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Electrohydrodynamic Quincke rotation of a prolate ellipsoid
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We study experimentally the occurrence of spontaneous spinning (Quincke rotation)
of an ellipsoid in a uniform direct current (dc) electric field. For an ellipsoid suspended
in an unbounded fluid, we find two stable states characterized by the orientation of the
ellipsoid long axis relative to the applied electric field: spinless (parallel) and spinning
(perpendicular). The phase diagram of ellipsoid behavior as a function of field strength
and aspect ratio is in close agreement with the theory of Cēbers et al. [Phys. Rev. E 63,
016301 (2000)]. We also investigate the dynamics of the ellipsoidal Quincke rotor resting
on a planar surface with normal perpendicular to the field direction. We find behaviors,
such as swinging (long axis oscillating around the applied field direction) and tumbling,
due to the confinement.
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I. INTRODUCTION

The spontaneous spinning of a dielectric sphere in a uniform dc electric field has been known for
over a century, first attributed to the work of Quincke [1]. This phenomenon is enjoying resurgent
interest driven by the experimentally observed intriguing dynamics of Quincke-rotating spheres [2–5]
and drops [6–11], as well as an increasing interest in electric field directed assembly of colloidal
particles [12–15]. Theoretical analyses of rigid spheres show that an isolated sphere can exhibit
Lorenz chaotic rotations [3], pairs of spheres can undergo intricate trajectories [16–18], large
populations can self-organize and undergo directed motion [5,19–21], and a suspension can exhibit
lower effective viscosity [22–24] or increased conductivity [25] compared to the suspending fluid.

The Quincke rotation is driven by misalignment of the particle induced-charge dipole and the
applied electric field. When a particle is placed in an electric field, free charges accumulate at its
interface due to the difference of electrical conductivity σ and permittivity ε between the particle p

and suspending s medium [26],

R = σp

σs

, S = εp

εs

. (1)

A polarization corresponding to a dipole antiparallel to the applied electric field is unfavorable and
can lead to rotation. The conditions for continuous rotation are determined from the analysis of the
equations for free-charge polarization relaxation and conservation of angular momentum.

The evolution of the ith dipole component in a coordinate system centered at the particle [and in
the case of an ellipsoid aligned with its axes (see Fig. 1)] is described by [27]

dPi

dt
= −τ−1

i

[
Pi − (

χ0
i − χ∞

i

)
Ei

]
, (2)

where χ0
i and χ∞

i are the low- and high-frequency susceptibilities, respectively, and τi is the
Maxwell-Wagner polarization time along the ith axis of the ellipsoid. The particle rotation with rate
� is described by

Ii

d�i

dt
= (P̄ × E)i − αi�i, (3)

where Ii are the moments of inertia and αi are the rotational friction coefficients around the ith axis.
The electric torque is determined by the total polarization P̄i = Pi + χ∞

i Ei .
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FIG. 1. Sketch of the problem.

For a shape-isotropic particle such as a sphere with radius a,

χ0 − χ∞ = 4πεsa
3 3(R − S)

(R + 2)(S + 2)
(4)

and the Maxwell-Wagner polarization time is

τMW = εp + 2εs

σp + 2σs

. (5)

Analysis of (2) and (3) shows that the sphere spins with constant rate around an axis perpendicular
to the applied field direction [26,28,29] above a critical field strength E > EQ,

E2
Q = − α

τMW(χ0 − χ∞)
= 2σsμs(R + 2)2

3ε2
s (S − R)

, (6)

where α = 8πμsa
3 is the rotational friction coefficient of the sphere. Equation (6) shows that

the electrorotation is possible only if χ0 − χ∞ < 0, i.e., the suspending fluid and sphere satisfy
the condition R/S < 1. Physically, this corresponds to the induced dipole moment of the sphere
oriented opposite to the direction of the applied field. A perturbation in the dipole orientation
produces torque, which induces physical rotation of the sphere (around an axis perpendicular to the
applied field direction). The induced surface-charge distribution rotates with the sphere, however,
the exterior fluid recharges the interface. The balance between charge convection by rotation and
supply by conduction from the bulk results in a steady oblique orientation of the dipole relative to
the field direction and constant torque.

