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Topological features and properties associated with development/decay
of vortices in isotropic homogeneous turbulence
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Topological features of vortices in terms of local flow geometry in an isotropic
homogeneous turbulence and relationships between the topology and development of a
vortex are investigated. Swirlity and sourcity represent the unidirectionality and intensities
of the azimuthal and radial flows, respectively. Skewness reflects the symmetry quantity
of the vortical flow. Together, the three quantities characterize the details of the invariant
flow geometry. The analysis shows that flow symmetry is correlated with swirlity, and
associated with its development or decay, especially for weak vortices. Stronger vortices
exhibit lower correlations between the two and lack sufficient flow symmetry for inflow
in all directions. This clarifies why highly intense vortices cannot attain effective vortex
stretching. Vortex stretching is formulated in terms of the radial flow in the swirl plane. It
shows that stretching is not entirely characterized by the eigenvalues of the rate-of-strain
tensor, and depends on the eigenvalues of the radial flow classified by sourcity. Sourcity
shows that numerous vortices, which have been classified as inflow (convergent) vortices
using the complex eigenvalues of the velocity gradient tensor, have a mixture of inflow
and outflow. These vortices break the orthogonality of the vortical axis to the swirl plane
during vortex stretching. Stretching in vortices with complete inflow increases vorticity
normal to the swirl plane effectively and improves axis orthogonality. Sourcity classifies
these characteristics, and flow symmetry and sourcity are important quantities for effective
stretching. The present topological analysis provides important details of vortical flow
features in turbulent flows or realistic vortex models, and sourcity extracts the specific
vortical region supported by the flow geometry itself.
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I. INTRODUCTION

Vortices are associated with many fluid phenomena at various scales, as is evident in their
appearance in various turbulences and fluid engineering fields from huge power plants to micro-scale
objects. Clarification of such vortical flow phenomena is not only of great interest in fluid dynamics
but also important in many fluid engineering techniques. An important characteristic of a vortex
with swirling flow is its stability or development arising from its flow geometry (topology). A
flow symmetry is associated with this stability of the vortex [1]. Also, vortex stretching [2,3] is
a particular feature that strengthens the vorticity of swirling by an inflowing motion in the swirl
plane. Hence, it is important to specify the detailed vortical flow geometry and its relationships to
the development/decay of a vortex.

Previous studies in terms of the vorticity vector and rate-of-strain tensor gave useful findings
stating that the vorticity vector tends to align with the eigenvector of the intermediate eigenvalue of
the rate-of-strain tensor in isotropic homogeneous turbulence or shear flow [3–5]. The characteristics
of the vortex stretching in isotropic homogeneous turbulence have also been investigated in detail
[3], and it has been shown that intense vortices (high vorticity region) do not attain sufficient
vortex stretching even though the rate-of-strain tensors have similar intensities. Furthermore, the
eigenvalues of the velocity gradient tensor ∇v have aided in a classification of the local flow geometry
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or flow pattern that is Galilean invariant, and have been applied to analyze the topological features
of vortices in different turbulence settings such as the mixing layer [5] and channel flow [6]. The
eigenvalues have also been applied to an important vortex definition of the � definition [7] or other
identification methods of a vortex or vortical axis [8–14]. The complex eigenvalues of ∇v, say
εR ± iψ (i: imaginary unit), specify the invariant swirling motion, and the sign of εR has been used
to classify the vortex as inflow (convergent, stable) or outflow (divergent, unstable) [7,8], and the
second and third invariants of ∇v can be substituted in this classification.

Despite the contribution of these valuable studies, the feature of vortical flow symmetry is
unexplained. The details of topological analysis to complement it have been sought [6], and
complex eigenvalues have been used in the lack of their precise physical interpretation. Recently, this
interpretation and supplemental topological quantities has been derived by investigating the local
velocity specified by ∇v decomposing into the radial and azimuthal velocities, vr and vθ , in a plane.
vr and vθ are expressible as specific quadratic forms [15], and characteristics of the their eigenvalues
specify εR and ψ . The algebraic condition of the complex eigenvalues of ∇v (the � definition) is
equivalent to the geometrical condition that vθ has the same direction, and it also shows that both
inflow and outflow may exist irrespective of the sign of εR . Then several physical quantities were
defined that specify unidirectionality of vr and vθ , and vortical flow symmetry (skewness). One of
symmetry quantities is associated with the pressure minimum feature in the swirl plane in a unified
vortex definition of the �, Q [16], and λ2 [17] definitions [18,19].

The present paper investigates the characteristics of the detailed vortical flow geometry with these
quantities described above, and the relationship between the flow geometry and development/decay
of a vortex in terms of an intensity of swirling, i.e., swirlity [15]. We analyze vortices in isotropic
homogeneous decaying turbulence with low Reynolds number, as a principal feature of a vortex.
The joint probability density functions (JPDFs) are used for the analysis in accordance with the
previous topological studies [3–6], including time derivatives of the quantities. The analysis shows
that the vortical flow symmetry is strongly associated with the swirlity and its development/decay
especially in weak vortices. A vortex prefers the increase of the symmetry rather than increase of
vorticity only by becoming a skewed vortex.

