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An intrinsic property of turbulent flows is the exponential deformation of fluid elements
along Lagrangian paths. The production of enstrophy by vorticity stretching follows from
a similar mechanism in the Lagrangian view, though the alignment statistics differ and
viscosity prevents unbounded growth. In this paper, the stretching properties of fluid
elements and vorticity along Lagrangian paths are studied in a channel flow at Reτ = 1000
and compared with prior known results from isotropic turbulence. To track Lagrangian
paths in a public database containing direct numerical simulation results, the task-parallel
algorithm previously employed in the isotropic database is extended to the case of flow
in a bounded domain. It is shown that above 100 viscous units from the wall, stretching
statistics are equal to their isotropic values, in support of the local isotropy hypothesis. In
the viscous sublayer, these stretching statistics approach values more consistent with an
unsteady two-dimensional shear flow, in which exponential stretching no longer occurs.
Normalized by dissipation rate, the stretching in the buffer layer and below is less efficient
due to less favorable alignment statistics. The Cramér function characterizing cumulative
Lagrangian stretching statistics shows that overall the channel flow has about half of the
stretching per unit dissipation compared with isotropic turbulence.

DOI: 10.1103/PhysRevFluids.2.014605

I. INTRODUCTION

Along Lagrangian trajectories in turbulence, the velocity gradient tensor determines the
deformation and rotation of infinitesimal fluid elements as well as the stretching and tilting of
vorticity. These two processes are mathematically similar for an inviscid flow [1], but key differences
exist for finite viscosity [2], such as the viscous tilting effect on vorticity [3]. The statistical properties
of turbulent fluid deformation and vorticity stretching have been primarily studied in the context of
homogeneous isotropic turbulence [3–14].

Because velocity gradients are dominated by contributions of small-scale motions near the
Kolmogorov length scale (η = ν3/4〈ε〉−1/4, where ν is the kinematic viscosity and 〈ε〉 is the
dissipation rate per unit mass), Kolmogorov’s hypotheses [15] imply (approximately) universal
isotropic behavior for velocity gradients at high Reynolds numbers far enough from solid boundaries,
even for very anisotropic turbulent flows. The refined similarity hypothesis [16,17] further implies
(possible) dependence on the local Reynolds number, i.e., intermittency effects. It follows from these
hypotheses that the statistics of fluid deformation and vorticity stretching in regions of turbulent
flows with high enough local Reynolds number and far enough from solid boundaries should be
similar to those of isotropic turbulence, which have been studied in some detail. It is of interest,
therefore, to investigate the details of material deformation and vorticity stretching in anisotropic
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flows with solid boundaries. For instance, it is interesting to investigate the extent to which locally
isotropic behavior can be observed in stretching statistics at locations far enough from the wall and
how such statistics deviate from local isotropy near the wall.

In addition to the statistics of material deformation and vorticity stretching rates at a particular
instant in time, it is also important to consider the statistics of cumulative deformation along
Lagrangian paths, i.e., finite-time Lyapunov exponents (FTLEs). In the long-time limit, such
cumulative statistics are expected to have a large-deviation principle [18], so the long-time behavior
of the probability density functions (PDFs) may be summarized by a Cramér function [7,12,13,19].
Investigation along these lines may provide insight for a wide range of phenomena in wall-bounded
flows including polymer-induced drag reduction [19–21], the kinematics of Lagrangian coherent
structures [22–24], and the deformation of immiscible droplets and bubbles [10,11,25].

The Johns Hopkins Turbulence Database (JHTDB) provides a platform for on-demand tracking of
Lagrangian particles through time-resolved Eulerian databases with snapshots from direct numerical
simulation (DNS) results [26]. While the tracking of Lagrangian or inertial particles can be done at
run-time inside the DNS code and stored in a Lagrangian database (e.g., [27]), the Eulerian database
approach provides benefits such as flexibility to define seeding locations without needing to rerun
the simulation or the ability to interrogate other flow variables such as the pressure Hessian along
trajectories, as well as the ability to track particles backward in time [28]. Various algorithms for
computing large ensembles of Lagrangian trajectories within the parallel database architecture of
JHTDB have been studied, with a task-parallel approach providing the best overall performance [29].
In this work we extend the task-parallel approach to track Lagrangian particles in a bounded domain,
namely, the Reτ = 1000 channel flow DNS database [30].

The paper is organized as follows. First, the relevant mathematical background for quantifying the
statistics of velocity gradients, material deformation, and vortex stretching is summarized in Sec. II.
Then, Sec. III introduces the channel and isotropic DNS data sets used in the analysis and briefly
details the development of the task-parallel Lagrangian tracking algorithm for the channel database.
Analysis results are given in Sec. IV for instantaneous statistics as a function of wall distance as well
as cumulative statistics for the whole channel. When possible, comparison is made with statistics
from isotropic turbulence to highlight similarities and differences. A summary and conclusions are
provided in Sec. V.

II. BACKGROUND

A. Velocity gradient statistics in channel flow

In a turbulent channel flow, the statistics are only nonhomogeneous in the wall-normal
direction. Kinetic energy is dissipated by both the mean flow and turbulent fluctuations: 〈ε〉(y) =
2ν(〈Sij 〉〈Sij 〉 + 〈S ′

ij S
′
ij 〉), where angular brackets denote ensemble averaging and Sij is the strain-rate

tensor. However, energy dissipation by the mean flow becomes negligible for y+ � 1, i.e., in the
logarithmic layer and core of the channel. At a given friction Reynolds number, the scale separation
between large energetic motions and small dissipative motions increases with wall distance [31]. The
typical magnitude of turbulent velocity gradients at a given distance from the wall is characterized
by the Kolmogorov time scale

τ ′
η(y) =

√
ν

〈ε〉turb
= 1√

2〈S ′
ij S

′
ij 〉

. (1)

For a typical magnitude of total velocity gradients (mean plus fluctuating), the Kolmogorov time
scale can be generalized to include the mean strain rate

τη(y) =
√

ν

〈ε〉 = 1√
2(〈Sij 〉〈Sij 〉 + 〈S ′

ij S
′
ij 〉)

. (2)
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FIG. 1. Kolmogorov time scale (left) and Taylor-scale Reynolds number (right) as a function of distance
from the wall. Dashed lines indicate values calculated with only turbulent dissipation, while solid lines indicate
values using both turbulent and mean flow dissipation.

