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Eddy diffusivities of inertial particles in random Gaussian flows
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We investigate the large-scale transport of inertial particles. We derive explicit analytic
expressions for the eddy diffusivities for generic Stokes times. These latter expressions
are exact for any shear flow while they correspond to the leading contribution either in the
deviation from the shear flow geometry or in the Péclet number of general random Gaussian
velocity fields. Our explicit expressions allow us to investigate the role of inertia for such
a class of flows and to make exact links with the analogous transport problem for tracer
particles.
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I. INTRODUCTION

Understanding the role of particle inertia on the late-time dispersion process is a problem of
paramount importance in a variety of situations, mainly related to geophysics and atmospheric
sciences. Airborne particulate matter in the atmosphere indeed has a well-recognized role for
the Earth’s climate system because of its effect on global radiative budget by scattering and
absorbing long-wave and short-wave radiation [1]. For the sake of example, one of the most
intriguing issues in this context is related to the evidence of anomalous large fluctuations
in the residence times of mineral dust observed in different experiments carried out in the
atmosphere [2].

Those observations naturally lead to the idea that settling and dispersion of inertial particles,
both contributing to the residence time of particles in the atmosphere, crucially depend on
the peculiar properties of the carrier flow encountered in the specific experiment. For the
gravitational settling, this question was addressed in Ref. [3]. It turned out that the value of
the Stokes number alone, St, directly related to the particle size, is not sufficient to argue if
the sedimentation is faster or slower with respect to what happens in a still fluid. With minor
variations of the carrier flow, for a given St, it has been shown that either an increase or a reduction
of the falling velocity is possible, thus affecting in a different way the particle residence time in the
fluid.

Our aim here is to shed some light on how dispersion of inertial particles does depend on
relevant properties of the turbulent carrier flow. Our focus will be on the late-time evolution of the
particle dynamics, a regime fully described in terms of eddy diffusivities [4–6]. Our main question
can be thus rephrased in terms of the behavior of the eddy diffusivity by varying some relevant
features of the carrier flow (e.g., the form of its autocorrelation function), for a given inertia of the
particle.

This analysis for generic carrier flows is a task of formidable difficulty and forces us to the
exploitation of numerical approaches which, however, make it difficult to isolate simple mechanisms
on large-scale transport induced by inertia. To overcome the problem, we decided to focus on simple
flow field where the problem can be entirely grasped via analytic (or perturbative) techniques.
As we will see, shear flows are natural candidates to allow the analytic treatment of large-scale
transport.
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II. RULING EQUATION AND ASYMPTOTIC TRANSPORT

Let us consider the well-known model [7,8] for transport of heavy particles in d-spatial dimensions
by an incompressible carrier flow u(ξ (t),t):

dξ (t) = v(t) dt

dv(t) = −
[
v(t) − u(ξ (t),t)

τ

]
dt +

√
2 D0

τ
dω(t). (1)

Here v denotes the particle velocity, ξ its trajectory, and τ is the Stokes time. Finally, ω denotes a
standard d-dimensional Wiener process [9]. Increments dω coupled to (1) by a constant molecular
diffusivity D0 model, as customary, fast scale chaotic forces acting on the inertial particle acceleration
[10].

To start, we assume that the carrier flow is a shear

u(x,t) = u(x2, . . . ,xd,t) e1,

where e1 = (1,0, . . . ,0) is the constant unit vector pointing along the first axis. This simple
geometry readily enforces the incompressibility condition. We also assume that u is a stationary and
homogeneous Gaussian random field with mean and covariance specified by

〈u(x2, . . . ,xd,t)〉 = 0, 〈u(x2, . . . ,xd,t) u(0, . . . ,0,0)〉 = B(x2, . . . ,xd,|t |). (2)

It is worth stressing that we assume that the Eulerian statistics of the carrier flow is independent
from the Wiener process driving (1). For a shear flow, (1) is integrable by elementary techniques.
We find

vn(t) = e− t−to
τ vn(t0) +

√
2 D0

τ

∫ t

to

dωn(s) e− t−s
τ , (3a)

ξn(t) = ξn(t0) + τ (1 − e− t−to
τ )vn(t0), +

√
2 D0

∫ t

to

dωn(s) (1 − e− t−s
τ ) (3b)

for n �= 1, and

v1(t) = e− t−to
τ v1(t0) +

√
2 D0

τ

∫ t

to

dω1(s) e− t−s
τ + 1

τ

∫ t

to

ds u(ξ2(s), . . . ,ξd (s),s) e− t−s
τ , (4a)

ξ1(t) = ξ1(t0) + τv1(t0)(1 − e− t−to
τ ) +

√
2 D0

∫ t

to

dω1(s) (1 − e− t−s
τ )

+
∫ t

to

ds u(ξ2(s), . . . ,ξd (s),s) (1 − e− t−s
τ ) (4b)

for n = 1. The stochastic integrals appearing in (3) and (4) can be interpreted as the limit of the
usual Riemann sums owing to the additive nature of the noise.

