
PHYSICAL REVIEW FLUIDS 2, 014006 (2017)

Wetting dynamics of a collapsing fluid hole
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The collapse dynamics of an axisymmetric fluid cavity that wets the bottom of a rotating
bucket bound by vertical sidewalls are studied. Lubrication theory is applied to the governing
field equations for the thin film to yield an evolution equation that captures the effect of
capillary, gravitational, and centrifugal forces on this converging flow. The focus is on the
quasistatic spreading regime, whereby contact-line motion is governed by a constitutive
law relating the contact-angle to the contact-line speed. Surface tension forces dominate
the collapse dynamics for small holes with the collapse time appearing as a power law
whose exponent compares favorably to experiments in the literature. Gravity accelerates
the collapse process. Volume dependence is predicted and compared with experiment.
Centrifugal forces slow the collapse process and lead to complex dynamics characterized
by stalled spreading behavior that separates the large and small hole asymptotic regimes.
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I. INTRODUCTION

Coating processes strive to produce uniform thin films on the underlying solid substrate. In certain
circumstances a hole can be nucleated in the film. Sometimes these holes disappear, and other times
they remain as an undesirable defect. As the thickness of the uniform film decreases, it becomes
susceptible to instabilities and holes will form in a process called spinodal dewetting [1]. Controlling
the dewetting process allows one to create objects of predetermined size and spatial distribution, as
required in many technological applications [2]. For example, micropatterning by dewetting has been
used to create desired features in solids ranging from metallic thin films [3] to soft rubber substrates
[4]. The review by Geoghegan and Krausch [5] summarizes the extensive experimental research
on wetting and dewetting in polymer films, focusing on the role of pattern formation caused by
dewetting; see Reiter [6] for a more modern review of dewetting of polymer films. On the scientific
side, Sellier et al. [7] have shown how to estimate the viscosity of a fluid by measuring the collapse
time of a nucleated hole, while Reiter et al. [8] demonstrate how the rheology of thin polymer films
can be characterized using careful dewetting experiments.

Hole formation is determined by the stability of the liquid film, which depends on the film
thickness h and the sign of the spreading parameter S ≡ σsg − (σls + σlg), relating the solid-gas σsg ,
liquid-solid σls , and liquid-gas σlg surface energies. When S < 0, the film dewets by two mechanisms
separated by the scale of the magnitude of the film thickness. In nanometer-sized films (h < 10−9 m),
thickness fluctuations lead to intrinsic instabilities that result in spinodal dewetting [1]. In contrast,
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mesoscopic films (10−3 m > h > 10−8 m) are neutrally stable, and dewetting occurs by nucleation of
a hole via external means, such as capillary suction or air jets [9]. For completely wetting substrates
S > 0, the nucleated hole is unstable and always collapses. In this paper, we are interested in studying
holes in the mesoscopic regime, where surface tension forces play a dominant role in the collapse
dynamics.

The experimental literature is filled with novel techniques to nucleate a hole in a thin film. Padday
[10] performed one of the first experimental studies on hole formation in which the critical thickness
below which water films ruptured on a variety of surfaces was measured and found to increase with
the contact angle. Taylor and Michael [11] utilized air jets to study hole formation in water and
mercury films. They showed that there exists a critical hole size above which larger holes grow and
below which smaller holes heal. Experiments by Redon et al. [9] focus on the rate of hole growth
showing that the velocity is independent of film thickness, but critically dependent on the receding
contact angle. High-velocity drop impact [12] and annular retaining dams [13] have similarly been
used. Backholm et al. [14] have notably studied the interactions between multiple holes in viscous
films. Recent experiments by Mukhopadhyay and Behringer [15] and Dijksman et al. [16] utilize
centrifugal forces by rotating an axisymmetric fluid reservoir. These forces drive fluid to the outer
edge of the container thereby creating uniform and centered holes. We use an identical geometry in
deriving the theoretical model presented here.

With regard to films on partially wetting substrates, Sharma and Ruckenstein [17] showed that
two equilibrium holes of different radii are possible for a given contact angle. They used energy
arguments (statics) to show that the small and large hole were unstable and stable, respectively,
thereby concluding that small enough holes will eventually close. Moriarty and Schwartz [18] use
lubrication theory to study the dynamics of hole closure for thin films to show that a statically stable
hole can be dynamically unstable if there is significant contact-angle hysteresis. Bankoff et al. [19]
report dynamic measurements of front velocities, dynamic contact angles, and interface shapes, as
they depend upon the initial fluid depth. Their results show that the final hole size increases as the
initial fluid depth decreases. López et al. [20] conduct a linear stability analysis using a lubrication
model with contact line motion to show that small holes are unstable to axisymmetric disturbances
and large holes eventually become unstable to nonaxisymmetric disturbances. For films in bounded
containers, the wetting properties of the sidewalls can also play a significant role in dewetting [21].

Viscous gravity currents occur in industry [22] and in nature [23] and can be viewed as a limiting
case of the problem we consider here. The flow is primarily horizontal and can be modeled by
lubrication theory [24]. For unbounded flows, the resulting equations admit a self-similar solution
of the first kind [25] relevant to the dam break problem [26]. The focusing flows that occur in hole
collapse can also take a self-similar form of the second kind, although the power law exponent can
not be predicted a priori from scaling arguments and must be computed as part of the solution.
Experiments on hole collapse can be viewed as convergent viscous gravity currents with Diez
et al. [13] showing that the size of a hole a ∼ (tc − t)0.762, where tc is the total time for the dry spot
to collapse. We recover the exponent predicted by Diez et al. [13] in the limit where gravitational
forces dominate the collapse dynamics.