It will be argued that this more inclusive time scale is useful in the channel flow because the mean flow
is also able to perform stretching in addition to the turbulent fluctuations, especially in the viscous
sublayer and buffer region. Near the wall, i.e., y+ ∼ 1, this definition of Kolmogorov scale becomes
τη ∼ τviscous, where τviscous = ν

u2∗
is the viscous time scale, while it equals the traditional Kolmogorov

time scale when the mean strain rate becomes negligible (i.e., at y+ � 1). Assuming an approximate
balance between production and dissipation in the logarithmic region, where −〈u′v′〉 ≈ u2

∗ and
∂〈u〉
dy

≈ u∗
κy

, then τη(y) ∼ √
y+τviscous. At the centerline of the channel, the mean strain rate exactly

vanishes and dissipation is done only by the turbulent fluctuations. Extrapolating the scaling law
from the logarithmic region, the time scale at the center of the channel is τη,c ∼ Re1/2

τ τviscous. For
the remainder of this paper, we refer to this generalized Kolmogorov time scale simply as the
Kolmogorov time scale.

To quantify the average strain-rate magnitude available over the whole channel, a bulk
Kolmogorov time scale can be defined according to

τη,bulk =
√

2hν

E , E =
∫ h

−h

〈ε〉dy. (3)

This time scale has a physical basis, since ρE = − ṁ
ρ

dp

dx
represents the pumping power needed to

force the channel flow at mass flow rate ṁ = ρ
∫ h

−h
〈u1〉dy = 2hρUbulk. We thus can write τη,bulk =√

hν
u2∗Ubulk

= ( 1
2Cf )1/4Re1/2

τ τviscous.

The separation of scales between large-scale (more flow dependent) and small-scale (more
universal) turbulent motions is quantified in isotropic turbulence by the Taylor-scale Reynolds

number Reλ =
√

〈u′2
1 〉

ν
√|f ′′(0)| , where f (r) = 〈u′

1(x)u′
1(x + re1)〉/〈u′2

1 〉 is the longitudinal correlation
function. For the channel flow, it is useful to characterize the separation of scales at a given height
from the wall, which can be accomplished using the Taylor-scale Reynolds number expressed in
terms of kinetic energy and mean dissipation rate

Reλ(y) = 2
√

15

3

k√
ν〈ε〉 , (4)

where k(y) = 1
2 〈u′

iu
′
i〉 is the turbulent kinetic energy at a given wall distance.

Figure 1 shows the generalized Kolmogorov time scale and Taylor-scale Reynolds number as
a function of wall distance as computed from the JHTDB channel flow data set at Reτ = 1000
(details in Sec. III). In both panels, the values are alternatively calculated using only the dissipation
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of turbulent fluctuations, i.e., without the mean flow dissipation, and plotted as a dashed line. Above
y+ ≈ 50, the difference between the two is negligible, signaling that practically all the dissipation
is accomplished by the turbulent fluctuations (mean strain rate is negligible).

The Kolmogorov time scale is plotted on a log-log scale and displays an approximate power-law
region where τη ∼ yn, where n ∼ 0.5, close to the theoretical prediction assuming local balance
between production and dissipation of kinetic energy. The velocity gradient magnitudes (∼τ−1

η ) are
highest near the wall and decay monotonically to the lowest magnitudes at the center of the channel
(y+ = 1000). With highest fluid deformation rates occurring nearest the wall, we may naively expect
the Lyapunov exponents to be largest in magnitude nearest the wall as well, something that will be
checked in Sec. IV.

In the fully turbulent region of the channel flow (y+ > 50), the Taylor-scale Reynolds number
is between 50 and 90. The peak Reynolds number occurs near y+ = 400 rather than at the center
of the channel. In this light, there is only moderate scale separation in the fully turbulent region.
With such moderate Reynolds numbers, it is of interest to compare stretching statistics in the fully
turbulent region of the channel to those of isotropic turbulence, i.e., to test the hypothesis of local
isotropy in the context of stretching statistics. Approaching the wall, Reλ vanishes due to vanishing
turbulent kinetic energy.

B. Finite-time Lyapunov exponents

While the strain rate Sij gives the instantaneous rate of fluid deformation, the cumulative
deformation of fluid particles is described by the finite-time Lyapunov exponents of the Lagrangian
map Tt0,t : X ∈ R3 �→ x ∈ R3 from an initial position X at time t0 to a position x at a later time t .
The Lagrangian map evolves as dxi

dt
= ui(x(t),t) with initial condition xi(t0) = Xi . The geometry

of an infinitesimal fluid element centered at x(t) can be described by the deformation tensor
Dij = ∂xi/∂Xj , which is the sensitivity of the trajectory to initial position. The evolution equation
for the deformation tensor is

dDij

dt
= AikDkj , (5)

with initial condition Dij (t0) = δij , where d/dt denotes Lagrangian (material) derivative.
A singular value decomposition (SVD) of the deformation tensor Dij = Uik�k�Vj� is useful for

separating the deformation tensor into its magnitude (represented by the diagonal matrix �) and
direction (columns of the unitary matrix U). This is equivalent to an eigenvalue decomposition of the
(left) Cauchy-Green tensor Cij = DikDjk = Uik�

2
k�Uj�. The singular values σi give the ratio fluid

stretching along its associated Lyapunov vector, thus by definition σi(t0) = 1. In an incompressible
flow, the volume of the fluid element must be preserved, i.e., σ1σ2σ3 = 1 for all t . The singular
value decomposition of (5) results in evolution equations for the singular values and their associated
(forward) singular vectors [32]

d ln σi

dt
= Ŝ(ii), Uki

dUkj

dt
=

⎧⎪⎪⎨⎪⎪⎩
(

1+ σj

σi

1− σj

σi

)
Ŝij + �̂ij , i = j

0, i = j,

(6)

where the caret denotes rotation to the Lyapunov reference frame, e.g., Ŝij = UkiSk�U�j . Repeated
indices in parentheses are not summed. The singular values grow exponentially in time according
to Ŝ(ii), i.e., the longitudinal velocity gradient along the direction of the ith singular vector. For this
reason, we refer to Ŝ(ii) as an instantaneous Lyapunov exponent (ILE).

