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The three-dimensional development of instabilities and the subsequent spray formation
in a gas-liquid mixing layer are important fundamental problems in the area of multiphase
flows. It is highly desirable to visualize this detailed atomization process and to analyze the
instabilities and mechanisms involved, and massive numerical simulations are required, in
addition to experiment. Rapid development of numerical methods and computer technology
in the past decade now allows large-scale three-dimensional direct numerical simulations
of atomization to be performed. Nevertheless, the fundamental question, whether all the
physical scales involved in the primary breakup process are faithfully resolved, has eluded
researchers until now. In the present study, we conduct direct numerical simulations of spray
formation in a gas-liquid mixing layer with state-of-the-art computational resources (using
up to 4 × 109 cells and 16 384 cores), in order to obtain a high-fidelity numerical closeup
of the detailed mechanisms of spray formation. We also aim to examine whether present
computational resources are sufficient for a fully resolved direct numerical simulation of
atomization.

DOI: 10.1103/PhysRevFluids.2.014005

I. INTRODUCTION

The breakup of fluid masses is a phenomenon of enormous complexity, with diverse physical
setups and mechanisms. When the fluid masses break rapidly into large numbers of small droplets
one speaks of atomization [1,2]. Such atomization in a gas-liquid mixing layer, where a high-speed
gas stream emerges from an orifice parallel to a lower-speed liquid stream, has been studied in great
detail [3,4]. The resulting Kelvin-Helmholtz instability generates large coherent structures that grow
in size as they propagate downstream, together with equally growing wavelike structures [5] on the
liquid-gas interface. The standard picture of atomization [1] is that two-dimensional wave structures
form near the orifice, develop into sheets, which in turn develop Taylor-Culick end rims. The flow
then becomes more markedly three dimensional: finger branching from the end rim and then various
threads, fibers, or ligamentlike structures parallel to the flow appear, which eventually break into
droplets. This sequence and its variants are called primary atomization, which is supposed to be
followed by secondary atomization, the breakup of large drops further downstream whenever they
interact with sufficiently high-velocity gas flow. Several types of probability distributions of droplet
sizes have been proposed and compared to experiments [3,6]. Another mechanism for primary
atomization is the formation of holes in the thin-sheet-like structures that appear in the waves prior
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FIG. 1. Spray formation in a gas-liquid mixing layer. The z vorticity is shown on the backplane. The
sampling region for droplets statistics is indicated by green dashed lines.

to the formation of ligaments and fingers. These holes in thin-sheet structures are quite similar, but
not identical, to the holes that form in bag-breakup secondary atomization [7] and in splashes [8].
The hole formation has not been visualized as frequently in primary atomization and is thus less
firmly documented.

In order to better understand the mechanisms underlying atomization, experimentalists have
switched from the coaxial round jets typical of industrial applications to a quasiplanar setup that
is more favorable for detailed analysis [9–11]. This setup has allowed precise measurements and
detailed visualizations of the droplet-forming process. In the quasiplanar configuration it is possible
to compare the growth and frequency of the Kelvin-Helmholtz instability in the linear regime as
predicted by numerical simulation, linear stability theory, and experiments [12]. Three-dimensional
analysis is, for obvious reasons [13–15], less advanced, despite a large number of results in the
references already cited. In this work we simulate a model of the quasiplanar experiment of Matas
et al. [9] in order to better understand the mechanisms of droplet formation.

II. METHODOLOGY

A. Problem description and simulation setup

The computational setup of the present problem is shown in Fig. 1. The domain is a box of
dimensions Lx × Ly × Lz, where we inject two streams, liquid and gas, separated by a solid separator
plate of size �x × �y × Lz. The liquid and gas streams enter through the boundary at x = 0. The
thickness of the liquid stream is H , while that for the gas stream is H − �y .

The inflow velocity is specified as (uinflow,0,0) at the left boundary of the domain, where the
streamwise component u|inflow is expressed as

uinflow =

⎧⎪⎨
⎪⎩

Ulerf 2(H−y)
δ

, 0 � y < H

Ugerf 2(y−H−ly )
δ

erf 2(2H−y)
δ

, H � y < 2H

0, y > 2H.