In capillary flows, the spreading of a liquid over a solid substrate is controlled by the motion of
the contact line formed at the intersection of the liquid, solid, and gas phases. The importance of
modeling the contact-line region has been the topic of the reviews by Dussan V. [27], de Gennes
[28], Bonn et al. [29], and Snoeijer and Andreotti [30], with complex constitutive laws dealing
with actual and effective contact angles discussed therein. The most common ad hoc assumption
is to allow the fluid to slip at the contact line in order to relieve the well-known shear stress
singularity in the flow field that arises if the no-slip condition is applied [31]. Constitutive laws
that relate the contact angle to the contact-line speed, θ = f (uCL) [32], are then introduced in
both thin film [33–35] and irrotational [36,37] flows. Fluids in unbounded domains, i.e., drops,
will spread with characteristic power law in the capillary-dominated limit, as shown in experiments
on silicone oil drops by Tanner [38] and Chen [39]. Driving forces such as gravity can alter the
spreading exponent [40], while applied thermal fields can cause complex spreading dynamics [41].
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FIG. 1. Definition sketch of the collapsing hole in (a) two-dimensional side view and (b) three-dimensional
top view.

We use the constitutive law proposed by Greenspan [33], where the contact angle is linearly related
to the contact-line speed, when developing our model for hole collapse. This law is commonly
referred to as the Hocking condition [37,42]. Our use of this macroscopic law gives a model that is
consistent with the experimental observations in this paper. Here we note that alternative contact-line
models, like the Cox-Voinov law, do not reproduce the experimental results. Characteristic spreading
exponents are reported in the (1) capillary- and (2) gravity-dominant limits.

Spin coating is a commonly used technique to assist fluids in spreading on solid substrates. One
of the first such studies was by Emslie et al. [43], who analyzed the evolution of an axisymmetric
film on a substrate rotating with constant angular velocity to show that initially nonuniform profiles
become uniform as a result of centrifugal and viscous forces. If surface tension effects are included
in the analysis, a capillary ridge may develop near the contact line of a thin film on a partially
wetting substrate [44,45]. The capillary ridge is seen as a precursor to the fingering instability by
melo et al. [46], Fraysse and Homsy [47], and Spaid and Homsy [48]. McKinley and Wilson [49]
analyze the linear stability for the equilibrium states of a thin drop on a uniformly rotating substrate,
both with and without a central dry patch, and report the growth rate and wave number of the critical
disturbance. Recent work by Boettcher and Ehrhard [50] extends this stability analysis by notably
considering general time-dependent base states, from which a critical spreading length from the
onset of instability can be inferred. For the hole geometry considered here centrifugal forces retard
the collapse dynamics.

We begin by deriving the hydrodynamic field equations that govern the collapse of a fluid cavity.
Lubrication theory is utilized to derive an evolution equation for the interface shape. We focus on
the quasistatic spreading regime in which the interface shape is static and evolves implicitly through
the time-dependent contact-line radius. We report power law forms for the collapse time when (1)
gravitational or (2) surface tension forces dominate the dynamics. Centrifugal forces that develop
in a rotating geometry slow the collapse process and lead to complex dynamics characterized by
stalled spreading behavior that separates the large and small hole asymptotic regimes. The role of
initial volume is illustrated and compared against experiment. For completeness, the total collapse
time is mapped over a large parameter space that depends upon the initial hole size. Last, we offer
some concluding remarks.

II. MATHEMATICAL FORMULATION

Consider a liquid film wetting the bottom of a solid bucket that is rotating at a constant angular
velocity ω about the vertical axis in axisymmetric cylindrical coordinates (r,z), as shown in Fig. 1.
This incompressible Newtonian fluid has density ρ and dynamic viscosity μ. The liquid and gas
phases are separated by an interface z = h(r,t) (∂D) that is defined on the domain D between the
lateral support (r = R) and the three-phase moving contact line r = a(t).
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A. Field equations

The fluid motion is described by the velocity u = (v,w) and pressure p fields, which satisfy the
continuity and Navier-Stokes equations:

∇ · u = 0,

ρ

(
∂u
∂t

+ u · ∇u
)

= μ∇2u − ∇p − ρg ẑ + ρω2r r̂. (1)

Here g is the magnitude of the gravitational acceleration, r̂ = (1,0) the radial unit vector, and
ẑ = (0,1) the vertical unit vector.

B. Boundary conditions

The fluid is bounded from below by a rigid substrate z = 0, where the no-penetration and
Navier-slip conditions are enforced, respectively:

w = 0, v = β ′ ∂v

∂z
. (2)

Here the slip coefficient β ′ is a small number that is introduced to relieve the shear-stress singularity at
the contact line [51]. For reference, alternative methods introduce a precursor layer with disjoining
pressure to handle this singularity Popescu et al. [52]. The free surface z = h(r,t) (liquid-gas
interface) bounds the fluid from above, and one applies the kinematic condition, balance of normal
and shear stresses:

ht + vhr = w, n̂ · T · n̂ = −σκ, t̂ · T · n̂ = 0. (3)

Here T is the stress tensor and σ is the liquid-gas surface tension, while subscripts on the free surface
shape h(r,t) denote partial differentiation with respect to the variables r and t . The normal n̂ and
tangent t̂ unit vectors are defined with respect to the free surface h(r,t),

n̂ = (−hr,1)/
√

1 + h2
r , t̂ = (1,hr )/

√
1 + h2

r , (4)

while the curvature κ of that surface is given by

κ = −
(
rhrr + hr + h3

r

)
r
(
1 + h2

r

)3/2 . (5)

We assume neutral wetting conditions on the lateral support (r = R):

hr |r=R = 0, v|r=R = 0. (6)

Note that it is straightforward to generalize to other wetting conditions cot θw = hr (R), which affects
only the surface structure close to the edge and hence is expected to have little effect on the dynamics.

