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Dissipation in unsteady turbulence
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Recent experiments and simulations have shown that unsteady turbulent flows display
a universal behavior at short and intermediate times, different from classical scaling
relations. The origin of these observations is explained using a nonequilibrium correction
to Kolmogorov’s energy spectrum, and the exact form of the observed universal scaling is
derived.
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I. INTRODUCTION

Taylor’s dissipation rate estimate [1] and Kolmogorov’s inertial-range scaling [2] are cornerstones
of the description of turbulent flows. In recent experiments [3] it was observed that in a number of
situations where Taylor’s estimate is not valid, another universal expression fits the data, depending
both on the local flow features and the initial conditions. In this Rapid Communication we will show
that these observations can be explained using an unsteady correction to Kolmogorov’s inertial-range
spectrum.

Kolmogorov’s concepts, introduced in the 1940’s, state that the energy distribution among scales
at sufficiently high Reynolds number is completely determined by the scale size and the energy
flux through scales, for scale sizes sufficiently small compared to the most energetic eddies, and
sufficiently large compared to the smallest, dissipative scales. In this range the energy spectrum is
approximately given by the relation

E(κ,t) = CKε(t)2/3κ−5/3, (1)

where ε(t) is the average dissipation rate, κ the wave number, and CK ≈ 1.5 a constant. This relation
is observed, to a good approximation, in a wide range of turbulent flows. Taylor’s dissipation rate
estimate,

ε(t) = Cε

U (t)3

L(t)
, (2)

relates the dissipation rate, which is in principle a small-scale quantity, to the dynamics of the
large-scale quantities U , the rms velocity, and L the integral length scale [4,5]. The insight that
the dissipation can be modeled using large-scale quantities allows for the formulation of simple
engineering models that need not take into account the multiscale character of turbulence. Both
relations are intimately related [6,7] and an estimate of the constant Cε can be obtained using
relation (1) (details are given below). The quantity Cε can be expressed as a function of two distinct
Reynolds numbers, through the relation

Cε ∼ RL(t)

Rλ(t)2
, (3)

where

RL(t) = U (t)L(t)

ν
, Rλ(t) =

√
15

U (t)4

νε(t)
, (4)

where it can be noted that Cε is independent of the viscosity ν.
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Recent experimental studies at Imperial College London, considering decaying wind-tunnel
turbulence behind different types of turbulence-generating grids [8–11], have focused on both the
regions of the flow near the grid, and farther away from it. Their results seem to show that far
away from the grid, if the initial Reynolds number is large enough, the classic result (2) is obtained.
However, in an adjacent region, closer to the grid, another seemingly universal law is observed,

Cε ∼
√

RL(0)

Rλ(t)
, (5)

where RL(0) is determined by the initial conditions. Other research groups confirmed the results
in independent grid-turbulence experiments [12–14] and direct numerical simulations (DNS) [15].
The scaling observed in these experiments seems more general than the case of freely decaying grid
turbulence only, since experiments and simulations of the wakes generated by plates with both regular
and irregular edges show the same tendency [16–18]. Recently, it was shown that in yet another
different type of turbulent flow, where the kinetic energy is maintained at a certain level through an
external forcing, the fluctuations of kinetic energy and dissipation around the long-time-averaged
state can be described by the same law [19].

It is noted that expression (5) is radically different from (3), since expression (5) depends on the
initial conditions and the local flow properties, whereas (3) only involves local quantities. Since,
as stated before, Cε can be related to Kolmogorov’s energy spectrum (1), (5) might suggest a
departure from (1) during the transient, but this is not observed. Our analysis explains these puzzling
results. In particular, it is shown that the observation of (5) is related to a subdominant correction
to Kolmogorov’s energy spectrum first proposed in Ref. [20]. In the next section we reproduce a
simple derivation of this nonequilibrium correction. In Sec. III, the correction to the dissipation rate
estimate is determined. In Sec. IV, the derived relations are compared to existing experimental and
numerical results. Section V concludes this paper.

II. DERIVATION OF THE NONEQUILIBRIUM ENERGY SPECTRUM

We reproduce here the simplest possible derivation of the nonequilibrium correction to the
energy spectrum. The same results were obtained by Refs. [21,22] using similarity arguments, using
Kovaznay’s closure in Ref. [23], and using more sophisticated closures in Refs. [20,24].