(1)

The outflow condition is invoked at the right (x = Lx). The bottom boundary (y = 0) is taken as a
slip wall and periodic boundary conditions are applied to the front and the back (z = 0 and Lz). In
order to minimize the effect of the finite size of the domain, the dimensions of the box are large in the
x and y dimensions Lx = 16H and Ly = 8H , respectively (while Lz is set to 2H ). Furthermore, we
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TABLE I. Physical parameters.

ρl ρg μl μg σ U0,l U0,g H δg ly
(kg/m3) (kg/m3) (Pa s) (Pa s) (N/m) (m/s) (m/s) (m) (m) (m)

1000 50 10−3 5 × 10−5 0.05 10 0.5 8 × 10−4 2 × 10−4 2.5 × 10−5

allow the fluid to freely enter or leave the top boundary (y = Ly) by applying a Neumann boundary
condition for the normal velocity.

The boundary layers of the injected streams are represented by an error function. The thickness
of the boundary layers on the liquid and gas sides of the separator plate are taken to be identical and
denoted by δ and we set δ = H/4. The length �x and the thickness �y of the separator plate are H/2
and H/32, respectively, and it has been shown that the details of the separator plate are immaterial
to the atomization process as long as �y � δ [12].

It is infeasible with the present computational capability and numerical methodology to perform
direct numerical simulations (DNSs) in this setup using the physical parameters exactly as in the
experiments [9]. This is due to the very wide range of relevant physical scales. Indeed, the tiny
submicron droplets generated are four orders of magnitudes smaller than H . A three-dimensional
(3D) mesh to resolve such a wide range of length scales would easily exceed 109 cells (for H = 1 cm
and the cell size � ≈ 1 μm); the computational cost for such simulations is clearly far beyond the
current computer power. To alleviate these problems we reduce the physical scale (H = 0.8 mm is
used here compared to H = 5−20 mm in experiments [9]) and choose a set of parameters that allows
faster and easier simulations while still placing the flow in the high-speed atomization regime. (As
shown later, even for the reduced-scale setup here we barely achieved well-resolved results using
16 384 cores.) The physical parameters and the corresponding dimensionless parameters are given
in Tables I and II, using standard notation and international units.

B. Numerical methods

We solve the Navier-Stokes equations for incompressible flow with sharp interfaces and constant
surface tension using the volume-of-fluid method as described in Tryggvason et al. [16]. The fields are
discretized using a fixed regular cubic grid (with cell size �) and we use a projection method for the
time stepping to incorporate the incompressibility condition. The temporal integration is conducted
by a second-order predictor-corrector method [16]. The interface is tracked using a volume-of-fluid
(VOF) method with a mixed Youngs-centered implementation of Aulisa et al. [17] to determine the
normal vector and a Lagrangian-explicit scheme of Li [18] for the VOF advection [19]. The advection
of momentum near the interface is conducted in a manner consistent with the VOF advection [20]
with the superbee limiter applied in flux calculation. The viscous term is treated explicitly. Curvature
is computed using the height-function method by Popinet [21]. Surface tension is computed from
curvature by a balanced continuous-surface-force method (see the works of Renardy and Renardy
[22], Francois et al. [23], and Popinet [21]). Density and viscosity are computed from the VOF
fraction by an arithmetic mean. To capture the dynamics of poorly resolved droplets accurately,
droplets of size smaller than four cells are converted to Lagrangian point particles [24]. The overall

TABLE II. Key dimensionless parameters.

M r m Reg,δ Weg,δ Reg

ρgU
2
g /ρlU

2
l ρl/ρg μl/μg ρgUgδ/μg ρgU

2
g δ/σ ρgUgH/μg

20 20 20 2000 20 8000
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TABLE III. Summary of simulation runs.

Run � (μm) H/� No. of cells No. of cores Total core hours

M0 25 32 8.39 × 106 32 ∼6 × 103

M1 12.5 64 6.71 × 107 256 ∼1 × 105

M2 6.25 128 5.37 × 108 2048 ∼1.7 × 106

M4 3.125 256 4.29 × 109 16384 ∼14 × 106

method is implemented in the free code PARIS [25] and validation studies can be found in the work
of Ling et al. [24].