The contact line r = a(t) is located at the intersection of the solid substrate and free surface (cf.
Fig. 1). Here

h(a(t),t) = 0, (7)

and the contact angle θ (t) is defined by the geometric relationship:

∂h

∂r
(a(t),t) = tan θ (t). (8)

At the contact line, kinematics requires the fluid velocity to equal the contact-line velocity uCL ≡
v(a(t),t) = da/dt , which is modeled using a constitutive relationship that relates the contact-line
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speed to the contact angle (see Refs. [33,36,42,53]),

da

dt
= 	(θA − θ ), (9)

where 	 > 0 is an empirical constant and θA � 0 is the advancing (static) contact angle. Note that
for θ > θA the fluid displaces gas, da/dt < 0, in the standard way. It is straightforward to introduce
a spreading exponent m in Eq. (9). In Appendix B, we show the result with m = 3, known as the
Cox-Voinov law [34,35]. However, the prediction with m = 3 does not agree with experimental data,
so we choose to proceed with the Greenspan model m = 1, Eq. (9).

Finally, we enforce conservation of fluid volume V0:

2π

∫ R

a(t)
rh(r,t) dr = V0. (10)

C. Lubrication approximation

The following dimensionless variables are introduced:

r̃ = r

R
, z̃ = z

Rθ0
, t̃ = 	θ0

R
t, w̃ = w

	θ2
0

, ṽ = v

	θ0
, p̃ = Rθ0

μ	
p, V = V0

R3θ0
. (11)

Here the size of the lateral support R is used to scale the spatial variables (r,z), θ0 is the initial contact
angle, the contact-line speed 	θ0 sets the velocity scale, and a viscous pressure scale is used.

The scalings (11) are applied to the governing equations (1)–(10), which can then be expanded
in terms of the initial contact angle θ0, taken to be a small parameter. The leading order expansion
(lubrication approximation) gives a reduced set of field equations,

1

r
(rv)r + wz = 0, −pr + vzz + �2r = 0, −Cpz − G2 = 0, (12)

where subscripts denote differentiation and the tildes have been dropped for simplicity. Dimension-
less constants are given by

C = μ	

σθ2
0

, G2 = ρgR2

σ
, �2 = ρω2R3

σθ0
, (13)

which are the mobility capillary number C, Bond number G2, and centrifugal number �2. The
boundary conditions on the substrate z = 0 are given by

w = 0, v = βvz, (14)

with dimensionless slip number β = β ′/(Rθ0). The reduced free surface boundary conditions on
z = h(r,t) are written as

ht + vhr = w, −Cp = hrr + 1

r
hr . (15)

The dynamic contact-line condition is given by

da

dt
= (θA − θ ), (16)

and the volume conservation constraint by

2π

∫ 1

a(t)
rh(r,t) dr = V. (17)
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D. Derivation of evolution equation

We begin by constructing a solution to the governing equations (12)–(15) that depends implicitly
on the free surface shape h. The pressure is computed from the vertical component of the Navier-
Stokes equation (12) and normal stress balance on the free surface (15):

Cp = G2(h − z) −
(

hrr + 1

r
hr

)
. (18)

The radial velocity field is calculated from the radial component of the Navier-Stokes equations
(12), Navier-slip condition (14), and tangential stress balance (15):

v = (pr − �2r)
[

1
2z2 − (z + β)h

]
. (19)

We then use the reduced continuity equation (12) and no-penetration condition (14) to compute the
vertical velocity:

w = −
(

prr + 1

r
pr − 2�2

)[
1

6
z3 − h

(
1

2
z2 + βz

)]
. (20)

Finally, we apply the fields defined in (18)–(20) to the depth-averaged continuity equation
ht + (1/r)(rq)r = 0, with q the net radial flux, to generate the evolution equation:

Cht + 1

r

{
r

[(
hrr + 1

r
hr − G2h

)
r

+ �2r

](
1

3
h3 + βh2

)}
r

= 0. (21)

The motion of the fluid interface is governed by the evolution equation (21), the dimensionless form
of the contact-line conditions (7)–(9), and conservation of volume constraint (10). Once the free
surface shape h is known, pressure p and velocity (v,w) fields are then computed from (18)–(20).

E. Quasistatic spreading (C → 0)

In this paper, we focus on the quasistatic limit C → 0 proposed by Greenspan [33] that has been
utilized by a number of authors (see, e.g., Refs. [40,54,55]). The approximation is justified by noting
that typical spreading rates can be on the order of microns per second, which is much slower than the
velocity scale obtained by balancing viscosity with surface tension. Quasistatic spreading describes
a static droplet shape that is parameterized by the contact-line radius a, which evolves according
to the unsteady dynamic contact-line condition (16). More precisely, the free surface shape evolves
implicitly through the time-dependent contact-line radius. The leading order problem consists of
a steady droplet shape with no contact-line motion, therefore we may set the slip number β = 0,
consistent with the C → 0 limit.

