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The flow driven by a rapidly expanding and collapsing cavitation bubble in a narrow
cylindrical gap is studied with the volume of fluid method. The simulations reveal a
developing plug flow during the early expansion followed by flow reversal at later stages.
An adverse pressure gradient leads to boundary layer separation and flow reversal, causing
large shear stress near the boundaries. Analytical solution to a planar pulsating flow shows
qualitative agreement with the CFD results. The shear stress close to boundaries has
implications to deformable objects located near the bubble: Experiments reveal that thin,
flat biological cells entrained in the boundary layer become stretched, while cells with a
larger cross section are mainly transported with the flow.
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I. INTRODUCTION

Strongly oscillating bubbles in narrow gaps are commonly found in microfluidic applications of
cavitation. These bubbles can be generated with focused laser pulses [1–3], with acoustically excited
capillary waves [4], or through spark discharges [5]. Applications of these transient pulsating flows
span cell stretching [6,7], liquid pumping [8], switching and sorting [9,10], mixing [11], and droplet
generation [12].

Modeling the fluid flow in these applications has been done to various degrees of sophistication.
Over a sufficiently short time scale, the problem can be simplified as a planar inviscid flow leading
to a Rayleigh-type equation in cylindrical coordinates [13]. This potential flow description has
been extended to nonspherical bubbles in narrow gaps [14]. However, a notable deficiency of these
approximations is their inability to model boundary layers, which are important when dealing
with suspended objects near the walls, e.g., flat red blood cells and thin elastic objects such as
nanowires [15]. Our recent experiments on bubble-induced cell stretching, such as red blood cells [7],
gave motivation to model the fluid flow in order to understand the underlying flow patterns that causes
cell deformation. In the present work, we focus on the structure of the liquid flow, i.e., the formation
of boundary layers during the expansion and collapse cycle of a single transient bubble.

In general, this confined flow may be simplified to an axisymmetric radial flow forced by a
time-dependent source at the origin. Axisymmetric radial flows in narrow gaps have been studied
experimentally and analytically in the past fifty years due to their relevance in industrial applications
such as radial viscometers, radial diffusers, nonrotating air bearings, and disk type heat exchangers.
For an oscillating source between two parallel plates, in which the source strength varies sinusoidally
about a zero-mean value, Elkouh [16] obtained an analytical solution and reported reversed flow near
the walls. Zitouni and Vatistas [17] provide an analytical power series solution to purely accelerating
and decelerating flows between two flat disks, which has later been studied numerically in Ref. [18]
as well. Although the flow reversal is not captured with the solution provided in Ref. [17], it can be
deduced to occur once the derivative of the velocity in the axial direction becomes zero at the wall.
Von Kerczek [19] completed the work of Zitouni and Vatistas [17] by finding analytical solutions
for the cases where flow reversal indeed happens, i.e., where the flow is neither purely accelerating
nor decelerating.
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Several groups have investigated bubble pulsations in a confinement. Cui et al. [20] studied
analytically the response of an acoustically driven spherical bubble confined between two parallel
plates. In this study, although the bubble is much smaller than the gap height, the channel walls
affect the bubble dynamics. As the spherical bubble is confined between two plates, decreasing the
channel height reduces the resonance frequency and the maximum response amplitude of the bubble.
Large bubbles, in contrast, obtain a cylindrical shape bounded by the walls, which is referred to as a
cylindrical bubble. Ilinskii et al. [21] obtained a solution for harmonic cylindrical bubble pulsations in
an infinite domain of compressible liquid. They compared their model with the Gilmore equation for
cylindrical bubble oscillations and also with the commonly used two-dimensional Rayleigh-Plesset
equation, emphasizing the role of liquid compressibility.

Considering the application of microbubbles as a pumping mechanism, Ory et al. [22] have
simulated the viscous flow induced by growth and collapse of a bubble in a narrow tube. In a similar
geometry, a detailed study of the liquid flow field induced by bubble activity has been reported by
Ye and Bull [23]. They have conducted direct numerical simulation of microbubble expansion and
shrinkage in a long tube, which represents the bubble activity in human vascular system during
gas embolotherapy. An improved model with flexible walls was presented in Ref. [24]. In another
biomedical application of microbubble expansion, the deformation of cells has been modeled with
a boundary element method by Tandiono et al. [25], which accounts for the membrane tension of
the cell. Their finding is that deformation of a cell, modeled as a liquid droplet, is maximized if the
resonance frequency of its surface mode matches the oscillation period of the bubble. This shape
frequency is dependent on the density contrast of the liquids and the membrane tension. The model
provides a physical explanation for why the shape of an elastic object in a symmetric back-and-forth
motion does not return to its original state, in contrast to a fluid particle in a homogeneous flow. Yet,
the no-slip boundaries were ignored by Tandiono et al. [25].