Moreover, vortex stretching in terms of the enstrophy production is expressed by a formulation
with respect to the swirl plane. It clarifies the detailed effect of the stretching in the swirl plane and
its normal direction, and shows that the eigenvalues of the rate-of-strain tensor may exaggerate the
effect. Importantly, besides the enhancement of swirling, the stretching increases or decreases the
orthogonality of a vortical axis to the swirl plane due to the effect in the plane, this feature being
categorized by sourcity [15] that specifies the uniformity and intensity of vr . This study also details
why high-intensity vortices do not have a strong or effective vortex stretching supporting the flow
geometry itself.

II. INVARIANTS SPECIFYING THE VORTICAL FLOW GEOMETRY

We introduce the physical quantities (invariants) used in the present study that characterize the
intensities of swirling, radial flow in all directions, and symmetry [15]. The local flow geometry
around a point given by coordinates xi (i = 1,2,3), where the local velocity is expressed as dxi/dt =
(∂vi/∂xj )xj , can be specified by the eigenvalues and eigenvectors of ∇v at the point in terms of
Galilean invariance [7]. Note that the summation convention is used throughout. Since ∇v has at
least one real eigenvalue εa with corresponding eigenvector ξ a , we consider the flow geometry in
an arbitrary plane linearly independent of (not parallel to) ξ a . In an (arbitrary) coordinate system x̃i

(i = 1,2,3) where the point is the origin in which the x̃3 axis is parallel to ξ a and the x̃1-x̃2 plane is the
considered plane, the components of ∇v form a matrix, Ã ≡ [ãij ] ≡ [∂ṽi/∂x̃j ] (i,j = 1,2,3), which
has the feature that ã13 = ã23 = 0 and ã33 = εa because the x̃3 axis is the invariant subspace of ∇v.
We focus on the velocity v̂ = (v̂1,v̂2) in the x̃1-x̃2 plane, i.e., v̂i = ãij x̃j (i,j = 1,2), and decompose
it into its azimuthal and radial components, vθ and vr , respectively. Note that v̂ = vr er + vθ eθ ,
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where er = 1/|x̂|(x̃1,x̃2) and eθ = 1/|x̂|(−x̃2,x̃1), x̂ = (x̃1,x̃2), and |x̂| = √
x̃i x̃i (i = 1,2). Then vθ

is expressed as

vθ = 1

|x̂|
t x̂ Qθ x̂, (1)

Qθ =
[

ã21 −(ã11 − ã22)/2
−(ã11 − ã22)/2 −ã12

]
, (2)

where the superscript t before a vector denotes its transpose. The eigenvalues λθi
(i = 1,2; λθ1 � λθ2 )

of Qθ are given as λθ1 ,λθ2 = (ã21 − ã12)/2 ±
√

(ã11 − ã22)2 + (ã12 + ã21)2/2. If the signs of λθi
are

the same, then vθ is unidirectional around the considered point and hence indicates a swirling
flow. Importantly, the condition λθ1λθ2 > 0, i.e., | Qθ | > 0, is equivalent to the algebraic condition
for the complex eigenvalues of ∇v (the � definition [7]) specifying the invariant swirling motion
expressed by the inequality: � = (Q/3)3 + (R/2)2 > 0, where Q and R represent the second and
third invariants of ∇v, respectively. Thus � > 0 is equivalent to the condition that flow swirls in an
arbitrary plane independent of (not parallel to) ξ a . Calculating λθ1λθ2 yields the following equation:

λθ1λθ2 = Q + 3

4
ε2
a. (3)

Here “swirlity” φ is defined as

φ = sgn
(
λθ1λθ2

)√∣∣λθ1λθ2

∣∣, (4)

where sgn(y) denotes the sign of y ∈ R. φ represents the uniformity (or nonuniformity) of the
direction of vθ and the intensity of the geometrical average of λθi

(i = 1,2). If φ < 0 (λθ1λθ2 < 0),
the azimuthal flow is not unidirectional around the point.

Similar to vθ , vr can be expressed also as vr = t x̂ Qr x̂/|x̂| where Qr is equal to the rate-of-
strain tensor in the plane. The eigenvalues λri

(i = 1,2; λr1 � λr2 ) of Qr are given as λr1 ,λr2 =
(ã11 + ã22)/2 ±

√
(ã11 − ã22)2 + (ã12 + ã21)2/2, and the two eigenvectors ζ ri

(i = 1,2) of λri
are

orthogonal. The inflowing (outflowing) motion in all directions is specified by λr1λr2 = | Qr | > 0.
“Sourcity” σ represents the uniformity and intensity of the radial flow as a geometrical average, and
is defined as

σ = sgn
(
λr1λr2

)√∣∣λr1λr2

∣∣. (5)

If σ < 0, vr is not unidirectional and has both inflowing and outflowing motion, that is, inflowing
motion appears in the ±ζ r1 direction, and outflowing motion in the ±ζ r2 direction.