The steady evolution equation (21) is integrated to yield an equation governing the steady droplet
shape:

(
hrr + 1

r
hr − G2h

)
r

+ �2r = 0, r ∈ [a,1]. (22)

where the integration constant is set to zero to enforce the no-flux condition on the bounding surface
(6). The dynamic contact-line condition,

da

dt
= [θA − hr (a)], (23)

then governs the rate of spreading.
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FIG. 2. Capillary-dominated collapse (G = 0,�2 = 0,V = 1). (a) Equilibrium interface shapes, as they
depend upon the contact-line radius a. (b) Initial contact-line radius a0 against collapse time tc [Eq. (26)]
exhibits power law behavior a0 ∼ t0.55

c as a0 → 0. (c) Dimensional contact-line radius a0 (mm) against collapse
time tc (s) with μ = 10 mPa · s, σ = 0.02 N/m, R = 6.5 cm, and V0 = 38.49 cm3 with fitted parameter
	 = 0.319 mm/s. Symbols in panel (c) are experimental data points from Fig. 2(b) of Ref. [16].

III. RESULTS

In this section we describe the dynamics of hole collapse by reporting interface shapes and
the time evolution of the contact-line radius (equivalently, hole size). Each hole we consider here
eventually closes; i.e., there are no equilibria with finite hole size. Hence, one important metric is
the time required for the hole to completely collapse tc into a film. We compute tc by integrating
(23) with initial conditions a(0) = a0 until a(tc) = 0:∫ tc

0
dt =

∫ 0

a0

da

θA − hr (a)
. (24)

Herein we consider the case of completely wetting substrate θA = 0, although it would be
straightforward to consider the more general case θA �= 0. We begin with the capillary-dominated
regime as a base case and then focus on how gravitational G and centrifugal �2 forces affect the
collapse dynamics.

A. Capillary-dominated collapse

The solution of the steady evolution equation (21) when surface tension forces dominate the
collapse dynamics, G = 0,�2 = 0, is given by

h(r) =
(

2V

π

)
r2 − a2 + 2 ln(a/r)

a4 − 4a2 + 3 + 4 ln(a)
. (25)

Figure 2(a) plots the corresponding interface shapes as they depend upon the contact-line radius a

to show the evolution during the collapse process. The collapse time is obtained from (24) and (25)
to yield

tc = π

48V

{
4π2 + 3a2

0

(
a2

0 − 6
) + 24[ln(a0) ln(1 + a0) + Li2(−a0) − Li2(1 − a0)]

}
, (26)

where Li2 is the dilogarithm function. Figure 2(b) plots the initial radius a0 against the collapse time
tc. In the asymptotic small hole limit a0 → 0, the capillary-dominant collapse time (26) takes the
functional form

tc ∼ π

8V

[
4 ln

(
a−1

0

) − 1
]
a2

0, as a0 → 0 (27)

with a lower bound given by a0 ∼ t0.5
c . Note that while the Cox-Voinov law (see Appendix B) may

be regarded as more physically based than the Greenspan relation used here (23), the prediction
is for an exponent near 0.25 rather than the 0.55 observed in experiment and derived through the
Greenspan relation.
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FIG. 3. Gravity-dominated collapse (G �= 0,�2 = 0,V = 1): (a) Interface shapes for fixed contact-line
radius a = 0.4 show that gravitational forces G tend to flatten the film while increasing the contact angle,
which leads to a decrease in (b) collapse time tc, as it depends upon G and initial contact-line radius a0.
(c) Initial contact-line radius a0 against collapse time tc appears bounded by power law behavior a0 ∼ t0.55

c for
capillary-dominated (G = 0) and a0 ∼ t0.762

c for gravity-dominated (large G) limits as a0 → 0.

Unlike droplet spreading [38,39], the asymptotic form (27) does not admit a specific power law
because of the logarithmic term. However, as shown in Figure 2(b), the collapse dynamics follow
the power law a0 ∼ t0.55

c over a range of a0. This particular exponent has recently been reported in
experiments on hole collapse [see Fig. 2(b) in Ref. [16]]. Figure 2(c) shows that our prediction for
the collapse time (26) compares favorably to these experiments over a range that encompasses the
logarithmic correction and is not defined by a single exponent. By fitting our theoretical prediction
to the experimental data, we can obtain an estimate for the empirical constant 	 = 0.319 mm/s in
Eq. (9).

For the special case a0 = 1, where the film initially completely wets the bucket sidewall, the
collapse time from (26) is given by

tc = π

48V
(2π2 − 15). (28)

Note that (28) is an upper bound on the total collapse time.

B. Gravity-dominated collapse

When gravitational forces G �= 0 are included in the model with �2 = 0, the solution of (22) is
given by

h(r) =
(

GV

π

) I1(G)[I0(Gr) − I0(Ga)] + [K0(Gr) − K0(Ga)]

I1(G)[(a2 − 1)K0(Ga) + 2aK1(Ga)] + [(a2 − 1)I0(Ga) − 2aI1(Ga)]
, (29)

where In,Kn are the modified Bessel functions of order n, and we have defined I1(G) ≡
I1(G)/K1(G). Note this solution has been obtained by Moriarty and Schwartz [18] and used by
López et al. [20]. Gravity tends to flatten the interface and increase the contact angle, as shown in
Figure 3(a). This promotes hole collapse, as readily seen by examining the contact-line law (16),
which reveals the mechanism behind the enhanced spreading rate; an increase in contact angle leads
to increased contact-line speed (equivalently, spreading rate).