Finite-time Lyapunov exponents measure the time-averaged rate of exponential growth of each
singular value over a certain interval along a Lagrangian path (i.e., exponential stretching along the
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direction of the associated singular vector)

γi(T ; X,t0) = 1

T
ln σi(t0 + T ; X,t0) = 1

T

∫ t0+T

t0

Ŝ(ii)(x(t ′),t ′)dt ′, (7)

where T = t − t0 is the time interval over which the cumulative stretching is observed. Assuming
ergodicity in homogeneous flows, the FTLEs converge for T → ∞ to the Lyapunov exponents
λi = 〈Ŝ(ii)〉 = 〈γi〉, with probability one. Similarly in this limit, the singular vectors of the
deformation tensor (eigenvectors of the left Cauchy-Green tensor) converge to the Lyapunov vectors.
The statistical alignment of Lyapunov vectors and strain-rate eigenvectors plays a key role in
determining cumulative fluid particle deformation along with the strain-rate eigenvalues themselves
�i . For instance, in the eigenframe of the strain-rate tensor Ŝ(ii) = cos2(θij )�j , where θij is the angle
between the ith eigenvector of the Cauchy-Green tensor and the j th eigenvector of the strain-rate
tensor. In a channel flow, the Lyapunov exponents and other statistics involving finite-time Lyapunov
exponents naturally depend on wall distance.

C. Vorticity stretching

The vorticity along a Lagrangian path evolves according to a very similar equation as fluid
deformation, but with an added viscous term

dωi

dt
= Aijωj + ν∇2ωi. (8)

Since vorticity is a vector (not tensor) quantity, a simple decomposition into magnitude and unit
vector ωi = ωω̂i takes the role of the SVD above. Decomposing (8), an evolution equation for the
vorticity magnitude and direction is recovered [13],

d ln ω

dt
= ω̂iSij ω̂j + ν

ωi∇2ωi

ω2
,

dω̂i

dt
= (δik − ω̂i ω̂k)Skj ω̂j + ν

[
(δik − ω̂i ω̂k)

∂2ω̂k

∂xj ∂xj

+ 2
∂ω̂i

∂xj

∂ ln ω

∂xj

]
. (9)

Retaining the full equation for the vorticity alignment (i.e., strain rate and viscous tilting) but
neglecting the role of viscosity in limiting the growth of vorticity, useful comparisons between
vorticity stretching and fluid element deformation can be made [13]. An analog to the finite-time
Lyapunov exponent can be constructed for cumulative vorticity stretching by considering only the
inviscid part of vorticity stretching d ln ω

dt
= ω̂iSij ω̂j = Ŝω, while retaining the viscous effects on

vorticity realignment

γω(T ; X,t0) = 1

T
ln ω(t0 + T ; X,t0) = 1

T

∫ t0+T

t0

Ŝω(x(t ′),t ′)dt. (10)

Again, an ergodic assumption for homogeneous flows means that the T → ∞ limit converges
to an analog of the Lyapunov exponent for vorticity stretching λω = 〈Ŝω〉 = 〈γω〉. As with
fluid deformation, the alignment between vorticity and strain-rate eigenvectors plays a key role
alongside strain-rate eigenvalue statistics in determining vorticity stretching statistics. For instance,
the instantaneous vorticity stretching rate can be decomposed as Ŝω = cos2(θω,j )�j , where θω,j

represents the angle between the vorticity and the j th eigenvector of the strain-rate tensor. The
instantaneous statistics of Ŝω and Ŝ(ii) as well as their finite-time averages γω and γi are useful for
comparing vorticity stretching statistics with those of fluid element deformation. In the channel flow,
ensemble averages of instantaneous stretching quantities vary with wall distance, meaning that the
time-integrated Lagrangian stretching quantities will depend on the details of the past trajectory in
moving closer to or farther from the wall.
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D. Large-deviation statistics

In homogeneous isotropic turbulence, the PDFs of γi and γω have been shown to follow a
large-deviation principle pγi

(g,T ) ∼ exp[−T Si(g)] for T → ∞ [7,12,13]. When a large-deviation
principle exists, the Cramér function Si(g) prescribes the self-similar form of the PDF as it collapses
toward at Dirac δ function at λi . This has been useful for predicting power-law tails for polymer
stretch lengths and the onset of significant polymer stretching for Oldroyd-B polymers [18,33] as
well as droplet shape deformation statistics and the onset of droplet break-up for immiscible viscous
droplets [11] in isotropic turbulence.

At sufficiently long integration times allowing for particles to mix thoroughly in the wall-normal
direction, the lack of statistical homogeneity in this direction is not an obstacle for the existence of
a large-deviation principle. Indeed, Bagheri et al. [19] showed for a channel flow with Reτ = 180
that PDFs for γ1 collapse self-similarly to a Cramér function that is independent of wall-normal
location at the end of the trajectory. The predicted power-law PDFs for the polymer stretch were
also observed.

An efficient method for simultaneously demonstrating the existence of a large-deviation principle
and computing the Cramér function uses the scaled cumulant generating function (SCGF)

Lγi
(q) = lim

T →∞
1

T
ln〈exp[qγiT ]〉. (11)

For fluid deformation, γi represents the finite-time Lyapunov exponents and L(q) is sometimes
called the generalized Lyapunov exponent [34]. According to the Gärtner-Ellis theorem [35,36], the
existence of the limit in (11) is sufficient to prove the existence of a large-deviation principle for that
quantity. The (convex hull of the) Cramér function can then be directly computed from the SCGF
via Legendre transform

Sγi
(g) = sup

q

[gq − Lγi
(q)]. (12)

Johnson and Meneveau [12] demonstrated that this method is more efficient than directly constructing
the Cramér function via histograms.

III. NUMERICAL METHODS

In this section, the numerical methods used for this study are briefly summarized. Although
this paper focuses mainly on channel flow results, frequent comparison with isotropic turbulence is
made. Direct numerical simulation data for both channel flow and isotropic turbulence are obtained
from the JHTDB. In order to obtain the necessary Lagrangian particle paths, the JHTDB Lagrangian
tracking algorithm was extended to work in the channel flow data set. This extension is briefly
summarized with discussion of particle tracking concerns unique to the channel data set.

A. Direct numerical simulation databases

This study makes use of both the channel flow and isotropic turbulence data sets from the
JHTDB [37,38]. The isotropic data set was generated using a pseudospectral Navier-Stokes solver
with low-wave-number forcing. The lowest two wave numbers in a (2π )3 domain were forced in
such a way as to keep their energy constant in time. A second-order Adams-Bashforth method was
used for time advancement with 2

√
2/3 truncation with phase shift used for dealiasing [39]. The

numerical resolution is 10243 and the Taylor-scale Reynolds number is around Reλ = 430. The code
wrote the full velocity and pressure field to disk every ten time steps for storage on the database. As
a result, 1024 snapshots are stored with a database temporal resolution of �tdb ≈ τη/22, enough for
a time sequence of Tdb ≈ 46τη. Table I summarizes the details of the isotropic simulation.

The channel flow data set was generated from a Navier-Stokes simulation using a pseudospectral
method in the plane parallel to the walls and a seventh-order B splines collocation method in the
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TABLE I. Numerical details for isotropic data-set simulation used in this paper [37].