In vortical flows for which 0 < φ, i.e., 0 < �, ∇v has a pair of complex conjugate eigenvalues
εR ± iψ (ψ > 0) and one real eigenvalue (εa), their respective eigenvectors being ξpl ± iηpl , and
ξ a . Then the flow trajectory can be represented as x = 2eεRt {ξpl cos(ψt) − ηpl sin(ψt)} + eεatξ a ,
where the local flow swirls with an angular velocity ψ in the plane defined by ξpl and ηpl , hereafter
referred to as the swirl plane P , and proceeds (or approaches) along a vortical axis ξ a . ξpl and ηpl

can be orthogonal, i.e., ξpl⊥ηpl . It is noted that, the ratio of their lengths, i.e., α = |ξpl |/|ηpl|, are
specified by the eigenequations of A: A(ξpl ± iηpl) = (εR ± iψ)(ξpl ± iηpl).

In the x̃i coordinate system, we set the unit bases of the x̃i (i = 1,2) axes, ẽ1 and ẽ2, parallel to
ξpl and ηpl , respectively, so that the x̃1-x̃2 plane is P , that is, the invariant subspace of ∇v. Then Ã
can be expressed in the form

Ã =
⎡
⎣ εR αψ 0

−ψ/α εR 0
0 0 εa

⎤
⎦. (6)
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We note that |ã12| �= |ã21| except when |ξpl | = |ηpl| (α = 1). λθi
(i = 1,2) inP , say λ̆θi

, are expressed
as the invariant

λ̆θ1 ,λ̆θ2 = −ψ/c, − cψ = ωs ±
√

ω2
s − ψ2, (7)

where c = α (α < 1) or 1/α (1 � α), and ωs = −(α + 1/α)ψ/2. ωs denotes the component of the
vorticity tensor corresponding to P , and is associated with the eigen-helicity density defined by
Zhang [14]. Clearly, λθ1λθ2 > 0 and φ = ψ , thus φ is identical to the swirling strength parameter
[11] if 0 < �. However, φ is defined for both vortical and nonvortical flows, and can indicate a
transition into vortical flow [20].

In contrast, for vr , λri
(i = 1,2) in P , say λ̆ri

, and σ are given as

λ̆r1 ,λ̆r2 = εR ± 1

2

∣∣∣∣c − 1

c

∣∣∣∣ψ, (8)

σ = sgn(ι)
√

|ι|, (9)

ι = ε2
R − 1

4

(
c − 1

c

)2

ψ2. (10)

That is, λ̆ri
and σ are also given by invariants. Importantly, although the sign of εR has been interpreted

as classifying a convergent (inflowing) or divergent (outflowing) vortex behavior [7,8], εR denotes the
arithmetic mean of λ̆ri

, i.e., εR = (λ̆r1 + λ̆r2 )/2. Therefore, it cannot distinguish unidirectional radial
flow from mixed inflow and outflow [15]. Hereafter we use the terms “average-inflow (outflow)
vortices” for those classified by the sign of εR , and “whole-inflow (outflow) vortices” for those
classified by εR satisfying 0 < σ .

The ratios of λθi
(i = 1,2) and of λri

are associated with the respective flow symmetry of the
azimuthal and radial flows in P . α (c) is associated with both symmetries, and hence the whole
vortical flow symmetry. Importantly, the local vortical flow geometry differs depending on α even
though ∇v has the same complex eigenvalues, as shown in Fig. 1. The two orthogonal eigenvectors
ζ θi

(i = 1,2) of λθi
can be specified as ζ θ1 = ẽ2 (ζ θ1 ‖ ηpl) and ζ θ2 = −ẽ1 (ζ θ2 ‖ ξpl). The directions

of ζ ri
(i = 1,2) are given by rotating ẽi (i = 1,2) in π/4 clockwise, e.g., ζ r1 = 1/

√
2(1,−1) and

ζ r2 = 1/
√

2(1,1).
It is emphasized that, although past studies of the flow geometry (topology) using Q and R or the

vorticity have not considered α (c), this quantity is necessary to specify the flow geometry uniquely.
α is defined in (0,∞), thus c (0 < c � 1) is a normalized quantity of α that represents the flow
symmetry or skewness, although the direction of the skewness is lacked. As c changes from 0 to 1,
the deformed vortical flow geometry becomes symmetrical. In the present analysis, c is applied as a
quantity for the flow symmetry.

