mg = 2)/UHR U (Mg = 2)/Uclean

1 0.7486 0.6016 0.8036
10 0.5501 0.4438 0.8068
20 0.4723 0.3705 0.7845
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FIG. 6. The dimensionless speed, U/UHR, of a drop rising in a linear density-stratified fluid, plotted against
the vertical position coordinate, z, for different stratifications, and Reynolds numbers of Re = 1 (left) and
Re = 20 (right). In all cases, Mg = 2. The linearly stratified fluid begins at z = 10 and continues throughout.

(5×10−4 � S � 5×10−3). All Péclet numbers were kept as large as numerically feasible (Pe� = 100
and Pe = 104).

Velocity profiles of the rising drops are shown in Fig. 6. The velocity profiles were smoothed
using a Gaussian filter, to eliminate small-scale noise, which arises due to numerical imprecisions
in computing the time derivative of the position of the drop’s center of mass on a discrete grid and
has a scale of roughly 5×10−4 when h = 1/32. Sharper stratifications favor decelerations of the
rising drop. For a smaller Reynolds number, the drop undergoes a quicker and more dramatic shift
in speed. In all cases, the drop transitions to a state of steady deceleration.

We show in Fig. 7 the derivative du/dz = (R0/UHR) dU/dZ of the drop speed. In all cases,
du/dz is near 0 when the drop enters the stratified fluid, and undergoes decaying oscillations after,
relaxing toward a fixed negative value. The magnitude of these oscillations increases with S and
decreases with the Reynolds number. To better quantify the transition to a steady deceleration,
we examined the inflection points given by the first local minimum of du/dz after entering the
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FIG. 8. Tangential velocity normalized by the speed of the drop against angle from the bottom of the drop,
for different stratifications and Reynolds numbers. All profiles are taken at a height of Z = 24.

stratified fluid and measured the vertical distance above the beginning of the stratified fluid, zt ,
where these inflection points occur. As can be seen in Fig. 7, zt depends only weakly on the density
gradient and Marangoni number. However, it depends strongly on the Reynolds number: for Re = 1,
zt ≈ 4.8 ± 0.6, and for Re = 20, zt ≈ 8 ± 0.5. This can be understood by noting that the increased
inertia associated to larger Re is expected to delay the transition as the drop maintains its original
rising speed for longer.

Figure 8 shows tangential velocity profiles, UT (θ ), of drops rising through a linear density
stratification normalized by the speed U of the rising drop. Because the drop speed is nonconstant
in this case, we plotted all of the tangential velocity profiles at the same height, Z = 24, which in
all cases occurs after the drop has entered a steady deceleration, but before wall effects are present.
The normalized difference between the maximum tangential velocity and the drop speed, given by
1 − max[U (θ )]/U , is due to fluid entrainment by the drop, and can be viewed as a crude measure
of fluid entrainment. By this measure, we see that the amount of entrainment is greater for a smaller
Reynolds number, Re, and that when Re = 1, fluid entrainment decreases significantly for very
large density gradients. When Re = 20, there is no significant difference in entrainment associated
to different density gradients, and instead, inertial effects appear dominant. In particular, in the
presence of a steeper gradient, the tangential velocity distribution is more symmetric, presumably
because the drop velocity is lower, resulting in weaker inertial effects.

Figure 9 shows surfactant profiles of drops rising through a linear density stratification, plotted
when the drop center is at a height of Z = 24. The surfactant distribution from the stagnant cap
theory for a uniform ambient in the limit of zero diffusion and Reynolds number is included for
reference [20]. As in the case of the uniform ambient, the effect of the Reynolds number is to increase
the surfactant mass at the equator of the drop and decrease it near the top and bottom. When the
stratification is increased, the surfactant distribution becomes more uniform, which is presumably a
consequence of the decreased drop velocity.

The effects of entrainment can be isolated by comparing full simulations to entrainment-free
simulations. We obtained velocity profiles of rising drops in the absence of entrainment by running
simulations where the ambient density varied with height but was kept constant in time (no advection).
Figure 10 shows velocity profiles with and without entrainment. The rise of a drop with and without
entrainment can also be compared directly by looking at the video provided as supplementary
material for this paper [66]. In the latter case, the drop quickly assumes a steady deceleration after
entering the stratified fluid. When entrainment is included, the drop first undergoes a transitional
decrease in velocity before reaching nearly the same steady deceleration as in the entrainment-free
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FIG. 9. Surfactant distribution against angle from the bottom of the drop, for different stratifications and
Reynolds numbers. The theoretical case (solid black) refers to the stagnant cap theory for diffusion and Reynolds
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case. This results in a net velocity lag

�U = Uwithout entrainment − Uwith entrainment = Uf − U

that is approximately constant once the transient phase is complete. We computed �U as the
difference of the average velocity with and without entrainment, over an interval in the steady
deceleration phase.