An ellipsoidal particle is expected to display more complex electrorotation dynamics than a
sphere [27,30–34] due to its anisotropic shape. The polarization relaxation times and susceptibilities
along the long and short axes differ [see Eq. (A2)]. The classic result is that an axisymmetric
ellipsoid aligns its long axis with the applied electric field [27,35]. In stronger fields, however,
a stable orientation with the long axis perpendicular to the external dc field is predicted [27]. In
this state, the prolate ellipsoid is rotating around its long axis (spinning state) [see Fig. 2(a) for an
illustration]. The spinning state occurs above a threshold [27]

E2
a = − α‖

τ⊥
(
χ0

⊥ − χ∞
⊥

) , (7)

where ‖ denotes the ellipsoid symmetry (long) axis and ⊥ the perpendicular-to-symmetry (short)
axis. In addition, α‖ is the friction coefficient for rotation around the long axis given by (A7).
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FIG. 2. Summary of prolate ellipsoid stable steady states and threshold electric fields. (a) Bulk, spinless
parallel; E > Ea , coexistence of spinless parallel and spinning perpendicular; and E > Er , spinning
perpendicular. (b) Resting on a surface, spinless parallel; E > Es , swinging; and E > Et , tumbling.

For a certain range of electric field strengths the system is bistable, i.e., the two orientations,
parallel and transversal to the applied field, coexist. The bistability disappears above E > Er ,

E2
r = α⊥

α‖
E2

a

χ∞
⊥ − χ0

⊥
χ∞

⊥ − χ0
‖

. (8)

At even higher field strengths, time integration of the equations of motion (3) and polarization
relaxation (2) shows that the ellipsoid axis can begin to precess around the field direction;
regimes of both regular and chaotic oscillations are found with increasing field strength [36–38].
These theoretically predicted peculiar features of the electrorotation of ellipsoids have not been
experimentally verified and motivate our work. In this paper we perform a systematic study of
ellipsoid dynamics as a function of field strength and aspect ratio for a prolate ellipsoid.

II. EXPERIMENTAL METHODS

A. Preparation of the ellipsoid

The millimeter-sized ellipsoid, needed for direct visualization, is made by cross-linking
a spheroidally deformed drop of polymer NOA 81 (Norland Optical Adhesive). The drop
deformation is induced by application of a uniform dc electric field after the drop is suspended
in poly(dimethyl)siloxane of viscosity 500 cSt (UCT) in a setup similar to that in [7,9]. Once
steady-state deformation is reached, the drop is exposed to UV radiation of 365 nm for about
1 min. Aspect ratios ranging from 1 to 2 can be achieved by tuning the electric field strength
from 0 to 5.0 kV/m. Once cross-linked, the solid NOA particles (εp = 4.04ε0, σp = 10−17

S/m, and density ρp ∼ 1.2 g/cm3) are rinsed and transferred to the castor oil bath (εs = 4.8ε0,
σs = 4.4 × 10−11 S/m, ρs = 0.961 g/cm3, and viscosity μs = 0.69 Pa s), where the experiments
are performed.

B. Experimental setup and procedure

A uniform electric field is generated in a parallel-plate chamber setup sketched in Fig. 3(a). The
chamber base and walls are constructed from polymethyl methacrylate (PMMA). Two 4 × 7 cm2

brass plates serving as electrodes are attached to the chamber’s vertical walls. The distance between
the electrodes is 1.64 cm, about 10 times larger than the particle radius, to minimize boundary
effects. Fields up to 3.0 kV/cm are generated using a voltage amplifier connected to a dc power
supply. The ellipsoid is observed from the top, in a direction perpendicular to the field.