III. VORTEX STRETCHING

The vortex stretching term as enstrophy production in the vorticity equation, say δ, can be
expressed as δ = tωSω = ωisijωj where ω = [ωi] and S = [sij ] (i,j = 1,2,3) denote the vorticity
vector and the rate-of-strain tensor, respectively [2,3]. We derive the representation of δ in terms
of λri

and εa . First, we consider a representation of ∇v in an orthonormal coordinate system x̌i

(i = 1,2,3) with bases ěi (i = 1,2,3) where ě1 and ě2 are parallel to ξpl and ηpl , respectively. Then
∇v (= Ǎ = [ǎij ]) can be expressed in the form

Ǎ =
⎡
⎣ εR αψ ǎ13

−ψ/α εR ǎ23

0 0 εa

⎤
⎦. (11)
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FIG. 1. Flow motions (v̂) in P and decomposed vθ eθ and vr er with contours of t x̂ Qθ x̂ and t x̂ Qr x̂.
(a) and (b) show the flows with the same eigenvalues (εR,ψ) = (−1,2) but different c where (a) c = 0.8 (=α)
and σ � 0.89, and (b) c = 0.4 (α = 2.5) and σ � −1.85. (c) a representative flow of an intense vortex where
|ψ/εR| = 4 (εR < 0), c = 0.8, and σ � −1.1. Note that for clarity the vector lengths are adjusted in their
respective figures.

Note that ξ a is not orthogonal to P (not parallel to ě3) in general, and thus ǎ13,ǎ23 �= 0. ǎ13 and ǎ23

can be expressed in terms of ω in this coordinate system, ω̌ = [ω̌i] (i = 1,2,3), i.e., ǎ13 = ω̌2 and
ǎ23 = −ω̌1. ω̌1 and ω̌2 are given by ξpl and ηpl : ω̌1 = (ω,ξpl)/|ξpl| and ω̌2 = (ω,ηpl)/|ηpl|. When
ω̌1 = ω̌2 = 0, then ǎ13 = ǎ23 = 0 and therefore ξ a⊥P . λθi

and λri
(i = 1,2) in the x̌1-x̌2 plane, λ̌θi

and λ̌ri
, are the same as those given by Eqs. (7) and (8).

We consider another orthonormal coordinate system x̂i (i = 1,2,3) where the bases ě1 and ě2

are rotated in P by π/4 clockwise, so that the two bases are identical to ζ ri
(i = 1,2). S in this

coordinate system, Ŝ = [ŝij ] (i,j = 1,2,3), is expressed in the form

Š =
⎡
⎣ λ̌r1 0 â13/2

0 λ̌r2 â23/2
â13/2 â23/2 λ̌r3

⎤
⎦, (12)

where â13 = (ǎ13 − ǎ23)/
√

2, â23 = (ǎ13 + ǎ23)/
√

2, and λ̌r3 = εa . Then δ is expressed simply as

δ = λ̌r1 ω̂
2
1 + λ̌r2 ω̂

2
2 + λ̌r3 ω̂

2
3, (13)

where ω̂i (i = 1,2,3) are the vorticity vector components in this x̂i coordinate system and ω̂1 =
(ω̌1 − ω̌2)/

√
2, ω̂2 = (ω̌1 + ω̌2)/

√
2, and ω̂3 = ω̌3 = 2ωs . Equation (13) is a formulation of δ in

terms of the local vortical flow geometry and its swirl plane, and expressed by λ̌ri
and εa . The
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FIG. 2. Characteristics of �Š(λ) (line) and �S (dashed line), where [λ̌ri ] = (−4/3,1/3,1), (ω̂1,ω̂2) =
(2.4,2), σ = −2/3, and [λsi ] = (−1.8,−0.3,2.1). Note that λs2 < 0 but 0 < λ̌r2 . If ω̂1 = ω̂2 = 0, then
�Š(λ) = �S .

associated quantities are then neither the norm ŝij ŝij nor eigenvalues of S, but the eigenvalues of vr

in P and real eigenvalue of ∇v.
We clarify the relationship between λ̌ri

and the eigenvalues of S, λsi
(i = 1,2,3; λs1 � λs2 � λs3 ).

The eigenequation of S in terms of Š, �Š(λ), can be expressed as follows:

�Š(λ) = �Š(λ) − 1

4
ω̂2

1

(
λ̌r1 − λ

) − 1

4
ω̂2

2

(
λ̌r2 − λ

)
, (14)

where �Š(λ) ≡ (λ̌r1 − λ)(λ̌r2 − λ)(λ̌r3 − λ). Equation (14) depends on ω̂1 and ω̂2 (ω̌1 and ω̌2).
Moreover, it indicates �S(λ̌r1 ) < 0 and �S(λ̌r2 ),�S(λ̌r3 ) > 0. Then λsi

satisfy λsi
< λ̌ri

(i = 1,2)
and λ̌r3 � λs3 , which indicates that the intensities of the compression and vortex stretching are
smaller than the eigenvalues of S. More importantly, even if the two eigenvalues of S are negative,
i.e., λs2 < 0, there are two types of the vortex stretching: (i) stretching with compression inP (inflow;
λ̌r1 ,λ̌r2 < 0) and (ii) stretching with a combination of compression (inflow; λ̌r1 < 0) and stretching
(outflow; 0 < λ̌r2 ) in P . Figure 2 illustrates this feature of two negative eigenvalues for S where
both compression (inflow) and stretching (outflow) in P exist.