We plot the collapse time tc, computed from (24), against Bond number G and initial contact-line
radius a0 in Fig. 3(b). For large holes, the collapse time depends strongly upon G. In contrast, for
small holes, the collapse time appears to be independent of G consistent with the relative increase in
importance of surface tension forces at small scales. In Fig. 3(c), we plot initial contact-line radius
a0 against collapse time tc to show that the large G limit appears to approach the power law behavior
a ∼ t0.762

c , whose exponent is identical to that reported by Diez et al. [13] for converging viscous
gravity currents. This is a limiting case (large G) of our model. For large gravity, one might expect
the quasistatic approximation to break down so that the model of Diez et al. [13] would be more
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FIG. 4. Centrifugal effects (�2 �= 0,G = 0,V = 1): Interface shapes for (a) fixed contact-line radius a and
varying centrifugal number �2 and (b) fixed �2 = 10 and varying a. (c) Evolution of the contact-line radius a

against time t , computed from Eq. (23) for initial condition a0 = 0.99, as it depends upon �2.

suitable. When combined with our prediction for the asymptotic behavior for G = 0, we see that
our model has wide applicability from the capillary- to gravity-dominant limits.

Finally, we explicitly show the capillary-dominated collapse time (26) is inversely proportional
to the volume V . Since both capillary (25) and gravity-dominated (29) solutions are linear in V , the
collapse time when gravitational effects are included should also be inversely proportional to V . We
can connect our results to experiment by choosing to scale length with the film height h̄, instead of
the lateral support radius R, which results in tc ≈ h̄−3 consistent with experimental observations in
Fig. 5(b) of Ref. [16]. These comparisons further demonstrate the validity of our model.

C. Rotational effects

An initially flat thin film in a rotating geometry can be made to dewet the substrate at the
axis-of-rotation (r = 0), thereby creating a hole, provided �2 � �2

c ≡ 48V/π (see Appendix A).
This occurs, of course, because centrifugal forces tend to drive fluid to the edge of the rotating
bucket. We are interested in how centrifugal forces affect the collapse dynamics of a prenucleated
hole with radius a0 > 0. For simplicity, we focus on a hole in a rotating geometry with G = 0 and
�2 < �2

c . In this case, the solution of (21) is given by

h(r) = C1
2 ln(a/r) − (a2 − r2)

a4 − 4a2 + 3 + ln(a)
+ �2

32
[a4 − r4 − 4 ln(a/r)] (30)

with

C1 = 96V + π�2[7 − 6a2 − 3a4 + 2a6 + 12 ln(a)]

48π
. (31)

Figures 4(a) and 4(b) plot typical solutions. In Fig. 4(a), we show that increasing the rotation rate
�2 tends to (1) move fluid towards the edge of the bucket (r = 1) and (2) decrease the contact angle,
for fixed contact-line radius a. Hence, we expect centrifugal forces to slow the collapse rate with
a mechanism consistent with the contact-line law (16). Figure 4(b) plots the evolution of the fluid
interface during the collapse process for �2 = 10 showing that the contact-angle decreases as the
contact-line radius a decreases.

In situations where the fluid hole is rotating with �2 < �2
c , centrifugal forces can slow the

collapse process by decreasing the contact angle and therefore the contact-line speed according to
(16). Figure 4(c) plots the evolution of the contact-line radius a against time, as it depends upon �2.
For increasing �2, the spreading dynamics become more complex as witnessed by the pronounced
plateau, characterized by stalled spreading behavior, that separates the large a and small a regions. In
the plateau region, the contact angle approaches zero leading to slow collapse dynamics for a finite
period of time until surface tension forces become dominant and control the dynamics according to
the asymptotics previously discussed [Eq. (27)]. Note the size of the plateau and the range of the
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FIG. 5. (a) Collapse time tc against centrifugal number �2 and initial contact-line radius a0 for V = 1,
G = 0. (b) Initial contact-line radius a0 against collapse time tc appears bounded by power law behavior
a0 ∼ t0.55

c as a0 → 0.

small a region both increase with �2. This implies that the rotation rate could be used as an effective
mechanism to control the collapse dynamics in practice.

As we have shown, centrifugal forces can dramatically slow the spreading speed of a fluid hole
through the mechanics of the contact-line speed law (23). Figure 5(a) plots the collapse time tc
against centrifugal number �2 and initial contact-line radius a0, showing that centrifugal forces
are more effective at increasing the total collapse time for large initial holes. In contrast, the total
collapse time is insensitive to centrifugal forces �2 for small initial holes, because surface tension
forces dominate the collapse dynamics in this limit, as shown in Fig. 5(b). This observation was also
true for gravitational forces and appears to be universal.