The experiment is carried out by placing the solid NOA ellipsoid into the chamber filled with
castor oil. The particle is placed either in the bulk (to observe unbounded dynamics) or at the bottom
(to observe planar rotations). After the electric field is applied, the ellipsoid behavior is recorded
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FIG. 3. (a) Sketch of the experimental setup. Rotation is observed either an ellipsoid in the bulk or an
ellipsoid resting on a horizontal PMMA surface. The top view of two NOA ellipsoids is shown with aspect
ratio (b) β = 1.25 and (c) β = 1.93. The scale bar is 500 μm.

for about 3 min. This time limit is set by particle sedimentation (with velocity of about 0.4 mm/s).
For a given electric field, the experiment is repeated 2–10 times for the same particle with different
initial orientation between the ellipsoid long axis and the applied field direction. The same steady
state is always observed. After a series of experiments in the bulk, the planar rotations of the same
particle are studied after it reaches the bottom of the chamber.

The motion of the particle is recorded through an optical device mounted on top of the chamber.
From the images the following parameters of interest are obtained: particle geometry (volume and
aspect ratio β = a‖/a⊥) and the dynamic angle θ (t) between the particle symmetry (long) axis and
the applied electric field E.

III. RESULTS AND DISCUSSION

A. Unbounded rotation

Figure 4(a) shows the steady states for ellipsoids in an unbounded environment as a function of
field strength. Nine ellipsoids with aspect ratios between β = 1.02 and β = 1.96 are investigated.
Each particle is subjected to a stepwise increase of the electric field. The appearance of the spinning
perpendicular state occurs above a threshold electric field, which agrees well with the theoretical
predictions Ea (dashed line) [Eq. (7)]. The spinless parallel state is never observed above Er (solid
line) [Eq. (8)], also in agreement with the theory [27].

In the theoretically predicted bistability region Ea < E < Er , ellipsoids with both spinning
and aligned orientation are found. However, we never observe bistability with the same ellipsoid.
Experimentally we find that a given particle always assumes the same state (aligned or spinning),
independent of the initial orientation; however, two nearly identical ellipsoids (with only a minute
difference in aspect ratio) at the same electric field can assume different states. It is likely that
small imperfections of the ellipsoids introduce bias in the choice of the steady state and suppress
the bistability. We do see hysteresis in the transition between spinless and spinning states for the
same particle, but the window of electric fields is much narrower than the theoretically predicted
bistability region.

Our experiments also highlight the rich transient dynamics as a particle approaches its steady
state. Various evolutions are shown in Fig. 4(b) for an ellipsoid with aspect ratio β = 1.4.
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FIG. 4. (a) Phase diagram of unbounded dynamics of a prolate ellipsoid showing the two steady states:
spinless parallel orientation (triangles) and spinning perpendicular (circles). Curves correspond to stability
thresholds for the spinning perpendicular state Ea [blue dashed line, Eq. (7)] and the loss of stability of the
spinless parallel state Er [black solid line, Eq. (8)]. (b) Evolution of the ellipsoid orientation at E < Ea (blue
curve) and E > Er . The corresponding initial orientations θ = π/2 and 0 are chosen to be as far away as
possible from the steady orientation. The aspect ratio β = 1.4.

If the applied field is E < Ea , the particle is initially placed out of equilibrium with its long axis
perpendicular to the field direction [θ (t = 0) = π/2]; this corresponds to a maximum deviation from
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the steady state θeq = 0. When the field is turned on, the spinless state is reached monotonically at
low field strengths. In stronger fields, the steady orientation is approached via damped oscillations
around the parallel orientation.

If the applied field is E > Ea , the particle is again placed out of equilibrium, initially in parallel
alignment [θ (t = 0) = 0], and its relaxation towards the spinning perpendicular orientation θeq =
π/2 is recorded. Here again two possible relaxation behaviors exist. Slightly above the threshold
value Er [Fig. 4(b)], the long axis exhibits growing oscillations until the onset of the spinning motion
stabilizes the orientation at θeq = π/2 [30]. If the particle initial orientation is the equilibrium one
θ (t = 0) = π/2, then spinning takes place immediately and this initial orientation is maintained
(see Supplemental Material Ref. [39]). In the spinning regime oscillations around θ = π/2 are
sometimes observed [see Fig. 3(b), where E/EQ = 1.08] that correspond to out-of-plane precession
of the symmetry axis.

B. Planar rotations

In this section we consider the dynamics of a prolate ellipsoid initially resting on a planar surface
[see Fig. 3(a)] in order to study rotations restricted to a plane. In this case the transition to the
spinning perpendicular state is suppressed.