In Fig. 11 the relative velocity lag, �u = �U/UHR, is plotted against the density gradient, S, for
various Reynolds and Marangoni numbers. The relation is approximately linear. The slopes, b, of
the lines �u = bS in Fig. 11 are presented in Table V. This linear relation fails for larger S, and the
dependence of �u on S becomes sublinear. As the drops rises, the drop and the fluid it entrains act
together as a rising body with an intermediate average density. The difference between this mean
density and the ambient density increases with stratification, and so it is expected that the velocity
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0 1 2 3 4 5

S ×10-3

0

0.05

0.1

0.15

0.2

0.25

Δ
U

/U
H

R

Re = 1, Mg = 0
Re = 1, Mg = 2
Re = 20, Mg = 0
Re = 20, Mg = 2

FIG. 11. The lag, �U/UHR, in the speed of a drop rising in a stratified ambient due to entrainment effects,
against the dimensionless density gradient of the fluid.

lag is proportional to the density gradient. When the stratification becomes sufficiently sharp, the
drop begins to entrain a smaller volume of fluid, resulting in a sublinear relation between �u and
S. We also find that the velocity lag is greater for larger Marangoni number and smaller Reynolds
number. In both cases, this is to be expected because the drop entrains more fluid.

The velocity lag, �U/UHR, can be explained by a loss in buoyancy due to the entrainment of
lighter fluid. In particular, we define the buoyancy lag due to entrainment as Fe = Fd − Feff, where
Fd is the buoyancy of the drop and Feff is the effective buoyancy of the system. The effective
buoyancy balances the drag of the fluid so that the system achieves a quasi-steady state of slow
deceleration. Altogether,

Fe = gVd�d [ρ(z) − 1] − μR0Uf (Re,Mg), (30)

where U is the (dimensional) drop speed, f is a dimensionless function of the Reynolds and
Marangoni numbers, Vd is the volume of the drop, and ρ(z) = D − S(z − z0) is the dimensionless
ambient density [Eq. (16)]. The first term on the right-hand side of Eq. (30) is the drop buoyancy,
Fd , while the second term is the drag on the drop.

In the absence of entrainment, Fe = 0, so that

0 = gVd�d [ρ(z) − 1] − μR0Uf f (Re,Mg), (31)

TABLE V. The factor, ζ = b/a, in the buoyancy lag, for the different Marangoni
and Reynolds numbers studied. The slopes, b, of the lines in Fig. 11 are also given.

Re Mg b ζ = b/a

1 0 748 11.23 ± 0.07
1 2 1130 21.8 ± 1.9
20 0 140 3.55 ± 0.03
20 2 318 9.78 ± 0.25
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where Uf is the velocity of a drop rising in an artificially fixed ambient. In that case, the drop velocity
is given by the slopes, aS, of the dotted lines in Fig. 10. In particular, Uf satisfies Uf (z)/UHR =
U0/UHR − aSz, where the constant a = gVd�d/μR0f UHR = 5π�d/(�a − �d )f depends only on
the Reynolds and Marangoni numbers, through the drag term, f . If we assume that the dependence
of the drag on the Reynolds and Marangoni numbers takes the same form irrespective of entrainment,
then f is the same with and without entrainment. Hence, we can subtract Eq. (31) from Eq. (30)
to get

Fe = μR0�Uf (Re,Mg) = gVd�d�U

aUHR
. (32)

The data in Fig. 11 suggest a linear relation between the velocity lag and the density gradient:
�U/UHR = bS where b is a dimensionless constant. Altogether,

Fe = gVd�d

bS

a
. (33)

The ratio b/a that characterizes the buoyancy lag is identical to the horizontal separation ζ ,
between the solid and dotted curves in Fig. 10. Assuming both lines have the same slope, the
quantity ζ is well defined and represents the additional distance the drop needs to rise before
reaching the velocity it would have attained without entrainment. The fluid velocity, with and
without entrainment, can be written as

U (z)/UHR = Ue/UHR − aSz and Uf (z)/UHR = U0/UHR − aSz,

respectively, where Ue and U0 are fixed velocities, satisfying �U = U0 − Ue. To compute the
horizontal separation, ζ , we choose fixed vertical positions, ze and zf , such that U (ze) = Uf (zf ).
Then

ζ ≡ zf − ze = �U

aSUHR
= bS

aS
= b

a
.

The values of b computed from our simulations, as well as the length scale ζ are given in
Table V. We see that entrainment is much more significant for low Reynolds numbers. In addition,
entrainment is increased at larger Marangoni numbers, which is consistent with the observation that
solid objects, with a no-slip condition similar to that of surfactant-covered drops, entrain more than
liquid droplets [56].