IV. NUMERICAL ANALYSIS

The vortices in isotropic homogeneous decaying turbulence are analyzed using the pseudospectral
method in a region (2π )3 composed of 2563 nodes. For the wavenumber vector k = (k1,k2,k3), |k| <

121 where |k| = (kiki)1/2, and the phase shifting method is used for dealiasing [21]. The time step is
0.001 in the fourth-order Runge-Kutta method. An energy spectrum E(k) = (k/kp)4 exp{−2(k/kp)2}
(k = |k|,kp = 4) [13] gives the initial velocity field with random phases of k, with settings for
the (initial) Taylor-Reynolds number Reλ = 311, Taylor microscale λT = 0.59, Kolmogorov length
η = 0.015, and eddy turnover time teddy = 1.14. The kinetic viscosity is 0.002. φ, εR , and σ , and other
physical quantities are nondimensionalized by their root mean square values in the corresponding
time. δ and the components of the vortex stretching λ̌ri

ω̂2
i in Eq. (13) (i = 1,2,3) are divided by |ω|2

and nondimensionalized by the root mean square value of the vorticity [3], and they are expressed
as δ′ and λ̌′

ri
ω̂2

i (ε′
aω̂

2
3 for i = 3) to denote the rate of the enstrophy production.

Figure 3 shows the characteristics of the JPDFs associated with |ω|, |s| and δ′ in Reλ � 35,51
after the peak of the enstrophy, where |ω| and |s| denote

√
ωiωi and

√
sij sij , respectively,

nondimensionalized by their respective root mean squares. δ′ increases only slightly with higher
values of |ω| despite |s| and |ω| being of the same order with |s| being higher.

These JPDFs of (|ω|,|s|) and (|ω|,δ′) in both Reλ are very similar, as well as being similar to those
analyzed by Jiménez et al. [3]. Hereafter we show the JPDFs of several quantities where Reλ � 35.
The JPDF of |ω| and φ is shown in Fig. 4, which indicates that a high vorticity region is one with
swirling for which 0 < φ or 0 < �. Thus the identification of intense vorticity region [21] is similar
to that with intense swirlity, and nonvortical flow has a limit in its intensity of |ω| in this turbulence.
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FIG. 3. JPDFs of (a) (|s|,|ω|) and (b) (δ′,|ω|), where Reλ � 35 (solid line) and 51 (dashed line).

In the vortical region where 0 < φ, |ω| and φ are almost linearly related. It is noted that, because
φ < |ω3| = |(α + 1/α)ψ | (note here φ = ψ), |ω| is higher than φ.

A. Characteristics of vortical structure

Figure 5 shows contours of φ and c in the vortical regions where 0 < φ, in an instantaneous
velocity field where Reλ � 35. The regions occupied only by the contours of c (c = 0.75,0.85), for
which φ contours (φ = 2.5,3) do not overlap, are vortical regions where φ is not as high as those of
the contours. A zoomed vortical region in Fig. 5(b) shows that the contour of φ = 2.5 covers that of
φ = 3 and those of c = 0.75 and 0.85, while the contours of φ = 2.5 and c = 0.75 overlap in part.
A vortex in this turbulence has a feature of local maximum of φ as we raise a threshold of φ (ψ) to
extract the core region, and c has the similar feature to some extent in its distribution in the cross
section of the vortices [22]. Thus both symmetry and swirlity are higher in the core region.

The JPDFs of the data (εR,φ), (c,φ), and (c,εR) are shown in Fig. 6. The JPDF of (εR,φ)
indicates that most of the vortices are average-inflow vortices. In high-φ regions, these average-inflow
vortices are dominant, and |εR| decreases. The JPDF of (c,εR) shows that c is concentrated around
approximately 0.5. In contrast, the JPDF of the (c,φ) indicates that φ and c are correlated especially
for weak vortices for which φ � 0.4, and that φ tends to increase with c. Strong (high-φ) vortices
have high c to some degree, but the increase in c is not as high as that for low-φ vortices. Figure 7
shows the flatness f of c for φ = 0.1–2.5, which is high in the low-φ region. The reason why the
flatness slightly increases for 1 < φ is that the range of c becomes narrow for higher φ.

FIG. 4. JPDF of (φ,|ω|) (note that Reλ � 35 hereafter).
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FIG. 5. Contours of φ and c where c = 0.75,0.85 and φ = 2.5,3.5 in an instantaneous velocity field.
(a) contours in a subregion and (b) a zoomed vortical region indicated by the arrow in (a).