1. Mathematical model

Planar rotations are defined as �1 = dθ/dt , �2 = �3 = 0 (i.e., around the short axis), E1 = 0,
E2 ≡ E⊥ = −E sin θ , and E3 ≡ E‖ = E cos θ . The polarization relaxation equations (2) reduce to

dP‖
dt

= − 1

τ‖

[
P‖ − (

χ0
‖ − χ∞

‖
)
E‖

]
, (9a)

dP⊥
dt

= − 1

τ⊥

[
P⊥ − (

χ0
⊥ − χ∞

⊥
)
E⊥

]
. (9b)

The balance of electric and viscous torque (3) (in the inertialess limit) reduces to

α⊥
dθ

dt
= P‖E⊥ − P⊥E‖ + (

χ∞
‖ − χ∞

⊥
)
E⊥E‖. (10)

The time integration of the equations for the polarization evolution (9) and for the angular
momentum conservation (with negligible inertia) (10) shows that the particle dynamics has three
distinct stable states: spinless parallel, swinging, and tumbling [38] (see the Appendixes for more
details).

2. Experimental results

Experiments confirm the theoretical predictions for the planar rotation. The phase diagram in
Fig. 5(a) shows the regions of existence of the various states as the field strength increases: a
spinless-parallel state (triangles), sustained swinging motion (square), and tumbling (circles). Unlike
unbounded rotation, the distinct states are not observed to coexist.

The transient dynamics is presented in Fig. 5(b) for a particle of aspect ratio β = 1.78. Swinging
is characterized by angle oscillations with constant amplitude (within −π/2 < θ < π/2) for as long
as the electric field is on. The amplitude can be tuned by modifying the strength of the electric field
and the particle aspect ratio. Tumbling occurs when the swinging amplitude exceeds π/2. Near the
threshold Et the ellipsoid might reverse its direction of rotation after a few cycles.

The experimental data are compared with the numerical solution of the set of three evolution
equations describing the ellipsoid motion: the polarization (parallel and perpendicular to the applied
field direction) (9) and orientation (angle between the long axis and the applied field direction) (10).
Quantitative agreement for the field thresholds for swinging Es and tumbling Et [Fig. 5(a)] as
well as the angle evolution [Figs. 5(c)–5(e)] is found if the conductivity of the outer fluid is
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FIG. 5. (a) Phase diagram for a planar rotation: spinless parallel (triangles), swinging (squares), and
tumbling (circles). Shown are the numerically obtained thresholds for swinging (blue dashed line) and tumbling
(red solid line). (b) Example of transient dynamics for the ellipsoid with aspect ratio β = 1.78. Swinging (here
for −π/4 < θ < π/4) occurs for E/EQ = 1.32 and the tumbling for E/EQ = 1.45. The best numerical
agreement is found for an effective conductivity of the surrounding material 0.67σs for (c) E/EQ = 0.92,
(d) E/EQ = 1.19, and (e) E/EQ = 1.32.
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assumed to be lower by a factor of 0.67. This assumption is justified by the fact that the substrate
introduces inhomogeneity in the conductivity near the ellipsoid: The insulating solid substrate with
a negligible conductivity can be accounted for by an effectively lower-conductivity homogenous
medium embedding the ellipsoid. Some discrepancies may still originate from the additional friction
due to roughness on the particles surface and substrate.

IV. CONCLUSION

We have investigated the electrorotation dynamics of a prolate ellipsoid under unbounded or
constrained (planar) conditions. As predicted by stability analysis, the ellipsoid has the ability to
either align or spin perpendicularly to the electric field. Spinning perpendicular states dominates at
high electric fields and a bistability region was evidenced. Restricting the rotations from fully three
dimensional to planar, by placing the ellipsoid on a surface, gives rise to dynamics such as tumbling
and swinging.

This work focused on prolate ellipsoids, where rotation around the longest axis is favored due to
lower friction. Oblate ellipsoids offer potentially richer behavior with the choice of rolling (spinning
around the shortest, symmetry axis) or tumbling (spinning around the longer axis).