We start from the evolution equation for the kinetic energy spectrum at high Reynolds numbers
at scales where both production and dissipation mechanisms can be neglected,

∂tE(κ,t) = −∂κ�(κ,t), (6)

where �(κ,t) is a flux of energy which should vanish at κ = 0 and κ = ∞. This relation states that
in a steady state, where the left-hand side vanishes, in the inertial range, the flux is conserved (and
thus independent of κ), so that the right-hand side also vanishes.

We make the assumption that we can decompose the energy spectrum into its equilibrium and
nonequilibrium parts,

E(κ,t) = E(κ,t) + Ẽ(κ,t). (7)

It is extremely important for the following to note that both parts are a function of time and that this
is not a separation of the energy distribution in a steady and an unsteady part. The determination
of the equilibrium part of the flow will be discussed in Sec. IV A. For the moment we will content
ourselves by defining the equilibrium part of the turbulence as the part for which the flux is not a
function of scale �̄(κ,t) = ε(t) and therefore ∂κ (� + �̃) = ∂κ�̃, yielding for the evolution of the
spectrum,

∂tE(κ,t) = −∂κ�̃(κ,t), (8)

where we focus on the analytically tractable case of small nonequilibrium, |∂t Ẽ(κ,t)| � |∂tE(κ,t)|.
It is at this point that we need the introduction of an assumption on the functional form of the flux.
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In the present derivation, we consider Kovaznay’s model [25] for the flux,

�(κ,t) = C
−3/2
K κ5/2E(κ,t)3/2. (9)

The choice of this model will limit our considerations to the inertial-range interval of the energy
distribution. More complicated closures would be needed to take into account a realistic infrared
range for small κ , or more complex situations where anisotropy or inhomogeneity are present.
Expression (9) immediately yields, when �(κ,t) = ε(t), that E(κ,t) is given by

E(κ,t) = CKε(t)2/3κ−5/3. (10)

Introducing (7) into (9) yields for small perturbations

�(κ,t) = C
−3/2
K κ5/2E(κ,t)3/2

(
1 + 3

2

Ẽ(κ,t)

E(κ,t)

)
= ε(t)

(
1 + 3

2

Ẽ(κ,t)

E(κ,t)

)
. (11)

Substituting this into expression (8) gives upon integration

Ẽ(κ,t) = CK�ε(t)ε(t)1/3κ−7/3, (12)

with

�ε(t) = 2CK

3

ε̇(t)

ε(t)
. (13)

It is this new frequency �ε in the dynamics which allows one to find the k−7/3 scaling in Eq. (12)
as a first linear correction to classical scaling, as for the shear-stress spectrum in homogeneous
shear flow, where the mean-velocity gradient is introduced as the typical frequency [26]. The small
parameter in our derivation is Ẽ(κ,t)/E(κ,t). Combining the Kolmogorov scaling with (12), one
finds that

Ẽ(κ,t)

E(κ,t)
= �ε(t)ε(t)−1/3κ−2/3, (14)

showing that the validity of the approximation should improve as the wave number increases.
Both spectra (10) and (12) are a function of time. The equilibrium part describes thus not

necessarily a steady state, and temporal fluctuations are therefore not purely described by (12),
since if they are slow enough, they will have time to adapt to the equilibrium distribution (10). The
observation of the nonequilibrium scaling (12) is not straightforward, since it is subdominant with
respect to the Kolmogorov spectrum (10). Conditional averaging allows one, however, to extract the
unsteady energy spectrum, as was illustrated in Ref. [23], where a clear κ−7/3 wave-number spectrum
was observed in a statistically steady turbulent flow simulation. The difference in wave-number
scaling between E(κ,t) and Ẽ(κ,t) is the origin of the observations of a nonclassical, but universal,
transient scaling of the dissipation rate. We will elaborate on that in the following. We note that the
possible relevance of the spectrum suggested by Yoshizawa (12) to estimate the dissipation rate in
unsteady turbulence was already mentioned in Ref. [27].