D. Experimental comparison: Volume effects

We can test our model further by comparing with experiments whose protocol is described in
detail in Dijksman et al. [16]. Note that the experimental apparatus consists of a silicon base and steel
sidewalls which makes it necessary to distinguish wetting conditions on these two surfaces. In our
experiments an initial thin film is spun into a fluid hole; we fix the volume V and create a different
a0(V,�) by choosing different precollapse �. Note the collapse proceeds once rotation stops so
that � = 0 throughout the experiment. This allows us to also check the predictions for tc(a0). Our
experimental collapse preparations creates a nonlinear relation for a0(V,�), which also depends on
θA and θw (wall contact angle). In fact, the latter dependency is quite strong, as the volume integral
for h(r) is weighted proportionally to the radius. Nevertheless, we can extract tc[a0(V,�)] for a

(a) (b)
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FIG. 6. Collapse time tc (s) against volume V0 (ml) for (a) fixed θw = π/2, varying θA and (b) fixed
θA = 0.001, varying θw . Symbols correspond to experimental data with prespin rotation rates ω = 1–1.7 rps
(blue �: 1.0 rps, yellow � 1.2 rps, green • 1.5 rps, cyan � 1.7 rps) and μ = 1000 mPa · s, σ = 0.02 N/m,
R = 6.5 cm. The best fit to the 1.0 rps (blue �) data set is shown with thick line type and corresponds to
	 = 0.105 mm/s, θw = π/2, and θA = 0.001.
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range of volumes and preparatory rotation rates �. We perform these experiments by imaging the
collapse process from above with a simple digital camera [Figs. 2(a) and 2(b) in Ref. [16]]. The
volumes explored are 25 to 100 ml; the range for ω is 1–1.7 rps. We create initial conditions by
prespinning the container for 60–100 s for all experiments. Unfortunately the applied experimental
procedure does not allow us to directly measure a0(V,�), but we can plot the observed tc against a
family of curves computed for a reasonable range of θA and θw (Fig. 6). The fit parameter 	 allows
for a vertical scaling of the curves. Despite the relative freedom in choosing θA, θw, and 	, we
conclude that also the independent tc data are consistent with our model. The best fit for the ω = 1.0
rps data set is shown in thick line type in Fig. 6 and corresponds to 	 = 0.105 mm/s, θw = π/2 and
θA = 0.001. At large V0, there are some significant deviations; we attribute these to “waiting time”
effects that are not captured by our model [56,57].

IV. CONCLUDING REMARKS

We have studied the collapse dynamics of a nucleated hole in a thin film on a completely wetting
substrate. Our focus is the mesocopic regime, as we develop a model that encompasses both surface
tension driven flows and viscous gravity currents. The model predicts a power law exponent for
the time-dependent hole radius that agrees with experiment in both the capillary [16] and gravity
[13] limits. Furthermore, our predictions compare favorably to these experiments over a range of
volumes. We also show that centrifugal forces from the rotating geometry can lead to complex
spreading dynamics, characterized by stalled spreading behavior that separates the large and small
hole limits. We believe our model can help bridge the gap between the well-studied nanoscopic and
macroscopic regimes to the less well-understood mesoscopic regime relevant to industrial coating
processes, such as immersion lithography. For example, in coating processes fluid holes can be
viewed as defects which naturally disappear on the time scale predicted by our analysis.

Our model is concerned with holes on completely wetting substrates that must be nucleated by
external means. That is, each hole we consider will always collapse. However, it is possible to have
a finite-sized equilibrium hole on a partially wetting substrate. This reflects the competition between
capillarity, which drives collapse, and surface chemistry (wetting effects) that resists this motion.
Can other driving forces lead to finite-size holes on a completely wetting substrate? Possible forces
could include centrifugal forces, which tend to slow hole collapse, or Marangoni (thermocapillary)
forces from applied thermal fields [41,58]. Last, a spreading contact line is susceptible to fingering
instabilities that are outside the scope of this paper. We plan to extend our results into these directions.
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APPENDIX A: DEWETTING FILM

For a film without a contact line, we replace (6) and (7) with the boundary conditions

h′(0) = h′(1) = v(1) = 0 (A1)

and solve the equilibrium equation (22) to yield

h(r) = V

π
− �2

96
(2 − 6r2 + 3r4). (A2)

The film dewets the substrate h = 0 along the axis-of-rotation r = 0 at a critical centrifugal number
�2

c = 48V/π .
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APPENDIX B: COLLAPSE TIME FOR SPREADING EXPONENT m = 3 (COX-VOINOV LAW)

It straightforward to extend the analysis to the case when the spreading exponent m = 3 (Cox-
Voinov law) in Eq. (23). The collapse time tc = ∫ 0

a0
[−hr (a)]−3 da is then given by

tc =
a4

0π
3
[−360 + 500a2

0 − 135a4
0 + 12a6

0 + 120
(−15 + 2a2

0

)
ln a0 + 960(−3+3a2

0−2 ln a0)(ln a0)2

(−1+a2
0 )2

]
7680V 3

.

(B1)

The asymptotic small hole limit a0 → 0 is then

tc ∼ −a4
0π

3[3 + 15 ln a0 + 24(ln a0)2 + 16(ln a0)3]

64V 3
(B2)

with lower bound a0 ∼ t0.25
c .
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[20] P. G. López, M. J. Miksis, and S. G. Bankoff, Stability and evolution of a dry spot, Phys. Fluids 13, 1601
(2001).

[21] V. A. Lubarda, The shape of a liquid surface in a uniformly rotating cylinder in the presence of surface
tension, Acta Mech. 224, 1365 (2013).