The electrorotation dynamics of ellipsoids resting on a surface offers interesting directions for
research in the context of collective dynamics. The shape anisotropy adds aligning interactions,
which lacks in systems of Quincke rollers [5], and this could give rise to nematic ordering.
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APPENDIX A: THEORETICAL MODEL FOR THE QUINCKE ROTATION OF AN ELLIPSOID

For the sake of completeness, here we summarize the model describing the rotational dynamics of
an ellipsoid in a uniform electric field [27]. We consider a coordinate system aligned with the ellipsoid
symmetry axis (and comoving with it). Charges carried by conduction accumulate at boundaries that
separate media with different electric properties. The relaxation of the retarded polarization (total
minus the instantaneous) along the direction of the ellipsoid axes is described by

dPi

dt
= − 1

τi

(
Pi − P

eq
i

)
, (A1)

where

τi = εs

σs

1 + ni(S − 1)

1 + ni(R − 1)
(A2)

are the Maxwell-Wagner relaxation times, with ni the depolarization factors, and P
eq
i are the

components of the equilibrium polarization, which are proportional to the components of the electric
field. The coefficient of proportionality is the susceptibility

P
eq

i = χiEi, (A3)

χi = χ0
i − χ∞

i

= εsV

[
R − 1

(R − 1)ni + 1
− S − 1

(S − 1)ni + 1

]
, (A4)

where V is the ellipsoid volume.
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For a prolate ellipsoid a3 > a2 = a1 (i.e., a‖ > a⊥), the axis of symmetry is the long axis; the
aspect ratio β = a‖/a⊥ > 1,

n3(≡ n‖) = 1 − e2

e3
[arctanh(e) − e],

n1 = n2 = 1 − n3

2
,

(A5)

where e =
√

1 − 1/β2. The evolution of the ellipsoid orientation is determined from the conservation
of angular momentum

Ii

d�i

dt
= (P̄ × E)i − αi�i, (A6)

where Ii are the moments of inertia around ith axis and αi are the friction coefficients [34]

α1 = 2μsV M⊥, α2 = α1, α3 = 2μsV M‖, (A7)

with

M⊥ = 1 + β2

n‖β2 + 1−n‖
2

, M‖ = 2

1 − n‖
. (A8)

APPENDIX B: INERTIALESS PLANAR ROTATIONS OF AN ELLIPSOID

The evolution equations (9) and (10) are nondimensionalized before solving. The variables are
normalized by the values for a sphere

t̃ = t

τMW
, P̃ = P

Pc

, (B1)

where

Pc = �χsE, χ0 = εs4πa3 R − 1

R + 2
, χ∞ = εs4πa3 S − 1

S + 2
, (B2)

and �χs = χ0 − χ∞ is given by (4). In dimensionless form, the torque balance (10) becomes

θ̇ = − B

2M⊥
[C1(P̃⊥ cos θ + P̃‖ sin θ ) + C2 cos θ sin θ ], (B3)

where

B = ε2
s E

2

μsσs

, C1 = 9(R − S)

(R + 2)2
, C2 =

[
(S − 1)

(S − 1)n‖ + 1
− (S − 1)

(S − 1)n⊥ + 1

](
S + 2

R + 2

)
. (B4)

The dimensionless polarization relaxation equations are

dP̃‖
dt̃

= −T‖(P̃‖ − X‖ cos θ ), (B5a)

dP̃⊥
dt̃

= −T⊥(P̃⊥ + X⊥ sin θ ), (B5b)

where

T‖,⊥ = τMW

τ‖,⊥
=

(
S + 2

R + 2

)(
(R − 1)n‖,⊥ + 1

(S − 1)n‖,⊥ + 1

)
(B6)
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and

X‖,⊥ = (R + 2)(S + 2)

9[1 + n‖,⊥(R − 1)][1 + n‖,⊥(S − 1)]
. (B7)

The numerical results in Fig. 5 are obtained by the time integration of (B5) and (B3).
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[22] A. Cēbers, Bistability and “Negative” Viscosity for a Suspension of Insulating Particles in an Electric
Field, Phys. Rev. Lett. 92, 034501 (2004).