N Reλ ε ν η τη �t kmaxη

10243 433 0.093 1.85 × 10−4 2.87 × 10−3 0.045 2 × 10−4 1.39

wall-normal direction [30,40]. For the simulation, the Navier-Stokes equations were formulated
in wall-normal velocity-vorticity form [41]. Pressure was computed through solving the pressure
Poisson equation only when writing to disk, which was every five time steps for 4000 snapshots,
enough for about one domain flow-through time. The simulation domain size was 8π × 2 × 3π

with a resolution of 2048 × 512 × 1536 in the streamwise (x), wall-normal (y), and spanwise (z)
directions, respectively. Time advancement was done with a third-order low-storage Runge-Kutta
method and 2/3 truncation was performed for dealiasing [42]. A constant pressure gradient was
enforced to drive the flow at Reτ = 1000 (Rebulk = 2hUbulk

ν
= 40 000) with near unity bulk velocity.

Table II includes further details about the channel flow simulation.

B. Lagrangian particle tracking

An important aspect of this study was the ability to compute Lagrangian trajectories from the
Eulerian databases. This functionality was previously implemented in the JHTDB for the unbounded
flows via the getPosition function, which uses a second-order predictor-corrector method for time
advancement with user choice of fourth-, sixth-, and eighth-order Lagrangian interpolation in space
and piecewise cubic Hermitian interpolation in time [26]. Kanov and Burns [29] developed an
asynchronous task-parallel algorithm for improving the query response time. For this study, we
extended the Lagrangian tracking capabilities to the channel data set with the task-parallel approach.

Initially, the getPosition function was implemented using a mediator synchronization approach
(see Fig. 2). In this approach, a mediator (in this case the web server) accepts a batch of particle
positions and determines which database contains their velocities. Upon completion of this task, the
mediator spawns a process in each particle’s respective database to advect each particle for the given
integration step. Once complete, the new positions are returned to the mediator and the mediator must
wait for all particles to complete for each integration step. After each step, the particles are reassigned
to their new database location based on each particle’s new position. This will be either the same
database or a different one depending upon whether the particle crossed a database boundary. While
this approach works, two other methods of particle tracing were experimented with, data-parallel
and task-parallel methods.

The task-parallel method works differently from the mediator synchronization approach in that the
mediator is not responsible for tracking each particle at every integration step. Instead, the mediator
performs the initial placement of particles based on their respective positions in the database and
then the database performs each integration step upon advecting each particle. This allows for the
particle’s computation to remain on the server in which the particle is placed. The only concern with
this approach is when a particle crosses a server boundary; the original server is still responsible for
follow-on integration steps. However, during testing this issue did not outweigh the speed gained
from allowing each particle to advance asynchronously at each integration, thus making this the
preferred approach.

TABLE II. Numerical details for the channel flow data set used in this paper [30].

Nx Ny Nz Reτ dp/dx ν u∗ Ubulk �x+ �z+ �t

2048 512 1536 1000 −2.5 × 10−3 5 × 10−5 5 × 10−2 1.00 12.3 6.1 1.3 × 10−3
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FIG. 2. Schematic showing the mediator synchronization and task-parallel algorithms for parallel
processing of Lagrangian trajectories in the JHTDB. Mediator synchronization is on the left and the task-parallel
algorithm is on the right.

Because the simulation was computed and stored in the database on a moving grid with velocity
0.45 in the streamwise direction, this had to be taken into account within the particle tracking
calculation. At the beginning of a getPosition query, 0.45tstart is subtracted from the physical x

position of the particle, moving it from the physical location to the grid location. Then, throughout
the particle tracking calculation, 0.45 is subtracted from the streamwise velocity component. Finally,
at the conclusion of the calculation, 0.45tend is added back to the grid position to recover the physical
position of the particle. Periodic wrapping in x and z is used to keep the particle always somewhere
in the domain.

One additional consideration when implementing the Lagrangian path procedure in the channel
data set was the numerical (but not physical) possibility that Lagrangian particles could travel through
the walls at y = ±1. If the particles moves outside the domain (|y| > 1) during the predictor phase,
then zero velocity is applied for the corrector step and hence half of the predictor velocity is used
when actually advancing the particle. In this way, for a particle at distance y from the wall, the
maximum time step allowed for which the particle remains in the domain is �tmax = 2y

v(y) , where
v(y) is the wall-normal velocity from the predictor step (possibly the result of interpolation). In order
to determine the maximum time step that can be taken with such a scheme without worrying about
particles violating the no-penetration condition, the database was scanned to obtain the maximum
velocity toward the wall at each y grid location.

The results are shown in Fig. 3. Using every 100th time step, each grid location was tested up
to y+ = 30. To find the minimum time step at which a particle could leave the domain, the range
of y+ values searched was narrowed and every tenth time step was searched. Finally, the minimum
wall-normal location from this result was searched over the entire database. The result is that the
minimum time step at which a particle could pass through the wall was found to be four times the

 1

 10

 100

 0.01  0.1  1  10  100

dt
er

r/d
t d

b

y+

Entire DB
10th of DB

100th of DB

FIG. 3. Minimum time step, as a function of wall distance, at which a particle in the database (DB) may
leave the domain by violating the no-penetration condition. The worst-case scenario is a particle leaving the
domain from y+ ≈ 3 with a time step of �t = 2.6 × 10−2, which is four times the database storage time step.
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FIG. 4. Average instantaneous Lyapunov exponents 〈Ŝ(ii)〉, for i = 1,2,3,ω, as a function of wall distance
(solid lines), (a) normalized by the bulk Kolmogorov time scale and (b) normalized by the local Kolmogorov
time scale, with dashed lines representing |λi |τη from homogeneous isotropic turbulence.

database storage time step and 20 times the simulation time step. It is recommended that a time step
at least as small as the storage time step be used, therefore, the current numerical method is deemed
sufficient for preventing particles from violating the nonpenetration condition at the wall.

For the results in this study, ensembles of 43 200 particles were advanced through the entire
database time with sixth-order spatial interpolation and a time step of �t = 0.0013, i.e., the
simulation time step. For initialization, the domain was split into 432 subdomains of size π

3 × 1 × π
3 .

In each subdomain 100 particles were placed randomly according to a uniform distribution. Every
five particle time steps (each database storage time step), the velocity gradient was retrieved from the
database using fourth-order finite differencing and fourth-order Lagrangian interpolation in space.
Johnson and Meneveau [12] explored the effect of simulation resolution as well as finite differencing
on stretching statistics in isotropic turbulence, finding that low-order statistical quantities can be
accurately obtained with the resolution and finite differencing used here in both channel and isotropic
data sets.