In the present work we focus on unsteady boundary layers generated in close proximity of an oscil-
lating bubble between two parallel disks using numerical simulations of the flow. The rapidly expand-
ing bubble is assumed to be created by an intense, focused laser pulse as a method of impulsive deposi-
tion of energy in the liquid. The simulation results are compared to an analytical expression for planar
flow induced by an oscillating pressure gradient. A simple experiment using deformable biological
cells of different sizes was conducted, where the cells probe the shear stress through their deformation.

II. NUMERICAL SIMULATION

A. Computational domain

The problem modeled is the expansion and shrinkage of an initially spherical bubble, created by
a focused, high-power laser pulse. The bubble is located at the center and between two parallel discs
separated by a gap of height h = 20 μm. We assume axisymmetry and only model the upper quarter
of the gap, utilizing symmetry to reduce the computational costs; see Fig. 1. The computational
domain is drawn to scale, with the length being AB = 80 μm and the height h/2 = DA = 10 μm.

The complex physical process of laser-matter interaction [26] leading to a rapidly expanding
bubble is greatly simplified by starting the simulation with a bubble of finite size and filled with non-
condensible gas; see Refs. [27] and [25]. The liquid motion around the bubble happens on a time scale
of tens of microseconds, while the acoustic transients are significant for at most hundreds of nanosec-
onds [26,28]. Therefore, for the purpose of resolving the pressure and velocity field in the liquid sur-
rounding the bubble, liquid compressibility effects and acoustic transients could be safely neglected.

B. Numerical solver specifications

The multiphase flow problem of the compressible gas and the incompressible liquid is modeled
with the volume of fluid (VOF) method accounting for interfacial tension but neglecting body forces
using ANSYS FLUENT 14.0 [29]. The boundary conditions as depicted in Fig. 1 are along DA axis
of symmetry, between AB symmetry, at BC constant pressure p0, and no slip at CD. In the VOF
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FIG. 1. Sketch of the computational domain using axisymmetry and symmetry with respect to the center
plane of the gap.

method a single set of momentum equations is solved for all phases, meaning that the pressure and
velocity field are shared among all present phases, and the volume fraction of each phase is tracked
throughout the domain. The momentum equation is

∂

∂t
(ρ�v) + ∇ · (ρ�v�v) = −∇p + ∇ · [μ(∇�v + ∇�vT )] + �F, (1)

where ρ is the density of the phases, �v is the velocity, p is the pressure, and �F is the surface force.
The surface force is modeled as a continuum surface force (CSF) as proposed in Ref. [30]. In ANSYS

FLUENT, the surface curvature is calculated from local gradients in the surface normal at the interface
of phases. In solving the governing equations, the material properties, such as density, ρ, or viscosity,
μ, are calculated as volume-fraction-averaged properties. Interface tracking is done by coupling the
volume of fluid with the level-set method [31,32]. This allows for accurate interface tracking as well as
mass conservation, in spite of the large density difference between the bubble content and the liquid.

In the present simulation, the pressure implicit with splitting of operators (PISO) scheme is used
for pressure-velocity coupling. The pressure staggering option (PRESTO!) is chosen for the spatial
discretization of the pressure while second-order upwind differencing is used in solving the governing
equations. The geo-reconstruct method is implemented for discretization of volume fraction and
interface reconstruction. An absolute convergence criteria of 10−6 is used for all governing equations
and the time step in the simulation is 10−8s . To assure the solution is mesh independent, the
simulations were conducted with two different grids, 5 000 and 80 000 elements, with an averaged
element size of 0.4 and 0.1 μm, respectively. Both solutions are nearly identical, see Fig. 3, and
therefore grid independence is obtained. All results reported here are using 0.1-μm element size,
while the mesh is refined in regions with high gradients, e.g., the initial bubble-liquid interface and
near the channel walls. The simulation time on a 2.1-GHz Intel Core i7 personal computer with 8
GB of RAM is approximately 24 h for a single cycle of bubble expansion and shrinkage.