VII. CONCLUSION

Using a VOF front-tracking method, we have studied numerically rising surfactant-laden drops,
examining two cases likely to be relevant to oil drops in the ocean: a drop rising in a uniform
ambient, and one entering a linear density-stratified fluid. In a uniform ambient, theoretical results
are available for creeping flow, and we obtained good agreement with those results at low Reynolds
number. We expanded existing work on surfactant-laden drops rising in a uniform ambient by
accounting for surface diffusion and by examining Reynolds numbers in the range 1 � Re � 20.
Our results thus complement existing results that focus either on relatively large Reynolds numbers
(Re � 50) [29–33] or very small Reynolds numbers (Re < 1) [33]. We have also provided an explicit
formula for the surfactant distribution on the surface of a drop in the Stokes limit of the stagnant cap
regime. The effect of surfactants on the drop dynamics are largely the result of the formation of a
stagnant cap on the lower portion of the rising drop. This cap generally increases the amount of fluid
entrained by the drop. However, this additional resistance due to surfactants is weakened by fluid
inertia, as entrainment decreases with increasing Reynolds number. Surface diffusion, characterized
by a surface Péclet number, was also found to reduce the impact of surfactants, by spreading the
surfactant over the interface, and allowing weak flow in the theoretically stagnant cap, resulting in
weaker surface tension gradients.
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No theoretical results are available for comparison when drops entered a density gradient, as can
be found in the oceans. We observed in our simulations a transition from a steady velocity before
entering the density gradient to a steady deceleration within it. This steady deceleration is due to
the progressive reduction of the buoyancy difference between the drop and the ambient. However,
the instantaneous speed of the drop lagged behind what one would expect from an unperturbed
density profile, owing to the entrainment of heavy fluid by the drop. This velocity lag was observed
to increase linearly with the density gradient, and was greatest for small Reynolds number and large
Marangoni numbers. Moreover, the length of the transition region between the constant entry speed
and the region of steady deceleration was found to increase with Reynolds number. The accurate
description of the dynamics of a rising drop obtained here provides a valuable tool to predict
the progression of surfactant-laden drops released in ambients with complicated density profiles.
The concept of buoyancy lag, introduced here, similar to that of added mass, may also be used to
describe settling of other particles in stratified ambients (e.g., nonspherical drops or solid particles,
porous particles) to provide a simple measurement of the importance of entrainment. Previous
authors [46] used the concept of added drag to explain the retardation of the motion of spherical
particles in a linear stratification. Given that the steady deceleration of a drop or particle through a
linear stratification is described by a balance of buoyancy and drag, the two concepts are related and
may in practice be equivalent.

We have computed tangential velocity profiles for drops moving through uniform and density-
stratified ambients. In the case of a uniform ambient, we quantified the role of surfactant in creating
a stagnant cap on the surface of the drop, as well as the role of diffusion in offsetting that effect.
Our findings are consistent with existing results for spherical bubbles [28,32–35] and for sorption-
controlled surfactant-laden drops [27]. For a density-stratified ambient, we examined the tangential
velocity profile relative to the drop speed and noted that the difference between the maximum
tangential velocity and the drop velocity serves as an approximate measure of the amount of fluid
entrained. It may be possible to construct a more accurate measure of entrainment using tangential
velocities, in particular, by looking at an average of the vertical component of the tangential velocity.
Given that the amount of fluid entrained is difficult to define, such a measure may actually provide
a quantitative definition of entrainment in this case.

One important future extension of this work will be to connect our results for low Reynolds
number with existing results [29–33] for intermediate Reynolds number. As inertial effects become
important, the wake behind drops may become significantly more complex [29,30]. This in turns
has consequences when considering suspensions where several drops interact. While it is a natural
first step to consider a single drop, as we have done here, it is important to understand how rising
drops will interact and the impact surfactants will have in such systems, as oil spills result in large
numbers of drops rising together.

In natural systems, oil drops are eventually degraded by microorganisms. However, the flow
around rising drops affects the ease with which microorganisms can reach the drop’s surface.
Quantifying the accessibility of drops may be done via direct simulations that include swimming
organisms, or by more theoretical considerations, such as the rate of change of the stream function
around the drop. To determine the best long-term approach to managing oil spills, it will also be
important to investigate how surfactants affect the likelihood that oil drops will be degraded as they
rise in the oceans.

Finally, while we have treated the limit case of insoluble surfactants, there is also an important
regime in which the rate of sorption (adsorption and desorption) of surfactants needs to be considered.
In typical applications, drops are generated by the break-up of large oil masses and thus start rising
while virtually surfactant-free. As they encounter surfactants, their dynamics will change, but if
the sorption takes place on the same time scale as the drop motion, opposing effects will compete.
The characterization of the impact of sorption will be a significant step in providing a complete
description of the rising of oil drops in a complex environment.
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