IV. RESULTS

In this section, the DNS results concerning the statistics of material deformation and vorticity
stretching in a channel flow at Reτ = 1000 are explored. Comparisons with isotropic turbulence
at Reλ = 430 are used when applicable. In addition to exploring the dependence of Lyapunov
exponents on wall distance, the factors contributing to these trends, such as strain-rate eigenvalues
and alignment between Cauchy-Green and strain-rate eigenvectors, are shown to provide additional
insight.

A. Local Lyapunov exponents

Statistics of FTLEs can be difficult to obtain in a localized manner, since they naturally require
integration over trajectories that move toward and away from the wall. Nonetheless, the mean of
FTLE distributions can be easily localized to a particular y+ location by averaging ILEs conditioned
on wall distance. In this way, the local Lyapunov exponents (LLEs) 〈Ŝ(ii)|y〉 represent the average
stretching rates undergone by a material element (or vorticity) given that the current location of its
trajectory is at that wall distance.

In order to characterize the mean stretching of material elements and vorticity as a function
of wall distance, Fig. 4 presents LLEs normalized by bulk and local Kolmogorov time scales. In
Fig. 4(a) the LLEs are normalized by the bulk Kolmogorov time scale, which is constant across
the channel. The LLE magnitudes are plotted so that all results fit on a log-log plot. For most
of the channel only 〈Ŝ33|y〉 is negative, while all others are positive. The instantaneous stretching of
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FIG. 5. PDFs of instantaneous Lyapunov exponents normalized by the local Kolmogorov time scale in
the core of the channel, i.e., conditioned on y+ > 100. Solid lines with open symbols represent channel flow
results, while dotted lines with closed symbols represent isotropic turbulence results. Squares (left) show Ŝ11,
circles (left) Ŝ22, triangles (left) Ŝ33, and diamonds (right) Ŝω.

the maximal singular value 〈Ŝ11|y〉 has a peak between 10 � y+ � 20, signifying that the maximum
stretching of material lines occurs in the buffer layer, on average. The other two Lyapunov exponents
〈Ŝ22|y〉 and 〈Ŝ33|y〉 likewise have peak magnitudes in the buffer layer. The vorticity stretching LLE
〈Ŝω|y〉 has its peak further from the wall, near 30 � y+ � 50. This occurs because, while vorticity
stretching is close in magnitude to material line stretching throughout the channel, it drops off more
quickly approaching the wall through the buffer layer. The value of 〈Ŝ22|y〉, meanwhile, drops off
precipitously approaching the wall in the viscous sublayer and even becomes slightly negative below
y+ = 3, indicating that material deformation becomes mostly two dimensional.

Figure 4(b) normalizes the local Lyapunov exponents using the local Kolmogorov time scale,
which increases monotonically with wall distance (see Fig. 1). By rescaling with local strain rate
averages, the Lyapunov exponent represents something like an efficiency of stretching accomplished
per unit available strain rate (dissipation). This allows direct comparison with isotropic turbulence,
indicated by dashed lines in Fig. 4(b). For y+ > 100, there is excellent agreement between the
Lyapunov exponents of channel flow and isotropic turbulence. This shows that, above 100 viscous
units from the wall, the variation of LLEs (including for vorticity stretching) with wall distance can
be accurately predicted from Kolmogorov’s hypothesis of local isotropy, given knowledge only of
the y dependence of the Kolmogorov time scale, even though the Reλ is not large.

Seeing from Fig. 4(b) that the LLE values are constant above y+ = 100 when normalized by the
local Kolmogorov time scale and equal to the values in isotropic turbulence, it is of interest to compare
the entire distribution of Ŝ(ii)τη. Figure 5 shows the PDF of Ŝ(ii)τη created from histograms binned
along Lagrangian trajectories according to the Kolmogorov time scale of the current wall distance.
The result is compared to the PDF of instantaneous Lyapunov exponents in homogeneous isotropic
turbulence (dotted lines). It is immediately clear that the entire distributions are quite similar. The
isotropic flow does have a higher Reλ, thus is expected to have higher intermittency in velocity
derivative statistics, which is evidenced by slightly wider tails for the isotropic data in Fig. 5. Grid
resolution is another factor to consider when comparing the tails of these distributions, however,
as Johnson and Meneveau [12] showed that resolution and finite differencing can significantly
influence the statistics of larger fluctuations in fluid stretching. Nonetheless, comparing the cores of
these distributions, this figure represents more detailed evidence that the local isotropy hypothesis is
sufficient for describing the material deformation and vorticity stretching statistics above y+ = 100.

Returning to Fig. 4(b), the stretching efficiency per unit dissipation 〈Ŝ(ii)|y〉τη drops significantly
approaching the wall. Near the wall, the combination of decreasing stretching efficiency per unit
dissipation with increasing available dissipation causes the maximal stretching 〈Ŝ(ii)|y〉τη,bulk to occur
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in the buffer layer in Fig. 4(a). In order to explore the causes of this loss in stretching efficiency near
the wall, it is useful to employ the following decomposition:

Ŝ(ii) =
3∑

j=1

�j cos2 θij , (13)

which is obtained by taking the eigenframe of the strain-rate tensor, where �j represents the j th
eigenvalue of the strain-rate tensor and θij represents the angle between the eigenvector of the
Cauchy-Green tensor associated with its ith eigenvalue and the strain-rate eigenvector associated
with its j th eigenvalue. Here eigenvalues are sorted in decreasing order. Note that we can also take
i = ω, where θωj then indicates angles between the vorticity vector and strain-rate eigenvectors.
From this decomposition, it is clear that statistics of the ILEs at each wall-normal location are a
function jointly of strain-rate eigenvalue statistics and alignment statistics. That is, the Lyapunov
exponent can be written as

〈Ŝ(ii)|y〉 =
3∑

j=1

〈�j cos2 θij |y〉. (14)

Although statistical independence of �j and θij is neither expected nor observed, thus
〈�j cos2 θij |y〉 = 〈�j |y〉〈cos2 θij |y〉, it is nonetheless instructive to explore 〈�j |y〉 and 〈cos2 θij |y〉
separately as a function of wall distance. Partly justifying this separation, it was found that correlation
coefficients between the strain-rate eigenvalues and alignment angles were quite small, ∼± 0.1.