The initial pressure in the gas bubble of R(t = 0) = 5 μm is 100 bar. The liquid is initially at
atmospheric pressure p0 = 1 bar. The liquid is water with a density of ρl = 998.2 kg/m3 and
a dynamic viscosity of μl = 1 × 10−3 Pa s, while the gas viscosity is μb = 1.34 × 10−5 Pa s,
corresponding to water vapor. The ideal gas law is used for calculation of density of the compressible
bubble content. This density calculation requires the solution to the energy equation [29], which is
shared among both phases, similar to the momentum equation (1). The temperature field is initially
assumed to be uniform in the computational domain and at 300 K. The interfacial tension coefficient
is γ = 7.2 × 10−2 N/m.
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FIG. 2. Computational fluid dynamics (CFD) results of the bubble shape evolution together with the radial
liquid velocity profile at r = 50 μm from the center of the bubble. Please note the reversal of the flow direction
near the boundaries occurring before the flow in the center of the gap.

III. CFD RESULTS AND ANALYSIS OF THE FLOW FIELD

A. Bubble evolution and liquid velocity profile

Figure 2 depicts the temporal evolution of the bubble shape over a period of 10 μs in a gap of
h = 20 μm. The spherical bubble quickly grows into a pancake shape, forming thin liquid films at
the upper and lower solid walls. The maximum bubble radius is obtained after 4 μs. During bubble
shrinkage, the convex interface flattens and only increases curvature after 8 μs, that is, when the
internal pressure increases and dampens the collapse of the bubble. The bubble collapses to its
minimum volume at 10 μs and rebounds afterwards (not shown here). To the right of the bubble
profile in Fig. 2, the radial velocity profile at a distance of r = 50 μm from the bubble center is
shown. Initially, the liquid is at rest and rapidly develops into a plug flow with strong wall shear
stress. Gradually, a more parabolic profile develops. At the later expansion stage, the velocity near
the walls is reduced and even reversed in direction, while the liquid velocity in the center of the gap
is still outwards and positive. This flow reversal near the boundaries will be discussed in detail in
Sec. III B.

Figure 3 shows the projected bubble radius from Fig. 2 and compares it with the experimentally
determined radii [2] and a two-dimensional Rayleigh-Plesset equation, e.g., see Ref. [13]. For
the chosen initial conditions, i.e., radius R(t = 0) and initial gas pressure, we find a good
agreement between the VOF simulation and the experiment. In particular, the asymmetry of the
bubble oscillation, having a faster expansion than the collapse, is captured in the VOF simulation.
Interestingly, this asymmetry was attributed previously and in a different geometry to thermal
effects [33]. We speculate that the faster expansion and slower collapses is caused by the asymmetry
of the flow: During expansion a plug flow prevails which has a lower overall viscous pressure head.
Later the boundary layers develop, retarding the flow and therefore lengthening the collapse.

The final stage of bubble collapse cannot be captured with the VOF model as it assumes that
the liquid and bubble content are immiscible, while in experiments the laser-generated bubble
mainly consists of condensable vapor. Our simulation predicts a milder collapse with re-expansion
of the bubble; however, the experiments find a much smaller minimum bubble radius followed by
fragmentation of the bubble.
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FIG. 3. Comparison of experimental cylindrical bubble dynamics [2] (dashed line with squares) with the
VOF solution (filled line and dashed line for two computational grids). Additionally, the solution to the 2D
Rayleigh-Plesset equation starting from the maximum bubble radius is shown with a dotted line.

B. Flow reversal due to adverse pressure gradient

For clarity we have divided the results into four stages and show the evolution of the liquid
pressure, p(r), and radial velocity vr (r = 50 μm,z,t) in Fig. 4. The four stages from left to right
are early expansion, late expansion, shrinkage, and rebound. The upper frames in Fig. 4 show the
unsteady pressure in the center of the channel from r = 0 to the outlet, i.e., p(r,z = 0,t). The
axial pressure gradient is negligible in comparison to the significant pressure variation in the radial
direction (∂p/∂z � ∂p/∂r). Therefore, the pressure near the wall is nearly identical to the center;
see also Fig. 6. The gas-liquid interface can be easily identified by the small pressure jump due to
surface tension in the pressure profiles in Fig. 4. The lower frames of Fig. 4 show the velocity profile
in the liquid at a fixed distance of r = 50 μm from the bubble center.