A relevant indicator of the dispersion properties of a single-particle trajectory is the effective
diffusion tensor defined as

Deff
ln = lim

t↑∞
〈ξl(t) ξn(t)〉 − 〈ξl(t)〉 〈ξn(t)〉

2 (t − t0)

or, equivalently, by a straightforward application of de l’Hôpital rule

Deff
ln = lim

t↑∞
〈vl(t) ξn(t)〉 − 〈vl(t)〉 〈ξn(t)〉 + l ↔ n

2
. (5)

Inspection of (3) and (4) readily shows that the only nonvanishing elements of the effective diffusion
tensor are diagonal and are specified by the correlations 〈ξn(t) ξn(t)〉n = 1, . . . ,d (here and in the
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following the Einstein convention on repeated indexes is not adopted). A straightforward calculation
yields the explicit value of the correlations

Deff
nn = lim

t↑∞
〈vn(t)ξn(t)〉 = 2 D0

τ

∫ ∞

0
ds (1 − e− s

τ ) e− s
τ = D0 (6)

for n �= 1. The carrier flow appears only in the correlation function for n = 1. We find

lim
t↑∞

〈ξ1(t)v1(t)〉 = D0 + lim
t↑∞

∫
(t0,t)2

ds ds ′ e− t−s
τ (1 − e− t−s′

τ )〈u(η(s,t0),s) u(η(s ′,t0),s ′)〉
τ

(7)

for η(s,t0) = (ξ2(s), . . . ,ξd (s)) and ξi(t) i = 2, . . . ,d given by Eq. (3b). It is worth observing that
the explicit dependence on t0 in (7) actually disappears due to the limit t ↑ ∞. Without loss of
generality we can thus assume t0 = −∞ in (7) in order to obtain simpler expressions. The integrand
in (7) is amenable to a more explicit form, if we represent the Eulerian correlation function B of the
carrier flow, defined in (2), in terms of its Fourier representation. In such a case, the average over
the Eulerian statistics of the carrier flow and the Lagrangian statistics of the first d − 1 coordinates
of the inertial particle factor out as

〈u(η(s,t0),s) u(η(s ′,t0),s ′)〉 =
∫
Rd−1

dd−1k
(2 π )d−1

B̌(k,|s − s ′|)〈eı k·[η(s,t0)−η(s ′,t0)]〉 (8)

After some tedious yet elementary manipulations involving Gaussian integration on the Wiener
process and changes of variables in the plane (s,s ′), we obtain

Deff
11 = D0 +

∫
Rd−1

dd−1k
(2 π )d−1

∫ ∞

0
dt e−D0‖k‖2[t− τ (1−e− t

τ )]B̌(k,t). (9)

We therefore see that all the dynamically non trivial information is encoded in the isotropic
component of the effective diffusion tensor

Deff = 1

d

d∑
n=1

Deff
nn = D0 +

∫
Rd−1

dd−1k
(2 π )d−1

∫ ∞

0
dt e−D0‖k‖2[t− τ (1−e− t

τ )] B̌(k,t)

d
. (10)

We emphasize that (9) and the resulting expression for the isotropic component of the effective
diffusion tensor are exact results. There are several reasons why these simple results are interesting.
To start, we notice that although derived for the highly stylized case of shear flow, they continue to
hold in suitable asymptotic senses for much general classes of carrier flows. Namely, our final result
for the isotropic component Deff of the effective diffusion tensor coincides with the one for tracer
particles with colored noise derived in Ref. [11].