B. Quantity associated with development/decay of a vortex

The relationships between the time derivatives of εR , φ, and c are analyzed where the derivatives
are estimated by the second-order central difference of time step t in DNS and nondimensionalized
by the Kolmogorov time τ . Figure 8 shows the JPDFs of (∂c/∂t,∂εR/∂t) and (∂εR/∂t,∂φ/∂t), for
which the correlation coefficients r are −0.042 and 0.087, respectively, and both correlations are low.
In contrast, ∂c/∂t and ∂φ/∂t have high correlation, as shown in Fig. 9. Because c and φ seem to have
a high correlation in the low-φ region in Fig. 6, Fig. 9 subdivides the JPDF of (∂c/∂t,∂φ/∂t) into low-
and (middle) high-φ regions to examine differences. A clear correlation is observed between ∂c/∂t

and ∂φ/∂t in the low-φ region where φ < 0.4, and ∂c/∂t and ∂φ/∂t are statistically proportional.
The similar correlation in the transient φ and c has been shown by following their time history [23],
and this relation is specified clearly with their JPDFs. In the high-φ region where 1 < φ, they also
have a high correlation, and the distribution of the JPDF becomes steep compared with that where
φ < 0.4. r in the low- and high-φ regions are 0.72 and 0.52, respectively.

FIG. 6. JPDFs of (a) (εR,φ), (b) (c,φ), and (c) (c,εR).
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FIG. 7. Flatness (f ) of c with respect to φ.

C. Vortex stretching and inflow

The JPDF for δ′ and φ is shown in Fig. 10, which indicates that δ′ does not increase in high-φ
vortices. Figure 11 shows the features of the JPDF for σ and φ in average-inflow vortices, i.e., in
terms of εR < 0. Most of the vortices with inflow are seen to have average inflow (σ < 0), and
the rate of the whole-inflow vortices (0 < σ ) is approximately 15% of the average-inflow vortices.
Then a whole-inflow region is located in an average-inflow vortical region and is small [24]. The
JPDFs of σ and the components of the vortex stretching λ̌′

ri
ω̂2

i (i = 1,2,3) or δ′ in terms of εR < 0
are shown in Fig. 12. Clearly, the whole-inflow vortices have negative terms in λ′

r1
ω̂2

1 and λ′
r2
ω̂2

2,
i.e., compression in all directions in P . However, the average-inflow vortices where σ < 0 have
positive terms in λ′

r2
ω̂2

2, and then stretch in the ζ r2 direction in P . The stretching term λ′
r3
ω̂2

3 = ε′
aω̂

2
3

in the direction normal to P seems to be linear in σ especially in the 0 < σ region. Moreover, the
distribution of ε′

aω̂
2
3 in the 0 < σ region is sharp and steep. This indicates that whole-inflow vortices

produce effective stretching rate with less compression (less intensity of radial flow). Even though
|σ | is the same, ε′

aω̂
2
3 with whole inflow is higher than that with average inflow.

V. DISCUSSION

A. Important topological property of a vortex

Figure 13 shows a typical vortical structure derived from Figs. 6 and 11. In the generation of a
vortex, φ is weak and c is low. It is noted that c ≈ 0 after the generation. According to development
of φ, c increases. On the other hand, vr (|λri

|) or |εR| become weak with the development of φ, and
σ tends to be negative, thus mixed inflow and outflow exist. In intense vortices, |εR| is much less

FIG. 8. JPDFs of (a) (∂c/∂t,∂εR/∂t) and (b) (∂εR/∂t,∂φ/∂t).
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FIG. 9. JPDF of (∂c/∂t,∂φ/∂t) in terms of (a) φ < 0.4 and (b) 1 < φ.

and σ < 0, and the vortical flow is almost composed of vθ . The vorticity components parallel to P ,
ω̂1 and ω̂2, become less as the development of φ, because correlation between |ω| and φ becomes
high in Fig. 4. Therefore the orthogonality of the vortical axis increases [19]. When a vortex decays,
it follows the reverse procedure.

Differently than εR , φ and c have a strong correlation, and it is stronger in the low-φ region with
regard to their development or decay. This is a particular feature of the vortex in this turbulence,
because increase of c decreases |ω| mathematically. Since ω̌3 = ω̂3 = −(c + 1/c)φ (φ = ψ), |ω|
effectively increases when c decreases. However, in the development, a vortex or vortical region
prefers the increase of both φ and c to the decrease of c that leads a skewed vortex. When φ

increases or forms the local maximum feature in the development, consequently φ in surrounding
area should increase, for which both intensities of swirl components λ̌θ1 ,λ̌θ2 = −ψ/c,−cψ must
increase. For this reason, the increase of c become mandatory. The strong correlation between
∂c/∂t and ∂φ/∂t is derived from the above topological feature. However, their rates depend on the
intensity of φ, as shown in Fig. 9. When middle- or high-φ vortices develop/decay, the corresponding
increase/decrease of c is not much, whereas low-φ (weak) vortices develop/decay with more change
of c. Weak vortices have low c, as shown in Fig. 6(b), and c is zero in the generation/extinction of
a vortex. Therefore low-φ vortices require more development (or decay) of c than middle-/high-φ
vortices do. High flatness of c in weak vortices in Fig. 7 indicates this importance for its dynamics.
Therefore, c is an important quantity associated with development or decay of φ. The swirling
motion codevelops or codecays with the vortical flow symmetry, especially for weak vortices.