During the first stage, Fig. 4(a), 0 < t < 1.5 μs, the initial gas pressure of 100 bar accelerates
the liquid outwards from rest to almost 7 m/s. In consequence, the gas pressure drops within 1.5 μs
below the outlet pressure. During this time a flat-top velocity profile develops.

The second stage, Fig. 4(b), corresponds to the deceleration of the flow to the maximum bubble
volume at t = 4.3 μs. As the pressure in the bubble drops, an adverse pressure gradient develops
(∂p/∂r > 0). This leads to detachment of the boundary layer, where a reversed flow at the boundary
sets in. This flow reversal is clearly visible at t = 4 μs in the lower frame of Fig. 4(b). At this stage
the flow profile possesses an inflection point; the liquid in the center of the channel continues to flow
towards +r while at the boundaries the flow is directed towards the bubble.

In the third stage, Fig. 4(c), the bubble shrinks; i.e., a net flow towards the bubble sets in and
eventually a purely negative velocity profile builds up. In this stage the pressure gradient is stabilizing
the boundary layer and the pressure in the bubble steadily builds up.

In the last stage, the bubble reaches its minimum volume and rebounds, Fig. 4(d), 8 < t < 10μs.
Similar to stage 1, the internal bubble pressure is higher than the liquid pressure, but here the liquid
flow is toward the bubble. Therefore, the pressure gradient once again opposes the liquid flow and
leads to flow reversal near the channel walls. The flow could be described similar to stage 2, but
with opposite signs (∂p/∂r < 0). The liquid flow is eventually reversed at the walls in t = 10 μs,
minimum bubble volume is reached, and the bubble begins to rebound.
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FIG. 4. Evolution of pressure (top row) and radial velocity (bottom row) during early (a) and late (b)
expansion and early (c) and late (d) collapse. The times for the pressure and velocity profiles are indicated in
the upper legend of each column.

C. Vorticity generation

Figure 5 depicts the instantaneous streamlines during the buildup and decay of the adverse pressure
gradient together with a radial velocity profile at r = 50 μm, corresponding to the late stage of bubble
expansion in Fig. 4(b). At time t = 3.5 μs formation of vortices near the channel walls is observed.
From t = 3 to 4.5 μs the adverse pressure gradient supports the detachment of the boundary layer,
leading to a recirculating flow. Due to symmetry two vortex rings are formed which are transported
towards the center of the channel. In Fig. 5 the horizontal distance between the vortex core and the
bubble wall remains approximately constant at about 5 μm. Additionally, the separation point of
the boundary layer is relatively stable in space, here around r = 44 μm, and only moves toward the
bubble in the last frame of Fig. 5, i.e., at t = 5.5 μs when the bubble gains inward speed. As both
vortex rings migrate towards the center of the channel they merge, see Fig. 5, t = 5.0 and 5.5 μs.
From then on, the radial flow and the pressure gradient are aligned, stabilizing the boundary layer.

D. Flow field contours

For clarity, we present a sequence of contour plots of the liquid flow during the bubble expansion
and shrinkage in Fig. 6, in particular the pressure p(r,z,t), the radial velocity vr (r,z,t), and the
vorticity magnitude |∇ × �v|. The flow is separated into the same stages from Sec. III B.

At the early expansion of the bubble, (t = 0.5 μs) in Fig. 6, the high pressure in the bubble
accelerates the liquid outwards with a flat top radial velocity distribution with no vorticity in the
central flow but shear and vorticity in the proximity of channel walls.
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FIG. 5. Plot of the liquid streamlines during boundary layer separation, i.e., from t = 3 to 5.5 μs. The radial
velocity profile is plotted at r = 50 μm. Two counter rotating vortices form, move upwards, and recombine.