More generally, Deff admits the same expression if we compute the eddy diffusivity tensor in
a long-wave-number perturbative expansion in the coupling of the carrier flow. The logic of the
calculation is the same as in Ref. [12] but applied to inertial rather than Lagrangian particles. First,
we couch (1) into the equivalent integral form

v(t) = v(0)(t) + 1

τ

∫ t

to

ds u(ξ (s),s) e− t−s
τ ,

(11)

ξ (t) = ξ (0)(t) +
∫ t

to

ds u(ξ (s),s) (1 − e− t−s
τ ),

where now ξ (0)(t), v(0)(t) are Gaussian processes with components (3) but for n = 1, . . . ,d. Let
us assume the carrier flow to be an incompressible Gaussian random field with homogeneous and
stationary statistics

〈u(x,t)〉 = 0, 〈 ul(x,t) un(0,t)〉 = Bln(x,|t |).
Upon inserting (11) into (5) and retaining the leading order in u (corresponding either to small B
compared to (D0/L)2, L being a characteristic length-scale of the flow, or neglecting small deviations
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from the shear-flow geometry), we obtain

〈v(t) · ξ (t)〉 = 〈v(0)(t) · ξ (0)(t)〉 + τ

∫ t

t0

ds1

∫ s1

t0

ds2 (1 − e− t−s1
τ )(1 − e− s1−s2

τ )C1

+
∫ t

t0

ds1

∫ s1

t0

ds2 e− t−s1
τ (1 − e− s1−s2

τ )C2 +
∫

(t0,t)2
ds1 ds2 (1 − e− t−s1

τ )e− t−s2
τ C3 + · · ·

where the “. . . ” symbol stands for higher order terms and

C1 = 〈v(0)(t) · (u(ξ (0)(s ′),s ′) · ∂ξ (0)(s))u(ξ (0)(s),s)〉,
C2 = 〈ξ (0)(t) · (u(ξ (0)(s ′),s ′) · ∂ξ (0)(s))u(ξ (0)(s),s)〉,
C3 = 〈u(ξ (0)(s ′),s ′) · u(ξ (0)(s),s)〉.

If we now invoke the incompressible carrier flow hypothesis we see (details in the Appendix) that
C1 and C2 vanish and that

C3 =
∫
Rd

dd k
(2 π )d

d∑
n=1

B̌nn(k,|s − s ′|)〈 eık·[ξ (0)(s)−ξ (0)(s ′)]〉, (12)

which coincides with (8) in one extra dimension once we identify the trace of the Fourier transform
of the correlation tensor Bln.

III. ROLE OF INERTIA ON TRANSPORT

After having made the case for the general relevance for the expression of Deff we now turn to
analyze its behavior as function of the Stokes number and the characteristic time scale of the carrier
flow.

Let us first consider the limit of small D0. This would make the resulting integrals easier to
manage and to carry out. A first order expansion on D0 carried out on Eq. (10) gives

Deff = D0 + 1

d

∫
dd−1k

(2 π )d−1

∫ ∞

0
dt tr B̌(k,t){1 − D0‖k‖2[t − τ (1 − e− t

τ )]} + · · ·

or, in physical space,

Deff = D0+ 1

d

∫ ∞

0
dt〈u(x,t) · u(x,0)〉−D0

d∑
α,β=1

∫ ∞

0
dt

t − τ (1 − e− t
τ )

d
〈[∂αuβ(x,t)][∂αuβ(x,0)]〉

+ · · · . (13)

For τ → 0, the limit of vanishing inertia easily follows:

Deff −→τ→0 D0 + 1

d

∫ ∞

0
dt 〈u(x,0) · u(x,t)〉−D0

d

d∑
α,β=1

∫ ∞

0
dt t 〈[∂αuβ(x,0)][∂αuβ(x,t)]〉+ . . . ,

(14)

which corresponds to the result reported in Ref. [12].
Returning to the heavy particle case, in order to further simplify the expression for the eddy

diffusivity, let us focus on a 2D carrier flow with a single wave number k0. The correlation function
we consider is [13]

tr B̌(k,|t|) = (2π )d−1E(k0)e− |t |
Tc cos(	t)[δ(k − k0) + δ(k + k0)], (15)

E(k0) being the turbulent kinetic energy associated to the wave number. In principle, the decay time Tc

would depend on k itself, typically like 1/‖k‖ or 1/‖k‖2 [14–16]. However, since we are considering
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FIG. 1. The sign of S ≡ K(St) − K(0) in the St − 	 plane. Gray corresponds to S < 0, white to S > 0.

a single wave-number flow, we can consider it as a constant. We can now nondimensionalize our
system by setting k0 = Tc = 1 and dimensionless, as to have the Stokes number St = τ . By plugging
Eq. (15) into Eq. (13), one obtains

Deff = D0 + E(k0)

[
1

d

2

1 + 	2
+ D0

d
K

]
,

K = 2(1 + St)

1 + 	2
− 4

(1 + 	2)2
+ 2St2(1 + St)2

[1 + St(2 + St + St	2)]2
+ St2(2 + St)

4 + St(4 + St + St	2)

− St2(4 + 3St)

1 + St(2 + St + St	2)
.