III. DERIVATION OF THE NEW DISSIPATION SCALING

To simplify the considerations we assume the two scalings (10) and (12) to hold in the wave-
number interval between κ0, the forcing scale, and κη, the Kolmogorov scale, given by

κη ∼ ε(t)1/4

ν3/4
. (15)

Outside this interval the kinetic energy is assumed to be zero, for analytical convenience. We
have also considered more complicated spectra adding a more realistic infrared energy range (as
in Ref. [7]) and the results hereafter were shown to be robust. All quantities will be decomposed
into their equilibrium part, indicated by an overbar, and their nonequilibrium part, indicated by an
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overtilde. For instance, Cε = Cε + C̃ε , ε = ε + ε̃, etc. The equilibrium kinetic energy is computed
by integrating expression (10),

k(t) =
∫

E(κ,t)dκ = (3/2)U (t)2, (16)

and, similarly, the nonequilibrium energy is obtained from Eq. (12). The integral length scale is
defined by

L(t) = 3π

4

∫
κ−1E(κ,t)dκ∫

E(κ,t)dκ
≡ 3π

4

I(t)

k(t)
, (17)

where we introduced I(t) ≡ ∫
κ−1E(κ,t)dκ for later convenience. The dissipation can be computed

from the energy spectrum by

ε(t) = 2ν

∫
κ2E(κ,t)dκ, (18)

where all integrals are evaluated on the interval [κ0,κη]. Carrying out these integrals using (10) to
evaluate U and L [expressions (16) and (17)], and substituting these expressions in Kolmogorov’s
and Taylor’s expressions (1) and (2), it is immediately found that the equilibrium value of the
normalized dissipation rate is

Cε = 3π

10
C

−3/2
K ≈ 0.51. (19)

This value is thus the inertial-range estimate of Cε , assuming a spectrum given by (1) on the
interval [κ0,κη]. Despite such gross assumptions on the shape of the energy spectrum, its value
is actually close to the value observed in direct numerical simulations of forced high Reynolds
numbers turbulence where values around 0.5 are observed [5]. In the following, we will omit the
time dependence of the different quantities to lighten the notation. It should, however, be kept in
mind, as we stressed before, that both the equilibrium and the nonequilibrium quantities can depend
on time.

Since Cε ∼ εI/k5/2, we can write without any approximations

Cε

Cε

=
(
1 + ε̃

ε

)(
1 + Ĩ

I
)(

1 + k̃

k

)5/2
. (20)

The different quantities in this expression are obtained by integrating expressions (16)–(18) over the
interval [κ0,κη], using the spectra (10) and (12) for the equilibrium and nonequilibrium contributions,
respectively. For instance, it is found that

ε̃

ε
= 2�ε

ε1/3κ
2/3
η

and
k̃

k
= �ε

2ε1/3κ
2/3
0

, (21)

where we have assumed κ0 � κη. Since in the equilibrium state κ0/κη ∼ R
−3/2
λ , we find that

ε̃

ε
∼ R−1

λ

k̃

k
, (22)

which is a direct consequence of the k−7/3 scaling of Ẽ(k). This shows that the ε̃/ε term in Eq. (20) is
negligible. This indicates also that the temporal dissipation rate fluctuations observed in Refs. [19,27]
are mainly related to the equilibrium distribution E(k,t) of the flow and negligibly contribute to the
nonequilibrium part of the dissipation rate. We further find that Ĩ/I = (10/7)̃k/k. The expression
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for large Reynolds numbers is therefore

Cε

Cε

≈
(
1 + 10

7
k̃

k

)(
1 + k̃

k

)5/2
. (23)

Evaluating the Reynolds number, one finds analogously

Rλ

Rλ

≈
(

1 + k̃

k

)
, (24)

where Rλ is given by (4) using the equilibrium values U and ε. To obtain these two expressions
we have thus only assumed that the Reynolds number is high and that the energy spectrum can be
represented by (10) and (12) between κ0 and κη. We consider the case where k̃/k is small, for which
the nonequilibrium scaling (12) was derived, so that we can use a Taylor expansion to rewrite (23)
as

Cε

Cε

≈
(

1 + k̃

k

)−15/14

=
(

Rλ

Rλ

)−15/14

. (25)

and this is our prediction for the Reynolds number dependence of the normalized dissipation rate. To
appreciate the similarity with the experimentally observed power law (5), one needs to realize that√

RL(0) ∼ Rλ [combining expressions (2) and (4)] and that Cε is a constant, so that this expression
can be rewritten as

Cε ∼
(√

RL(0)

Rλ(t)

)15/14

, (26)

and we find to a good approximation expression (5). Indeed, the difference between (5) and (26) will
in most cases be small enough to fall into experimental error bars or the convergence of statistical
averages in simulations. We further mention here also that in the experimental and numerical
investigations reported in Ref. [3], the possibility was left open that the exponents are not exactly,
but only close to, the ones in expression (5).