FIG. 6. Sequence of contour plots of the flow field during bubble expansion and shrinkage. Pressure field
in both phases, radial velocity in the liquid, and vorticity in the liquid are shown at left, center, and right,
respectively. The bubble-liquid interface is shown by the black line, i.e., contour of 0.5 liquid volume fraction.
The color bar for each figure is given underneath. Each figure is plotted with its specific color map to better
distinguish the flow field. Results are shown for a sample time instant of each different stage of the flow.
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FIG. 7. The effect of initial internal bubble pressure pi . Increasing the initial pressure results in a faster
flow field and a larger bubble size, but important features such as flow reversal and vorticity generation are
preserved. All simulations are done with h = 20 μm and ν = 1 cSt.

The late expansion and early shrinkage stage of the bubble (t = 4.5 μs) is accompanied by the
presence of reversed flow and boundary layer separation due to adverse pressure gradient in the
liquid. The outward flow is stopped and reversed close to the walls and two counter rotating vortices
are observed. The reversed flow and flow circulation in this stage cause significant shear stress near
the walls.

As the inward flow sets in during the shrinkage (t = 6.5 μs), the two vortices migrate toward the
channel center until they eventually merge and circulation is not visible in the flow field anymore.
The liquid flow toward the bubble is not opposed but stabilized by the pressure gradient.

Finally, the shrinkage causes the pressure to build up in the bubble (t = 9.5 μs), which in turn
acts as an adverse pressure gradient, opposing the inward liquid flow, and the bubble rebounds
afterwards.

It is worth recalling that the solution to the Navier-Stokes equations using the volume of fluid
method is shared among all phases, i.e., the water vapor in the bubble and its surrounding liquid
water. This means that all variables, including the pressure and velocity, are obtained for both phases.
In this paper, however, we focus only on the liquid flow field induced by the shared pressure field.
Therefore, in Fig. 6, the radial velocity field and the vorticity field are shown only in the liquid.

E. Effects of initial pressure, channel height, and viscosity

We now study the importance of the initial gas pressure, the gap height, and the viscosity of the
liquid independently. In Fig. 7 the temporal evolution of the bubble shape and the radial velocity
at r = 50 μm are compared for increasing internal bubble pressure from pi = 25 to 100 bar. The
channel height h = 20 μm, the initial bubble size of 5 μm, and the liquid viscosity of 1 cSt are kept
constant. By increasing the potential energy through internal pressure, the liquid is accelerated to a
higher kinetic energy. The general features of the flow are observed across the tested pressure range,
i.e., flow reversal and formation of vortices.

By increasing only the channel height, shown in Fig. 8, the bubble extends less in the radial
direction. Meanwhile, it is observed that reversed flow and vorticity generation occur as long as the
bubble covers the gap height. We can conclude that these flow features robustly occur for sufficiently
large and rapidly expanding bubbles, regardless of the channel height.

As shown in Fig. 9, increasing the viscosity reduces the expansion velocity and thus the radial
velocity gradient outside the boundary layer. Assuming a stationary outward flow with velocity
U at the top of the boundary layer, we can relate the pressure gradient to the outward velocity
as ρUdU/dr = −dp/dr based on the Bernoulli equation. Knowing that increasing the liquid
viscosity reduces the outward flow velocity U and its radial gradient dU/dr , we can conclude
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FIG. 8. Varying the channel height h from 20 to 30 μm. Flow reversal and vorticity generation near
the walls are observed for a cylindrical bubble despite the gap height, but are more prominent in tighter
confinements. Both simulations are done with pi = 100 bar and ν = 1 cSt.

that the pressure gradient also decreases at a higher viscosity. Since the pressure gradient is the
driving force for separation, flow reversal is expected to be delayed or hindered at a higher viscosity.
Figure 9 supports this idea: With increasing liquid viscosity the overall velocity is reduced. While
flow reversal is still observed at the late expansion stage, it is less prominent in a more viscous
liquid. Additionally, we observe that increasing the viscosity thickens the liquid film that separates
the bubble from the channel walls.

IV. ANALYTICAL APPROXIMATION FOR LIQUID VELOCITY PROFILE: PULSATING
PRESSURE-DRIVEN FLOW

The CFD solution reveals a complex flow pattern, yet we speculate that the main characteristics
of the flow can be captured with fundamental solutions of unsteady flows. In the early stage of
bubble expansion, the liquid in the channel is accelerated from rest to a velocity profile qualitatively
similar to a Poiseuille flow. This acceleration of the liquid is accompanied by a rapid reduction in
pressure inside the bubble.