The above expression is uniform in St. Indeed, it is a continuous function of St ∈ [0, + ∞), and
it tends to 0 as St → +∞ ∀	, and then it is limited for any St. This means that the perturbation
expansion at first order in D0 can be used for any value of St. However, note that, since max|K| � 1,
we have a constraint on D0 in order to have a uniform perturbation expansion, which is D0 � 2

(1+	2) .
The term K can be either positive or negative, depending on the importance of negative correlated

regions in the correlation function (15). Instead of focusing on the sign of K it is more interesting
here to analyze the contribution of inertia to K, thus looking at the sign of S ≡ K(St) − K(0).
This corresponds to investigate under which conditions inertia can cause transport reduction
or enhancement with respect to the tracer case. Positive values of S corresponds to transport
enhancement while negative values to transport reduction. This fact can be detected from Fig. 1
where the regions inside which S is negative (gray region) and positive (white region) are shown in
the plane St-	. The presence of inertia is thus able to cause a transition from transport enhancement
to transport reduction. The transition occurs for larger and larger values of 	 (and thus for stronger
and stronger anticorrelated regions) as the inertia becomes smaller and smaller.

The behavior of K as a function of St is reported in Fig. 2 for different values of 	. For sufficiently
small 	, K is negative and inertia increases its value thus enhancing transport. For sufficiently large
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FIG. 2. K vs St at 	 = 0.2 (upper panel), 	 = 0.8 (middle panel), and 	 = 1.1 (lower panel).

014602-6



EDDY DIFFUSIVITIES OF INERTIAL PARTICLES IN . . .

	, K is positive and inertia increases its value up to a certain value of St above which transport is
reduced by inertia.

The physical explanation of the resulting behavior of K versus St, for small St, can be traced
back to the mechanism of transport enhancement induced by a colored noise discussed in Ref. [17].
Indeed, the random contribution to the inertial particle velocity in (4a) turns out to be a colored
noise. The fact that for large Stokes times K goes to zero is a simple consequence of the fact that
in such a limit the contribution of the noise to the particle trajectories becomes negligible because
of the large inertia of the particles. A maximum of transport is thus guaranteed in all cases where
K > 0 for St = 0.

IV. CONCLUSIONS

By explicit computation, we have shown that the eddy diffusivities of inertial particles can be
determined for the class of shear flows for all values of the Stokes number. Although the analysis
here has been confined on the sole case of heavy particles, following the same line of reasoning it
is not difficult to show that the present results actually hold for any density ratio of the particles
(i.e., for any value of the added-mass term β involved in the model (2.2) of Ref. [6]). We also show
that the analytical results we obtained for the class of shear flows correspond to the leading order
contribution either in the deviation from the shear flow geometry or in the Péclet number of general
random Gaussian velocity fields (i.e., not of shear type).

The results we obtained for the eddy diffusivity allowed us to investigate the role of inertia on the
asymptotic transport regime. It turned out that both enhancement and reduction of transport (with
respect to the tracer case) may occur depending on the extension of anticorrelated regions of the
carrier flow Lagrangian autocorrelation function.
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APPENDIX: ROLE OF INCOMPRESSIBILITY

We avail ourselves of the Fourier representation of the carrier flow to write

C1 =
2∏

i=1

∫
Rd

dd ki

(2 π )d
〈ǔ(k1,s1) · (ık2)j (s1,s2) · ǔ(k2,s2)〉

with

j (s1,s2) ≡ eı
∑2

j=1 kj ·ξ (0)(sj )v(0)(t).

By construction the processes ξ (0) ,v(0) are independent of the carrier field. As we also suppose that
is stationary and homogeneous, the average in the integrand factorizes as

C1 =
∫

dd k
(2 π )d

k · B(k,|s1 − s2|) · 〈j (s1,s2)〉,

from which we see that C1 vanishes if the carrier flow is incompressible. Analogous considerations
allow us to prove that C2 vanishes and that (12) holds true.
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