B. Strain-rate eigenvalues

The first ingredient in fluid element deformation and vorticity stretching statistics is the strain-rate
magnitude statistics, characterized most effectively by its eigenvalues. It is first worth noting that by
definition, at every wall-normal location,

3∑
i=1

〈
�2

i

∣∣y〉
τ 2
η = 1

2
. (15)

Further, 〈�2
i 〉 = 〈�i〉2 + 〈�′2〉, so 〈�i〉2 � 〈�2

i 〉, where equality holds only in the absence of
fluctuations. Therefore, we conclude that

3∑
i=1

(〈�i |y〉τη)2 � 1

2
. (16)

Larger variance of �i fluctuations tends to decrease the left-hand side.
Figure 6(a) shows the mean strain-rate eigenvalues as a function of wall distance, with constant-

in-space normalization by τη,bulk. The maximal and minimal eigenvalues reach their peak magnitude
at the wall, decreasing monotonically to the center of the channel. The intermediate eigenvalue,
however, reaches its maximum in the buffer layer, since the flow in the viscous sublayer tends to
resemble unsteady two-dimensional shear flow. The drop-off in �2 near the wall is accompanied by
equal magnitudes for �1 and �3 (opposite signs).

The mean strain-rate eigenvalues are rescaled with the local Kolmogorov time scale in Fig. 6(b).
Here the dashed lines show the values from the isotropic data set. As with the Lyapunov exponent
above, the mean strain-rate eigenvalues collapse to the isotropic values for y+ > 100 when
normalized this way. Thus, the hypothesis of local isotropy provides a good platform for describing
the mean strain-rate eigenvalues’ dependence on wall distance above 100 viscous units. The
magnitude of the minimal strain-rate eigenvalue, which is always negative, remains approximately
constant across the entire channel under this normalization. Meanwhile, the two-dimensional nature
of the flow near the wall causes the intermediate strain-rate eigenvalue to vanish. To compensate,
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FIG. 6. Average strain-rate eigenvalues as a function of wall distance (solid lines), (a) normalized by the bulk
Kolmogorov time scale and (b) normalized by the local Kolmogorov time scale, with dashed lines representing
results from homogeneous isotropic turbulence.

the maximal strain-rate eigenvalue, which is always positive, increases in magnitude near the
wall and becomes equal in magnitude to the minimal eigenvalue. The Kolmogorov time scale
is an effective characterization of strain-rate magnitude available for deforming fluid elements
or stretching vorticity. While alignment with the strain-rate eigenvector corresponding to its
intermediate eigenvalue is beneficial for stretching over most of the channel (i.e., because λ2 > 0),
near the wall such alignment provides very little stretching.

Since Fig. 6(b) shows that the mean strain-rate eigenvalues are constant for y+ > 100, it is
of interest to pursue the entire PDF of strain-rate eigenvalues in this region when normalized
by the local Kolmogorov time scale. The resulting distribution (solid lines) is compared with the
strain-rate eigenvalue PDFs from isotropic turbulence (dotted lines) in Fig. 7. The comparison is quite
good, although the PDFs from the isotropic simulation have slightly wider tails due to their higher
Reλ. Therefore, the hypothesis of local isotropy for strain-rate eigenvalue statistics gains further
support.

−2.0−1.5−1.0−0.5 0.0 0.5 1.0 1.5 2.0
Λiτη
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100

101

FIG. 7. PDFs of strain-rate eigenvalues normalized by the local Kolmogorov time scale in the core of the
channel (solid lines with open symbols), i.e., conditioned on y+ > 100. Dotted lines with closed symbols
represent results from homogeneous isotropic turbulence. Squares show �1, circles �2, and triangles �3.
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FIG. 8. Averages of cos2(θij ) as a function of y+, where θij represents the angle between the Cauchy-Green
eigenvector associated with its ith largest eigenvalue and the strain-rate eigenvector associated with its j th largest
eigenvalue. Solid lines represent results for the (a) most extensive FTLE direction (i = 1), (b) intermediate
FTLE direction (i = 2), (c) most compressive FTLE direction (i = 3), and (d) vorticity vector direction (i = ω).
Dashed lines represent results from homogeneous isotropic turbulence.

C. Alignment with strain-rate eigenvectors

The statistics of alignment between strain-rate eigenvectors and Cauchy-Green eigenvectors
(or vorticity vectors) are of importance in determining the efficiency at which a turbulent flow
stretches fluid elements (or vorticity) per unit dissipation. The average weights assigned to alignments
between strain-rate and Cauchy-Green eigenvectors are given by 〈cos2 θij |y〉, as discussed above.
Figure 8 presents, as a function of wall distance, all the components of this tensor with i = 1,2,3,ω

and j = 1,2,3.
The eigenvector associated with the largest eigenvalue of the Cauchy-Green tensor (i = 1)

represents the asymptotic alignment direction of material lines. Its mean alignment with strain-rate
eigenvectors for different wall distances in the channel flow is shown in Fig. 8(a) compared with
isotropic turbulence alignments. As with previous observations in this paper, the mean alignment
collapses to the isotropic values for y+ > 100, indicating agreement with local isotropy assumptions.
In the isotropic turbulence regime, the material line asymptotically aligns more closely with the
strain-rate eigenvectors associated with the largest two eigenvalues, with slight preference for
the intermediate eigenvalue. Meanwhile, it tends to align more orthogonally with the strain-rate
eigenvector of the minimal eigenvalue (contracting direction). This bias in alignment allows for
net stretching, since it experiences better alignment with the expanding eigenvectors than the
contracting ones. The situation changes approaching the wall, however. Alignment with the largest
strain-rate eigenvalue remains fairly steady, dipping slightly where 10 < y+ < 100 but rising above
the isotropic value within ten viscous units of the wall. Alignment with the intermediate eigenvalue of
the strain-rate tensor drops dramatically within 30 viscous units of the wall after a slight maximum

014605-13



JOHNSON, HAMILTON, BURNS, AND MENEVEAU

where 30 < y+ < 100. The loss of alignment with the intermediate eigenvalue is replaced by
more alignment with the contracting strain-rate eigenvalue. Approaching the wall, the alignment
of material lines is equal with the �1 and �3 strain-rate eigenvectors. In this way, the stretching
done by alignment with the expanding direction is statistically canceled by equal alignment and
magnitude of the contracting direction. This increased alignment with the �3 direction is the cause
for the decreased mean stretching efficiency λ1τη near the wall noticed in Fig. 4(b).

The mean alignments of the eigenvector for the intermediate Lyapunov exponent (i = 2) similarly
collapse to isotropic values above y+ = 100. This eigenvector shows the lowest level of bias in
aligning with each of the three strain-rate eigenvectors, with a slight preference for the eigenvector
of �2 and against the eigenvector of �3. Near the wall, however, it becomes strongly biased
toward alignment with the �2 eigenvalue, which is itself vanishing. Alignments with the �1 and �3

eigenvectors decrease significantly and become equal. The drop in λ2τη near the wall in Fig. 4(b) is
mostly a result of the drop in 〈�2〉 due to the increasingly two-dimensional nature of the near wall
flow.