In vortex stretching, σ classifies the average-inflow or whole-inflow vortices. Whole-inflow
vortices decrease ω̂1 and ω̂2 (ω̌1 and ω̌2), hence ǎ13 and ǎ23 in Eq. (11), and therefore increase the

FIG. 10. JPDF of (δ′,φ).
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FIG. 11. JPDF of (σ,φ) in terms of εR < 0 (average-inflow vortices).

orthogonality of the vortical axis ξ a to P . Figure 12(c) shows that, for whole-inflow vortices with
positive σ , even if the inflow (compression) is weak, the stretching rate for ω̂3 (ω̌3) by the inflow is
relatively high. The whole-inflow vortices thus not only improve the orthogonality of the axis, but
also efficiently increase vorticity component associated with swirling in terms of flow kinematics.

However, in intense vortices with high φ, the correlation between φ and c is less, as shown in
Figs. 6(b) and 7. To have whole inflow, c must be sufficiently high as φ increases, as exhibited by
Eqs. (8)–(10). It then makes it difficult for high-φ vortices to attain positive σ , which drives the
vortex stretching ineffective and thus decreases the orthogonality of the vortical axis. In addition,
|εR| = |εa/2| decreases as φ increases (Fig. 6), which reduces the rate of stretching. Figure 14 shows
a JPDF of φ and |εR|/φ (0 < εa), which exhibits this feature. Figure 1(c) presents a vortical flow
geometry of an intense vortex with high φ and c but low inflow and negative σ . These topological
behaviors suppress the stretching rate in high-φ vortices, and are the reason why high intense vortices
cannot obtain any effective vortex stretching that strengthens both the swirling intensity (vorticity
component normal to P) and the orthogonality of the vortical axis. Therefore, σ is an important

FIG. 12. JPDFs of σ and vortex stretching components, and δ′, in terms of εR < 0. (a) (σ,λ̌′
r1
ω̂2

1),
(b) (σ,λ̌′

r2
ω̂2

2), (c) (σ,ε′
aω̂

2
3), and (d) (σ,δ′).
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FIG. 13. A model of the life of a vortex. (a) After generation or before extinction with low c and φ,
(b) developing (or decaying) state with middle c and φ, and lower ω̂1 and ω̂2, and (c) fully developed with high
c and φ, and much lower ω̂1 and ω̂2, but less stretching rate. |λri | (thus εa) decreases as φ develops, and the
sign of λ̌r2 and feature of vortex stretching is specified by σ .

quantity associated with supporting the vortical flow structure in terms of the flow kinematics. These
features are illustrated in Fig. 13.

Nevertheless, even if φ is high and εa (or |εR|) is small, a vortex can have a positive σ and thus
whole inflow when it has a sufficiently high c. Then c is also an important quantity associated with
the development/decay of a vortex, whole inflow, and effective vortex stretching, irrespective of the
intensity of swirling. Because c is also associated with the development of the pressure minimum of
a vortex [19], this symmetry is particularly important in regard to the features of a vortex in terms
of the local flow geometry.

As for vortices in other turbulences with different Reynolds numbers, the combined characteristics
of (c,φ) and its deviation may differ depending on the shear characteristics in the turbulence.
However, the development of φ requires both λ̆θ1 and λ̆θ2 (λ̌θ1 and λ̌θ2 ) to increase, and c is given
by their ratio in Eq. (7), i.e., c = (λ̆θ1/λ̆θ2 )1/2 or (λ̆θ2/λ̆θ1 )1/2. Indeed, the development of (only) one
λ̆θi

increases the vorticity component normal to P because ωs = (λ̆θ1 + λ̆θ2 )/2 from Eq. (7), but it
generates a more skewed vortex and does not efficiently increase φ. If a vortex has a local maximum
feature of φ, c should be high because φ in surrounding points (in all directions) should be high
conformably. If c is low, the high-φ region may be restricted in a specific direction. Thus, this primary
feature of vortices between c and φ may be similar to some extent for those in inhomogeneous or
nonisotropic turbulences or in high Reynolds numbers, although the range of c may change according
to inhomogeneous or forcing feature in the turbulence. For example, the feature of the local topology
in channel turbulence depends on the region or layer to be considered [6]. Even in homogeneous

FIG. 14. JPDF of (φ,|εR|/φ) in terms of εR < 0 (0 < εa).