[22] M. Ungarish, An Introduction to Gravity Currents and Intrusions (CRC Press, Boca Raton, FL, 2009).
[23] H. E. Huppert, The intrusion of fluid mechanics into geology, J. Fluid Mech. 173, 557 (1986).
[24] H. E. Huppert, The propagation of two-dimensional and axisymmetric viscous gravity currents over a

rigid horizontal surface, J. Fluid Mech. 121, 43 (1982).
[25] J. Gratton and F. Minotti, Self-similar viscous gravity currents: Phase-plane formalism, J. Fluid Mech.

210, 155 (1990).
[26] C. Ancey, S. Cochard, and N. Andreini, The dam-break problem for viscous fluids in the high-capillary-

number limit, J. Fluid Mech. 624, 1 (2009).
[27] E. B. Dussan V., On the spreading of liquid on solid surfaces: Static and dynamic contact lines, Annu.

Rev. Fluid Mech. 11, 371 (1979).
[28] P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys. 57, 827 (1985).
[29] D. Bonn, J. Eggers, J. Indekeu, J. Meunier, and E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81,

739 (2009).
[30] J. H. Snoeijer and B. Andreotti, Moving contact lines: Scales, regimes, and dynamical transitions, Annu.

Rev. Fluid Mech. 45, 269 (2013).
[31] C. Huh and L. E. Scriven, Hydrodynamic model of steady movement of a solid/liquid/fluid contact line,

J. Colloid Interface Sci. 35, 85 (1971).
[32] Y. D. Shikhmurzaev, Capillary Flows with Forming Interfaces (CRC Press, Boca Raton, FL, 2007).
[33] H. P. Greenspan, On the motion of a small viscous droplet that wets a surface, J. Fluid Mech. 84, 125

(1978).
[34] R. G. Cox, The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow, J. Fluid

Mech. 168, 169 (1986).
[35] O. V. Voinov, Hydrodynamics of wetting, Fluid Dyn. 11, 714 (1976).
[36] J. B. Bostwick and P. H. Steen, Dynamics of sessile drops. Part 1. Inviscid theory, J. Fluid Mech. 760, 5

(2014).
[37] J. B. Bostwick and P. H. Steen, Stability of constrained capillary surfaces, Annu. Rev. Fluid Mech. 47,

539 (2015).
[38] L. H. Tanner, The spreading of silicone oil on horizontal surfaces, J. Phys. D: Appl. Phys. 12, 1473 (1979).
[39] C. D. Chen, Experiments on a spreading drop and its contact angle on a solid, J. Colloid Interf. Sci. 122,

60 (1988).
[40] P. Ehrhard and S. H. Davis, Non-isothermal spreading of liquid drops on horizontal plates, J. Fluid Mech.

229, 365 (1991).
[41] J. B. Bostwick, Spreading and bistability of droplets on differentially heated substrates, J. Fluid Mech.

725, 566 (2013).
[42] L. M. Hocking, The damping of capillary–gravity waves at a rigid boundary, J. Fluid Mech. 179, 253

(1987).
[43] A. G. Emslie, F. T. Bonner, and L. G. Peck, Flow of a viscous liquid on a rotating disk, J. Appl. Phys. 29,

858 (1958).
[44] L. W. Schwartz and R. V. Roy, Theoretical and numerical results for spin coating of viscous liquids,

Phys. Fluids 16, 569 (2004).
[45] M. Froehlich, Two coating problems: Thin film rupture and spin coating, Ph.D. thesis, Duke University,

2009.
[46] F. Melo, J. F. Joanny, and S. Fauve, Fingering Instabilities of Spinning Drops, Phys. Rev. Lett. 63, 1958

(1989).