The eigenvector of the minimal Lyapunov exponent (i = 3) also statistically mirrors the strain-rate
eigenvalue alignments of isotropic turbulence for y+ > 100. In this region, its preferential alignment
with the contracting eigenvalue preserves the λ3 < 0 relationship. Approaching the wall, however,
this eigenvector’s increasing alignment with the �1 direction coupled with a slight decrease in
alignment with �3 effectively decreases the magnitude of λ3τη as well, as seen in Fig. 4(b). The
tendency toward contraction by �3 becomes statistically canceled with more tendency toward
stretching by �1.

The vorticity vector shows the most exaggerated behavior, moving from its well-known alignment
with the �2 direction at y+ > 100, toward the two-dimensional shear flow behavior in the viscous
sublayer, where vorticity is perpendicular to the nonzero strain-rate eigenvalues. The drop-off in
�2 approaching the wall, along with the vorticity’s dramatically increasing alignment with the
�2 direction, is responsible for the drop in vorticity stretching efficiency λωτη approaching the
wall.

The following picture thus emerges. For y+ > 100, alignment and strain-rate statistics mirror
those of isotropic turbulence. In the viscous sublayer y+ < 5, the flow becomes like an unsteady
two-dimensional shear flow. In this regime, the Cauchy-Green tensor is relatively unstretched out of
the shear plane (typically, the transverse direction). Thus, the λ1 and λ3 Cauchy-Green eigenvectors
lie in the plane of the shear, while the vorticity is perpendicular to this plane. As a result, the
vorticity directly opposes the efforts of the strain-rate tensor to tilt the λ1 Cauchy-Green eigenvector
toward the �1 strain-rate eigenvector (and likewise λ3 toward �3). The stalemate that emerges
results in statistically equal alignment of the λ1 and λ3 eigenvectors with stretching and contracting
directions of the strain-rate tensor, which are approximately equal in magnitude. The λ2 Cauchy-
Green eigenvector aligns preferentially out of the shear plane (and with the vorticity vector) and thus
experiences little stretching or contraction. In this limit, all three Lyapunov exponents effectively
vanish and fluid elements are not stretched exponentially. In between these two limits, 5 < y+ < 100,
the DNS results indicate a primarily monotonic interpolation in alignment statistics, though some
nonmonotonic behavior is seen, for instance, in Fig. 8. Due to less optimal alignment statistics, buffer
layer turbulence is evidently less efficient at material deformation and vorticity stretching compared
with the locally isotropic turbulence seen at higher y+, due to less favorable alignment statistics
seen in that region. These alignment statistics, which are less favorable in the buffer layer compared
to isotropic turbulence, could be due to the strong background shear (although not as influential as
in the two-dimensional regime seen in the viscous layer) as well as the decrease in local Reynolds
number and the increased influence of coherent structures on velocity gradient statistics. Of course,
the strain-rate magnitudes in the buffer layer are much higher than in the core of the channel, so the
maximal deformation and stretching still occur there.

Finally, Fig. 9 compares the full PDF of these alignments for y+ > 100. As with the LLEs and
strain-rate eigenvalues, its is true with the alignment statistics as well that the entire PDF matches
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FIG. 9. PDFs of cos(θij ) in the core of the channel, i.e., conditioned on y+ > 100. Solid lines represent
the (a) most extensive FTLE direction (i = 1), (b) intermediate FTLE direction (i = 2), (c) most compressive
FTLE direction (i = 3), and (d) vorticity unit vector. Dashed lines represent results from homogeneous isotropic
turbulence. Squares show j = 1, circles j = 2, and triangles j = 3.

that of isotropic turbulence. In fact, many of the lines in Fig. 9 are indistinguishable. This figure
completes the compelling evidence given in this paper that, above y+ = 100, channel flow turbulence
deforms fluid elements and stretches vorticity in a manner fully consistent with the hypothesis of
local isotropy, even at relatively modest Reynolds numbers.

D. Cramér functions

For long integration time, assuming ergodic and mixing properties, the FTLEs along Lagrangian
paths all converge to limT →∞ γi(T ) = λi . The distribution of FTLEs in this limit collapses toward
a Dirac δ function according to the self-similar shape dictated by the Cramér function pγi

(g) ∼
exp[−T Sγi

(g)]. The Cramér functions for i = 1,2,3,ω are constructed using the Legendre transform
of the SCGF introduced in Sec. II D. The SCGF Lγi

(q) is computed numerically via linear regression
fit to ln〈exp(qγiT )〉 as a function of T for different values of q. The derivative of the SCGF can also
be calculated by a linear fit to 〈γiT exp(qγiT )〉

〈exp(qγiT )〉 . The Cramér function is then computed via a Legendre
transform S(g) = qL′(q) − L(q) with g = L′(q).

Figure 10 presents the Cramér functions for the three FTLEs as well as for vorticity stretching in
the channel flow (solid lines) compared with those of isotropic turbulence (dashed lines). Immediately
evident is that the minima of the channel flow Cramér functions, which indicate the mean values
λi , are closer to the origin than their isotropic counterparts. In fact, these mean values are tabulated
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FIG. 10. Cramér functions of the three Lyapunov exponents and vorticity for the channel flow (solid lines
with open symbols) compared to those from isotropic turbulence (dotted lines with closed symbols). Squares
show γ1, circles γ2, triangles γ3, and diamonds γω.

in the first column of Table III. Each volume-averaged Lyapunov exponent, normalized by the
volume-averaged dissipation rate, is approximately half as large as its counterpart from isotropic
turbulence. The cumulative stretching accomplished by velocity gradients along Lagrangian paths
in channel flow is less efficient per unit dissipation than is isotropic turbulence. While the turbulent
stretching statistics are indistinguishable from those of isotropic turbulence in the core of the
channel (y+ > 100), it is clear that the alignment statistics in the buffer region and viscous sublayer
are less favorable. As a result, in the locations of the highest available strain rates, the alignment
efficiency drops dramatically below the values from isotropic turbulence. Nonetheless, the channel
flow maintains approximately the same ratio between Lyapunov exponents because all are decreased
proportionally.