014101-10

https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1002/andp.18962951102
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1016/S0378-4371(02)01168-8
https://doi.org/10.1063/1.1827411
https://doi.org/10.1063/1.1827411
https://doi.org/10.1063/1.1827411
https://doi.org/10.1063/1.1827411
https://doi.org/10.1039/b807927g
https://doi.org/10.1039/b807927g
https://doi.org/10.1039/b807927g
https://doi.org/10.1039/b807927g
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1063/1.2399753
https://doi.org/10.1063/1.2399753
https://doi.org/10.1063/1.2399753
https://doi.org/10.1063/1.2399753
https://doi.org/10.1063/1.3507919
https://doi.org/10.1063/1.3507919
https://doi.org/10.1063/1.3507919
https://doi.org/10.1063/1.3507919
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1103/PhysRevE.88.043003
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1017/jfm.2014.289
https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1021/acs.langmuir.5b00774
https://doi.org/10.1103/PhysRevFluids.1.060504
https://doi.org/10.1103/PhysRevFluids.1.060504
https://doi.org/10.1103/PhysRevFluids.1.060504
https://doi.org/10.1103/PhysRevFluids.1.060504
https://doi.org/10.1021/la504793y
https://doi.org/10.1021/la504793y
https://doi.org/10.1021/la504793y
https://doi.org/10.1021/la504793y
https://doi.org/10.1140/epjst/e2013-02065-0
https://doi.org/10.1140/epjst/e2013-02065-0
https://doi.org/10.1140/epjst/e2013-02065-0
https://doi.org/10.1140/epjst/e2013-02065-0
https://doi.org/10.1016/j.crhy.2013.05.002
https://doi.org/10.1016/j.crhy.2013.05.002
https://doi.org/10.1016/j.crhy.2013.05.002
https://doi.org/10.1016/j.crhy.2013.05.002
https://doi.org/10.1039/c3sm27363f
https://doi.org/10.1039/c3sm27363f
https://doi.org/10.1039/c3sm27363f
https://doi.org/10.1039/c3sm27363f
https://doi.org/10.1103/PhysRevE.87.043014
https://doi.org/10.1103/PhysRevE.87.043014
https://doi.org/10.1103/PhysRevE.87.043014
https://doi.org/10.1103/PhysRevE.87.043014
https://doi.org/10.1103/PhysRevE.85.026608
https://doi.org/10.1103/PhysRevE.85.026608
https://doi.org/10.1103/PhysRevE.85.026608
https://doi.org/10.1103/PhysRevE.85.026608
https://doi.org/10.1007/s00332-015-9254-9
https://doi.org/10.1007/s00332-015-9254-9
https://doi.org/10.1007/s00332-015-9254-9
https://doi.org/10.1007/s00332-015-9254-9
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1038/ncomms8470
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevE.89.052310
https://doi.org/10.1103/PhysRevLett.114.188301
https://doi.org/10.1103/PhysRevLett.114.188301
https://doi.org/10.1103/PhysRevLett.114.188301
https://doi.org/10.1103/PhysRevLett.114.188301
https://doi.org/10.1103/PhysRevLett.92.034501
https://doi.org/10.1103/PhysRevLett.92.034501
https://doi.org/10.1103/PhysRevLett.92.034501
https://doi.org/10.1103/PhysRevLett.92.034501


ELECTROHYDRODYNAMIC QUINCKE ROTATION OF A . . .

[23] E. Lemaire, L. Lobry, and N. Pannacci, Viscosity of an electro-rheological suspension with internal
rotations, J. Rheol. 52, 769 (2008).

[24] H.-F. Huang, M. Zahn, and E. Lemaire, Negative electrorheological responses of micro-polar fluids in the
finite spin viscosity small spin velocity limit. I. Couette flow geometries, J. Electrostat. 69, 442 (2011).

[25] N. Pannacci, E. Lemaire, and L. Lobry, DC conductivity of a suspension of insulating particles with
internal rotation, Eur. Phys. J. E 28, 411 (2009).

[26] J. R. Melcher and G. I. Taylor, Electrohydrodynamics—A review of role of interfacial shear stress, Annu.
Rev. Fluid Mech. 1, 111 (1969).
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