014006-13

https://doi.org/10.1006/jcis.1993.1475
https://doi.org/10.1006/jcis.1993.1475
https://doi.org/10.1006/jcis.1993.1475
https://doi.org/10.1006/jcis.1993.1475
https://doi.org/10.1017/S0022112003004634
https://doi.org/10.1017/S0022112003004634
https://doi.org/10.1017/S0022112003004634
https://doi.org/10.1017/S0022112003004634
https://doi.org/10.1063/1.1369607
https://doi.org/10.1063/1.1369607
https://doi.org/10.1063/1.1369607
https://doi.org/10.1063/1.1369607
https://doi.org/10.1007/s00707-013-0813-6
https://doi.org/10.1007/s00707-013-0813-6
https://doi.org/10.1007/s00707-013-0813-6
https://doi.org/10.1007/s00707-013-0813-6
https://doi.org/10.1017/S0022112086001271
https://doi.org/10.1017/S0022112086001271
https://doi.org/10.1017/S0022112086001271
https://doi.org/10.1017/S0022112086001271
https://doi.org/10.1017/S0022112082001797
https://doi.org/10.1017/S0022112082001797
https://doi.org/10.1017/S0022112082001797
https://doi.org/10.1017/S0022112082001797
https://doi.org/10.1017/S0022112090001240
https://doi.org/10.1017/S0022112090001240
https://doi.org/10.1017/S0022112090001240
https://doi.org/10.1017/S0022112090001240
https://doi.org/10.1017/S0022112008005041
https://doi.org/10.1017/S0022112008005041
https://doi.org/10.1017/S0022112008005041
https://doi.org/10.1017/S0022112008005041
https://doi.org/10.1146/annurev.fl.11.010179.002103
https://doi.org/10.1146/annurev.fl.11.010179.002103
https://doi.org/10.1146/annurev.fl.11.010179.002103
https://doi.org/10.1146/annurev.fl.11.010179.002103
https://doi.org/10.1103/RevModPhys.57.827
https://doi.org/10.1103/RevModPhys.57.827
https://doi.org/10.1103/RevModPhys.57.827
https://doi.org/10.1103/RevModPhys.57.827
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1103/RevModPhys.81.739
https://doi.org/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1146/annurev-fluid-011212-140734
https://doi.org/10.1016/0021-9797(71)90188-3
https://doi.org/10.1016/0021-9797(71)90188-3
https://doi.org/10.1016/0021-9797(71)90188-3
https://doi.org/10.1016/0021-9797(71)90188-3
https://doi.org/10.1017/S0022112078000075
https://doi.org/10.1017/S0022112078000075
https://doi.org/10.1017/S0022112078000075
https://doi.org/10.1017/S0022112078000075
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1007/BF01012963
https://doi.org/10.1007/BF01012963
https://doi.org/10.1007/BF01012963
https://doi.org/10.1007/BF01012963
https://doi.org/10.1017/jfm.2014.582
https://doi.org/10.1017/jfm.2014.582
https://doi.org/10.1017/jfm.2014.582
https://doi.org/10.1017/jfm.2014.582
https://doi.org/10.1146/annurev-fluid-010814-013626
https://doi.org/10.1146/annurev-fluid-010814-013626
https://doi.org/10.1146/annurev-fluid-010814-013626
https://doi.org/10.1146/annurev-fluid-010814-013626
https://doi.org/10.1088/0022-3727/12/9/009
https://doi.org/10.1088/0022-3727/12/9/009
https://doi.org/10.1088/0022-3727/12/9/009
https://doi.org/10.1088/0022-3727/12/9/009
https://doi.org/10.1016/0021-9797(88)90287-1
https://doi.org/10.1016/0021-9797(88)90287-1
https://doi.org/10.1016/0021-9797(88)90287-1
https://doi.org/10.1016/0021-9797(88)90287-1
https://doi.org/10.1017/S0022112091003063
https://doi.org/10.1017/S0022112091003063
https://doi.org/10.1017/S0022112091003063
https://doi.org/10.1017/S0022112091003063
https://doi.org/10.1017/jfm.2013.196
https://doi.org/10.1017/jfm.2013.196
https://doi.org/10.1017/jfm.2013.196
https://doi.org/10.1017/jfm.2013.196
https://doi.org/10.1017/S0022112087001514
https://doi.org/10.1017/S0022112087001514
https://doi.org/10.1017/S0022112087001514
https://doi.org/10.1017/S0022112087001514
https://doi.org/10.1063/1.1723300
https://doi.org/10.1063/1.1723300
https://doi.org/10.1063/1.1723300
https://doi.org/10.1063/1.1723300
https://doi.org/10.1063/1.1637353
https://doi.org/10.1063/1.1637353
https://doi.org/10.1063/1.1637353
https://doi.org/10.1063/1.1637353
https://doi.org/10.1103/PhysRevLett.63.1958
https://doi.org/10.1103/PhysRevLett.63.1958
https://doi.org/10.1103/PhysRevLett.63.1958
https://doi.org/10.1103/PhysRevLett.63.1958


J. B. BOSTWICK, J. A. DIJKSMAN, AND M. SHEARER

[47] N. Fraysse and G. M. Homsy, An experimental study of rivulet instabilities in centrifugal spin coating of
viscous Newtonian and non-Newtonian fluids, Phys. Fluids 6, 1491 (1994).

[48] M. A. Spaid and G. M. Homsy, Stability of viscoelastic dynamic contact lines: An experimental study,
Phys. Fluids 9, 823 (1996).

[49] I. S. McKinley and S. K. Wilson, The linear stability of a drop of fluid during spin coating or subject to a
jet of air, Phys. Fluids 14, 133 (2002).

[50] K. E. R. Boettcher and P. Ehrhard, Contact-line instability of liquids spreading on top of rotating substrates,
Eur. J. Mech. B 43, 33 (2014).

[51] E. B. Dussan V. and S. H. Davis, On the motion of a fluid-fluid interface along a solid surface, J. Fluid
Mech. 65, 71 (1974).

[52] M. N. Popescu, G. Oshanin, S. Dietrich, and A. M. Cazabat, Precursor films in wetting phenomena,
J. Phys.: Condens. Matter 24, 243102 (2012).

[53] L. M. Hocking, Waves produced by a vertically oscillating plate, J. Fluid Mech. 179, 267 (1987).
[54] S. Rosenblat and S. H. Davis, How do liquid drops spread on solids? in Frontiers in Fluid Mechanics,

edited by S. H. Davis and J. L. Lumley (Springer, Berlin, 1985), p. 171.
[55] M. K. Smith, Thermocapillary migration of a two-dimensional liquid droplet on a solid surface, J. Fluid

Mech. 294, 209 (1995).
[56] A. A. Lacey, J. R. Ockendon, and A. B. Tayler, “Waiting-time” solutions of a nonlinear diffusion equation,

SIAM J Appl. Math. 42, 1252 (1982).
[57] B. M. Marino, L. P. Thomas, R. Gratton, J. A. Diez, S. Betelú, and J. Gratton, Waiting-time solutions of
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