014701-12



TOPOLOGICAL FEATURES AND PROPERTIES . . .

turbulence, the particular behavior of the intense vorticity region such as layer-like clusters [25] or
localization of inhomogeneous feature is observed in high Reynolds number. The flow symmetry
in such regions may be restricted by the shear or inhomogeneous characteristics. It is noted that,
irrespective of homogeneous/inhomogeneous turbulence, the feature of the local topology depends
on the flow feature in the (localized) finite region around the considered point. Then, these features
(e.g., flow symmetry, radial/azimuthal flows, vortex stretching) can be analyzed and classified by
the present analysis scheme.

On the other hand, vortical structure in terms of the finite scales or multiscales, such as those
in the above cluster, is of great interest. If the velocity gradient tensor is given in this scale [26]
or by coarse graining [27], then it enables one to analyze the vortical feature of these scales and
relationships between their vortical structure in different scales [28]. The details of the transition of
the topology or vortex stretching in respective scales can also be specified precisely by the present
analysis scheme.

It is a general requirement irrespective of turbulent flows and Reynolds numbers or scales that
strong vortices require high symmetry c for whole inflow and effective vortex stretching.

B. Application to realistic vortex models

The present vortical analysis can be applied to other vortices in a variety of turbulent flows
encountered in diverse fields from atmospheric physics, with the study of atmospheric vortices, to
wind-power engineering and the study of vortices associated with turbines [29,30]. There the analysis
is effective in realistic vortex models. As described above, an asymmetric inflow vortex is restricted
in terms of a complete inflow region with effective vortex stretching, which can be specified by the
sourcity. However, it is noted that, even in the axisymmetric vortex models, the effective stretching
region is restricted because the local flow geometry is not axisymmetric except at the center of the
vortex. For example, in the Vatistas vortex [31], the radial, azimuthal, and axis velocity components
in a cylindrical coordinate system (r , θ , z) are expressed as ur = −2(n + 1)r2n−1/{β(1 + r2n)},
uθ = r/(1 + r2n)1/n, and uz = 4n(n + 1)r2(n−1)z/{β(1 + r2n)2}, respectively, where β and n denote
a real parameter and positive integer, respectively. In a Cartesian coordinate system xi (i = 1,2,3),
where the x3 axis coincides with the z axis and tan θ = x2/x1 (x1 �= 0), ∇v in a point in the x1 axis
(θ = 0) can be expressed in the form

∇v =
⎡
⎣∂ur/∂r −uθ/r 0

∂uθ/∂r ur/r 0
∂uz/∂r 0 ∂uz/∂z

⎤
⎦, (15)

therefore, the local flow geometry is not axisymmetric except at the vortex center (r = 0), and
the flow symmetry decreases as r increases. In the n = 1 model, the vortical region where 0 < φ

(0 < �) is defined by rφ < [1/(1 + 16/β2)]1/4, whereas the positive σ region with complete inflow
is defined by rσ < [1/(1 + β2/16)]1/4. They are generally different depending on β for a realistic
vortical flow. rφ and rσ are the same when β = 4, i.e., rφ = rσ < 0.84. As β increases however,
rφ converges to 1 and rσ decreases. For example, if β = 8 then rφ < 0.94 but rσ is restricted as
rσ < 0.66. As the swirling motion is dominant (|uθ |/|ur | increases), the vortical region increases,
but the effective stretching region diminishes and is confined. Thus the present analysis provides
useful vortical flow characteristics, and sourcity extracts the specific vortical region supported by
the flow geometry itself (i.e., effective vortex stretching).

VI. CONCLUSION

The characteristics of the local flow geometry of vortices in an isotropic homogeneous decaying
turbulence are clarified, using swirlity, sourcity, and the vortical flow symmetry quantity. Vortex
stretching is specified by the quantities associated with the details of the flow geometry.
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The development or decay of a vortex in terms of swirlity (intensity of swirling) is associated
with the vortical flow symmetry in the swirl plane, especially in weak vortices. Sourcity shows
that vortices classified as inflow (convergent) vortices by the complex eigenvalues of the velocity
gradient tensor can have both inflow and outflow, which yield vortex stretching in the directions both
normal and parallel to the swirl plane and break the orthogonality of the vortical axis to the swirl
plane. Vortices with solely inflow in all directions have efficient stretching and an increase in the
orthogonality of the vortical axis. Sourcity classifies these characteristics of vortex stretching, and
effective stretching requires a positive sourcity and therefore high flow symmetry.

In this regard, the flow symmetry is an important characteristic not only for the development of
a vortex but also for complete inflow and an effective stretching. The reason why highly intense
vortices cannot undergo such stretching is revealed by the present formulation and the geometrical
characteristics of the vortices in this turbulence.

The present analysis provides a detailed topological analysis scheme for vortices in turbulent
flows or realistic vortex models, and sourcity extracts the important vortical region supported by its
flow kinematics.
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