IV. COMPARISON WITH EXISTING RESULTS

A. Determining the equilibrium state

At this point we will compare to existing results from the literature. A subtle point is how one
can identify the equilibrium part of a flow. The quantities that we need to determine first are the
equilibrium values U , L, and ε. We have considered here isotropic turbulence. For such flows the
equilibrium state is the Kolmogorov constant flux state, where

�̄(κ,t) = ε(t). (27)

Such a state needs an energy input at large scales which is in equilibrium with the dissipation ε(t) at
small scales. Probably the best approximation of a constant flux state can be obtained in DNS with
an external forcing term. In practice, due to the finite size of the simulated domain, fluctuations of
the energy input and the dissipation rate will always lead to a certain amount of imbalance. The time
average of the energy injection will, however, balance the time-averaged energy dissipation, so that
for such flows the equilibrium values of U , L, and ε are obtained by time averaging.

The comparison of our prediction with existing experimental results on grid-generated turbulence
in a wind tunnel is not straightforward since in the vicinity of the grid the turbulence is not statistically
homogeneous, nor isotropic. It is in this production zone where the kinetic energy is injected into
the flow by the shear layers generated by the wakes of the grid bars. The constant flux state, where
the dissipation is in equilibrium with the production, corresponds to the point in the flow where the
kinetic energy attains its maximum. At short distances beyond this point the equilibrium spectrum
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FIG. 1. The prediction of the normalized dissipation rate as a function of the Reynolds number ratio Rλ/Rλ,
expressions (25) and (29), compared to numerical [19] and experimental [10] results.

can be considered constant in time, compared to the nonequilibrium part. For larger times the
equilibrium spectrum will evolve. We do not have access to experimental results for the equilibrium
energy distribution at later times and we will therefore use the flow at the energy peak to estimate
the equilibrium values of the different quantities in our comparison with experiment.

B. The dissipation scaling

As mentioned above, for a forced DNS in a statistically steady state the equilibrium is
straightforwardly identified by time averaging. Furthermore, in a periodic domain, an instantaneous
space average will tend to the same ensemble average, if the volume over which it is averaged contains
a sufficient number of flow structures. In practice, this is never the case and temporal fluctuations
will be observed around a long-time-averaged flow [19]. These box-averaged fluctuations are not
necessarily in equilibrium and will thereby give rise to an evolution of Cε . We have plotted in
Fig. 1 the results of Fig. 3 of Ref. [19] for the fluctuations of Cε around its average value for their
highest Reynolds number (700 < Rλ < 1000) as a function of the ratio of the Reynolds number to
its time-averaged value which we call Rλ. It is observed that those results are in perfect agreement
with our prediction.

We have also attempted a comparison with the experimental results reported in Ref. [10]. We
have replotted in Fig. 1 the data from their Fig. 6, where the Reynolds number varies in the range
290 > Rλ > 111. As argued above, we have considered their first data point, corresponding to the
peak value of the kinetic energy, as the equilibrium state determining Rλ. At this point a value of
Cε ≈ 0.5 is found for the equilibrium value of the normalized dissipation rate. It is observed that the
experimental results, as the simulation, reproduce the theoretical prediction (25) exactly.

At this point, an open question is whether our analysis is relevant for decaying turbulence at long
times, where Cε settles to a constant value, different from its equilibrium value. We will consider
the case where the kinetic energy decays following a power law k = k0(t/t0)−n. The precise values
of the reference quantities k0 and t0 are not important in the following. Deriving this expression
for k twice to obtain expressions for ε and ε̇ gives ε̇/ε = −(n + 1)/t and ε/k = n/t . Using these
relations, integrating Eqs. (10) and (12), and eliminating κ0 from the expressions, it is immediately
found that

k̃

k
= −2

9

n + 1

n
, (28)
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and therefore we find for the dissipation rate constant using (25),

Cε

Cε

≈
(

9n

7n − 2

)15/14

. (29)

The value of n is in general contained in the range 1�n�2, leading to the ratio 1.8�Cε/Cε �1.54,
which is a rather realistic range of values when compared to experiments and simulations [7]. In
Fig. 1 we have added the asymptotic value Cε/Cε = 1.75 corresponding to a decay exponent n = 1.2,
typical for decaying grid-generated turbulence, which fits the long-time data accurately. Self-similar
decay is therefore, in our framework, not an equilibrium, but a state where the disequilibrium is a
constant fraction of the total kinetic energy, k̃(t)/k̄(t) �= f (t).