Except for the short initial period described above, the pressure gradient acting on the liquid has
a pulsating behavior for the majority of the bubble expansion and shrinkage cycle. At the onset of
bubble shrinkage, the outlet pressure is higher than the pressure inside the bubble. Therefore, the
flow near the boundaries is opposed by an adverse pressure gradient and is eventually reversed. As

FIG. 9. The effect of kinematic viscosity ν: increasing the liquid viscosity while keeping pi = 100 bar
and h = 20 μm constant slows down the flow field considerably. The film thickness separating the bubble and
channel walls is larger in a more viscous liquid.
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FIG. 10. Comparison of (left) the VOF simulation of the radial velocity with (right) the analytical
approximation of the planar velocity profile during bubble shrinkage (2).

the inward flow sets in, the bubble shrinkage results in an increase in density and pressure of the gas,
which in turn leads to opposition against the inward flow. This situation resembles an oscillating
pressure gradient acting on the liquid between two parallel plates. Here we compare the simulation
results with an analytical solution for a two-dimensional flow within a gap induced by an oscillating
pressure gradient. Although the numerical solution is obtained for an axisymmetric geometry, we
simplify the geometry to a planar flow in order to obtain an analytical solution.

Using a harmonic function for the pressure gradient, i.e., ∂p/∂x = �p/�x sin ωt , we obtain the
transient solution to the two-dimensional Navier-Stokes equation for incompressible flow between
two parallel plates. To be succinct, we do not repeat the steps here and refer the reader to Sec. 7.8.3
of Ref. [34] for details of obtaining the analytical solution. The transient velocity profile u(y,t)
induced by this pulsating pressure-driven flow can be expressed as

u(y,t) = −1

ρω

�p

�x
[fc(y) cos ωt + fs(y) sin ωt], (2)

where f (y) is given as a complex function with real and imaginary parts, fc(y) and fs(y), respectively.
The complex function f (y) is formulated as

f (y) = fc(y) + ifs(y) = 1 −
cosh

(( 2y

h
− 1

)
h
2

√
−iωρ

μ

)

cosh
(

h
2

√
−iωρ

μ

) . (3)

The pulsating velocity profile for the bubble shrinkage is approximated with the solution from (2)
and is compared with the CFD solution in Fig. 10. A value of �p/�x = 2.5 × 104 bar m−1 with
a period of 2π/ω = 10 μs is used for the harmonic pressure gradient. This simplified analytical
description is able to capture the general features of the bubble-driven flow during bubble shrinkage.
Development of a reversed flow near the channel walls is observed, which later reverts completely
toward the bubble. Later on, the pulsating pressure gradient opposes and decelerates the inward flow,
which is similar to the findings in the numerical solution.

V. EXPERIMENTS: DEFORMATION OF CELLS

The numerical simulation suggests that deformable objects located within the boundary layer
and close to the bubble may be stretched considerably by the shearing flow. We test this hypothesis
with deformable objects thin enough to be entrained in the boundary layer, and larger objects which
cover most of the channel. As deformable objects we use biological cells in a suitable aqueous
solution (saline buffer solution). The experiments were stimulated from previous work with red
blood cells [6,7]. Red blood cells are thin, biconcave cells with a diameter of about 8 μm and a
thickness of less than 2 μm. After they are placed in the microfluidic gap, they sediment to the
bottom because of their higher density. Figure 11(a) shows a typical configuration of red blood
cells (RBCs) shortly before (top) and after (bottom) the bubble oscillation, as viewed from the top.
RBCs near the bubble are largely stretched. We refer the reader to the Supplemental Material [35]
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FIG. 11. Deformation of two different cell types due to the cavitation bubble induced flow in a 20-μm thin
gap. (a) The top shows red blood cells (RBCs) just before a laser creates a single cavitation bubble and at the
bottom are the cells just after the bubble collapse. (b) Colon cancer cells (RKOs) exposed to a similar flow
before and after the cavitation bubble dynamics. RKOs are much less deformed compared to RBCs (see text).

for a sequence of photos depicting cell deformation in the experiments, which confirms that cell
stretching occurs during late expansion and early shrinkage of the bubble. Details of the experiment
are available in Refs. [6,7].