The shape of the Cramér functions can be characterized by looking at the behavior of cumulants
in the T → ∞ limit [12]. Since the existence of the SCGF indicates the asymptotically linear growth
of the cumulant generating function in time, the cumulants themselves likewise grow linearly. For
instance, the variance of the FTLE distribution grows like �iT , where �i = L′′

γi
(0) represents the

width of the Cramér function. Furthermore, the third and fourth cumulants grow like L′′′(0)T and

L(4)(0)T , respectively, thus the skewness and excess kurtosis decrease in time as Si = L′′′
γi

(0)

L′′
γi

(0)3/2
√

T
and

Ki − 3 = L(4)
γi

(0)

L′′(0)2T
, in accordance with the central limit theorem. These measures are summarized in

Table III for both the channel flow and isotropic turbulence Cramér functions.

TABLE III. Minimum and width of the Cramér functions for channel flow and isotropic turbulence, along
with coefficients for skewness and excess kurtosis (which decay as T → ∞).

Channel λiτη �iτη Si

√
T

τη
(Ki − 3)( T

τη
)

i = 1 0.059 0.34 13.9 95
i = 2 0.014 0.07 10.9 263
i = 3 –0.073 0.53 –14.0 107
i = ω 0.049 0.21 12.2 63

HIT λiτη �iτη Si

√
T

τη
(Ki − 3)( T

τη
)

i = 1 0.114 0.15 4.6 29
i = 2 0.029 0.10 0.9 3
i = 3 –0.143 0.26 –4.5 24
i = ω 0.100 0.12 3.5 19
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FIG. 11. Cramér function for the maximal finite-time Lyapunov exponent in a channel flow at Reτ = 180
(dashed line with pluses, from [19]) and Reτ = 1000 (solid lines with open symbols) compared to those from
isotropic turbulence (dotted lines with closed symbols).

While the channel flow Cramér functions show a mean FTLE 50% below that of isotropic
turbulence, the width of the Cramér functions for γ1, γ3, and γω are about twice as large, indicating
larger fluctuations in cumulative stretching. Furthermore, the channel flow displays much larger
skewness and kurtosis values, with negative skewness for the negative FTLE and positive skewness
for the positive ones. This statistical behavior reflects the influence of wall-normal movement of
Lagrangian paths in causing the FTLEs to fluctuate more violently, particularly in creating rare
events of large stretching and deformation when a particle advects into the high strain-rate region
near the wall (and only occasionally will see beneficial alignments there). Such events appear not to
cause as much fluctuation in γ2, perhaps because they occur near the wall where the flow behaves
more two dimensionally.

Finally, to briefly explore the influence of Reτ , Fig. 11 compares the Cramér function for the
maximal FTLE from the channel flow simulation of Bagheri et al. [19] at Reτ = 180. Because they
presented their results in terms of the time scale τL = h/Ucenter, their fourth-order polynomial fit to
the Cramér function was carefully rescaled in terms of τη,bulk using data from their paper. The mean
stretching at Reτ = 180 is λ1τη,bulk = 0.036, which is 30% of that seen in isotropic turbulence, even
lower than the Reτ = 1000 case. The width of the Cramér function (variance of FTLE fluctuations)
is also much smaller for Reτ = 180, which likely reflects the lower fluctuations due to wall-normal
sweeping. As argued in Sec. II A, the range of strain-rate magnitudes in the channel flow scales
as τη,center/τη,wall ∼ Re1/2

τ , meaning that the stretching can fluctuate more violently with increasing
Reynolds number simply by wall-normal migration.

V. CONCLUSION

In this paper, the deformation of fluid elements and stretching of vorticity are explored in a channel
flow at Reτ = 1000 using both instantaneous and finite-time Lyapunov exponents. The Lagrangian
paths are extracted from an Eulerian DNS database by adapting the task-parallel approach previously
used for isotropic turbulence to the channel flow. It has been verified empirically based on the data
that no particles can cross into the wall as long as an appropriate Lagrangian time step is used.
When averaged conditionally on wall-normal location, the instantaneous Lyapunov exponents have
a maximum in the buffer layer and approach zero at the wall. Their behavior for y+ > 100 is dictated
only by the local value of τη with magnitudes equal to those of homogeneous isotropic turbulence
(equal stretching per unit dissipation). For y+ < 100, however, the strain rate becomes less efficient
than in isotropic turbulence in stretching fluid elements and vorticity, where alignments between
Cauchy-Green and strain-rate eigenvalues become less favorable for sustained stretching. In this
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viscous sublayer, the alignment and stretching statistics betray the characteristics of two-dimensional
unsteady shear flow, which is particularly poor at producing exponential stretching and deformation.
In the buffer layer, the alignments are still less efficient for stretching than isotropic turbulence,
though the flow topology is much more complex than in the viscous sublayer.

The probability density functions of instantaneous Lyapunov exponents, strain-rate eigenvalues,
and alignments between Cauchy-Green and strain-rate eigenvalues all mimic those of isotropic
turbulence when conditioned on y+ > 100 and scaled according to the dissipation rate averaged
conditionally on wall-normal location. Together, these provide strong support for the ability of the
local isotropy hypothesis to describe quantities important in fluid element deformation and vorticity
stretching in this region. The observed success of local isotropy is notable, since the large-scale
fluctuations in the channel are highly anisotropic and the scale separation is relatively moderate
(Reλ ∼ 80) in the core. The contributions of strain rate and alignment statistics were explored
separately in considering the departure from locally isotropic behavior near the wall.

The Cramér functions for finite-time Lyapunov exponents, describing cumulative deformation
along Lagrangian paths, reflect the less efficient stretching near the wall when compared with those of
isotropic turbulence. Per unit dissipation, the channel flow at Reτ = 1000 provides about 50% of the
stretching compared to isotropic turbulence, while ratios between the Lyapunov exponents remain
about the same as in isotropic turbulence. This occurs because the maximum local stretching occurs
in the buffer layer, where alignments between Cauchy-Green and strain-rate eigenvectors are not as
propitious. The generation of large fluctuations in FTLEs by wall-normal movement of trajectories
is reflected in increased Cramér function width, skewness, and excess kurtosis values compared to
isotropic turbulence. An exception to this observation is γ2, which actually tends to fluctuate less,
perhaps due to its faster drop-off near the wall as the flow becomes more two dimensional.

While local isotropy is successful in describing the cumulative deformation behavior above
y+ = 100 and the viscous sublayer tends toward the behavior of unsteady two-dimensional shear
flow, the intermediate behavior of the buffer layer is less straightforward. For instance, approaching
the wall in the buffer layer, the mean vorticity stretching drops off sooner than the fluid element
deformation. Description of this region is difficult because the influential anisotropic coherent
structures are also responsible for dissipation and stretching.
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