These ideas explain why in the experimental and numerical results in Ref. [3] the Reynolds
number decays before Taylor’s expression is observed. Indeed, the imbalance is not a low-Reynolds
number effect and in the experiments and simulations the Reynolds number is in principle high
enough to observe both Taylor’s and Kolmogorov’s scaling. However, the evolution of both Rλ and
Cε is a function of k̃/k. In turbulent flows in which the kinetic energy at long times decays following
a power law, this latter quantity evolves from zero to a constant value, given by expression (28). The
Reynolds number decays thus during the nonequilibrium transient from its initial value to a value

Rλ

Rλ

≈ 7n − 2

9n
. (30)

When this phase is attained and both Rλ and Rλ decay following power laws, this ratio remains
constant.

C. Time evolution of turbulent length scales

Following the above arguments, we can also predict how the ratio of the integral to Taylor length
scale evolves during the nonequilibrium phase. The Taylor scale is given by

λ =
√

10νk

ε
. (31)

Combining this relation with the definition (17) for L, we find using the same arguments as for Cε ,
that

λ/L

λ/L
=

(
Rλ

Rλ

)1/14

. (32)

0.8

1

0.5 1

Rλ
1/14Rλ

-1/2

(λ
/L

)/
(λ- /L- )

Rλ/R
-

λ

FIG. 2. The prediction of the ratio of the Taylor scale to the integral scale on the Reynolds number ratio
Rλ/Rλ, compared to experimental [10] results.
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This small value of the exponent explains why it was observed that the length-scale ratio in the
experiments remained approximately constant in the region of the flows where the nonequilibrium
scaling was observed. In Fig. 2 it is observed that this power-law accurately describes the data. When
the Reynolds number drops to the value corresponding to expression (30), the classical dependence
is retrieved, where

λ/L

λ/L
=

(
Rλ

Rλ

)−1/2

. (33)

V. CONCLUSION

We have presented a simple framework which allows one to interpret the nonequilibrium scaling
observed in practically all the experiments and simulations mentioned in Ref. [3]. The present
analysis is important for the modeling and understanding of turbulent flows since the nonequilibrium
transient can be long and in many situations a self-similar decay might not even be reached before
the flow is perturbed by the influence of boundaries, or because the Reynolds number has decayed
too much for (1) and (2) to be valid. Given the agreement with experiments and simulations, the
analytical results from the present investigation suggest that the normalized dissipation in a wide
class of unsteady turbulent flows can be described by the same, fairly simple, relations.

Expression (25) constitutes the main result of the present work. However, it is not the exact
value of the exponent, which is close to the experimental observations, that is of interest. Indeed,
its precise value can change slightly as a function of the detailed shape of the energy spectrum. We
have checked this by assuming more realistic shapes for the energy containing range, and the results
are robust, but the power-law exponent can somewhat change. What is of greater importance is that
the foregoing analysis gives a firm theoretical basis for the transient behavior of turbulent flows.
The only nontrivial ingredient in the derivation is the shape of the unsteady energy spectrum E(κ,t)
[expression (12)]. The present analysis complements thereby recent investigations, suggesting that
spectral imbalance [27,28] and large-scale coherence [29] are behind the universal scaling of Cε in
nonequilibrium turbulence.

Since this, rather simple, framework for unsteady turbulence allows one to explain practically
all the experimental observations in the transient, unsteady phase of developing turbulent flows
[3], it is plausible that engineering models can be improved by taking these ideas into account.
We further think that the understanding of more complicated flows can greatly benefit from the
insights obtained in this Rapid Communication. For this to be successful, the ideas developed here
for isotropic turbulence should be extended to other configurations, such as shear flows and turbulent
boundary layers. Defining an equilibrium flow for anisotropic and inhomogeneous flows is more
delicate, but since the nonequilibrium scaling for the dissipation also describes the turbulent wakes of
plates [16–18], we think that at least part of the present ideas can be transposed to more complicated
flows.
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