The simulations show that the boundary layer where stretching may occur is approximately 1 μm
thick, which fits well with the thickness of red blood cells. Yet one would expect that cells covering
a large part of the gap would behave differently. This is tested in a second experiment: Here we
insert colon cancer cells (RKO), see Fig. 11(b), which have spherical shapes with a diameter of
10 to 15 μm, comparable with the 20-μm gap height. Figure 11(b) reveals that the RKO cells are
transported with the flow but do not visibly stretch.

As the thin RBCs are comparable to the size of the vortex, they become exposed to a shearing
force near the wall. From the simulation results, neglecting the presence of cells, we obtain values
of about 2 × 106 1/s for the magnitude of the shear strain rate, 1/2(∂vr/∂z + ∂vz/∂r), near the
walls, where the RBCs are located. This can be related to a stretching of a fluid particle assuming
a characteristic height and duration. Using 2 μm and a duration of 2 μs we obtain a length
increase of 8 μm, a value which is of the order of the observed stretching in experiments, e.g.,
Ref. [7].

To the contrary, the spherical RKO cells extending into the center of the channel are advected
with the flow. The shear stresses outside the boundary layer are considerably lower and therefore
lead to weaker deformation. We find about 10% strain at the center of the channel over a thickness
of 1 μm. The resulting deformation of these cells may be well within the resolution limit of the
imaging optics.

VI. DISCUSSION AND CONCLUSION

A notable feature of the present numerical solution to the flow induced by a cavitation bubble in a
narrow gap is the presence of boundary layer separation, reversed flow, and recirculation. In similar
geometries, flow reversal has been reported by other investigators. In the case of steady, radial flow
between two flat disks, extension of Von Kerczek [19] on the power-series solution obtained in
Ref. [17] shows the existence of boundary layer separation in radial diffusers. Prior to that, flow
visualization done in Ref. [36] on radial flows with a steady influx showed the nucleation, growth,
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migration, and eventual decay of vortices in the outward flow. Mochizuki and Yang [36] also obtained
finite-difference solutions to the unsteady vorticity transport equation which were in agreement with
their experimental findings. In an analytical treatment of the unsteady axisymmetric flow between
two flat disks, Elkouh [16] found the radial velocity distribution induced by an oscillating source-sink
exhibits flow reversal near the walls.

In a different confining geometry, an expanding bubble in a tube, direct numerical simulation of
the flow reveals the presence of a recirculation region between the wall and the core flow at the end of
bubble growth and beginning of shrinkage [23]. However, Ye and Bull [23] do not discuss this flow
feature in greater depth, and instead focus on the wall pressure and shear stress which is aligned with
the main application of their study, gas embolotherapy. Our findings about the wall shear stress due
to bubble induced liquid flow in a microfluidic geometry agrees well with their report; thus, we refer
the reader to Ref. [23] for a detailed discussion about wall shear stress. Interestingly, even inviscid
boundary layer simulations may explain the deformation of dispersed droplets (being a simple model
for a cell) if their interfacial tension is accounted for; see Ref. [25]. Tandiono et al. [25] simulated
a droplet at some distance from an oscillating bubble in an infinite liquid. The interfacial tension
introduces a second time scale besides the period of bubble oscillation; i.e., it causes the droplet to
oscillate in a surface mode.

Utilizing a viscous model in the present study, we find that during the late expansion of a
cavitation bubble in a narrow axisymmetric gap, the adverse pressure gradient leads to boundary
layer separation and flow reversal in the proximity of the walls. Although such complex flow patterns
in axisymmetry require computational treatment of the problem, a simplified analytical expression for
planar pulsating flow supports our understanding of the series of events we observe in the numerical
simulations and experiments. A prominent result of the observed flow reversal and vorticity is
generation of strong shear stress in the liquid close to the boundaries. The results indicate that some
flows created by oscillating bubbles in narrow gaps may not be accurately described with inviscid
potential flow in cylindrical symmetry. Particularly, in studying the mixing and emulsification of
flows or the deformation of elastic objects, such as yeast cells [37], it is necessary to account for
the vorticity generation and transport. For both applications, it would be interesting to extend the
present simulation to two-way coupling.
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