C. Simulation cases and computational costs

To assess whether the present simulation is a full DNS of atomization, simulations are performed
on four grids called M0, M1, M2, and M3 so that Mn has H/� = 32 × 2n points in the liquid layer
H (see Table III). The time step for each mesh is computed based on the Courant-Friedrichs-Lewy
(CFL) condition, i.e., |u|max�t/� < θ , where θ is the CFL number, which is taken to be 0.4 for all
cases. The average time steps for the M0, M1, M2, and M3 meshes are approximately 0.53, 0.28,
0.14, and 0.068 μs, respectively.

The domain is initially filled with stationary gas (at t = 0) and then liquid and gas streams
progressively enter it. It takes a period of about 16 ms for the flow to reach a statistically steady state
(more details are shown in Sec. III A). For the M0, M1, and M2 meshes, the simulations all start
from t = 0 and end at about t = 70 ms. For the M3 mesh, the simulation was performed using about
4 × 109 cells using 16 384 processors. Due to the extreme cost for the M3 simulation, the simulation
starts from a checkpoint of the M2 simulation at about t = 16 ms and is continued only up to about
t = 28 ms.

The M3 simulations are split into multiple runs, which are conducted on the supercomputers
CINECA-FERMI in Italy, LRZ-superMUC in Germany, and TGCC-CURIE in France. The M0,
M1, and M2 simulations are all performed on TGCC-CURIE. The total simulation time for all four
meshes takes over 15 × 106 CPU hours. The results presented correspond to the M3 mesh, unless
stated otherwise.

III. RESULTS

A. Overall atomization process

A global view of the atomization in a gas-liquid mixing layer is shown in Fig. 1. The single-phase
(gas-gas) and the two-phase (gas-liquid) mixing layers can be identified from the z vorticity plotted
on the backplane. Both of the mixing layers are unstable due to the velocity difference across the
layers. The gas-liquid mixing layer develops faster and evolves a Kelvin-Helmholtz-like wave on the
interface. The interfacial wave grows and a thin liquid sheet forms at the wave crest. A Taylor-Culick
rim appears at the edge of the liquid sheet. The sheet folds and creases under the action of the turbulent
gas stream, which leads to perturbations of the rim. These perturbations produce small fingers that
later develop into long ligaments. There is an important difference between the rim instabilities
observed here and those seen, for example, in droplet splashes where interaction with energetic
air motion is absent. The ligaments eventually break into small droplets due to Rayleigh-Plateau
instability. The unbroken part of the liquid sheet reattaches to the domain bottom. Compared to the
gas-liquid mixing layer, the gas-gas mixing layer evolves more slowly. The invasion of the turbulent
vortices from the gas-liquid mixing layer accelerates the development of the gas-gas mixing layer.
Eventually, the two mixing layers merge and the downstream flows become fairly violent and
chaotic.
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FIG. 2. Temporal evolution of the mean kinetic energy of gas and liquid over the computational domain for
different meshes. The kinetic energy is normalized by U 2

g .

The domain is initially filled with stationary gas and the liquid and gas streams are then injected
progressively. As a result, it takes a transition time for the turbulent multiphase flow and the resulting
atomization processes to reach a statistically steady state. The temporal evolutions of the average
gas and liquid kinetic energy over the whole domain, i.e., 1

VU 2
g

∫
V

u2

2 (1 − C)dV and 1
VU 2

g

∫
V

u2

2 C dV ,

are shown in Fig. 2, where C and V represent the liquid volume fraction and the volume of the
computational domain, respectively. It is shown that both the gas and liquid kinetic energy reach an
approximate steady state at about t = 16 ms. The simulations for the M0, M1, and M2 meshes are
then continued to t = 70 ms. Due to the extreme cost of the M3 case, the simulation is run only up
to about t = 28 ms.

The formation, development, and breakup of the sequential interfacial waves significantly perturb
the gas flow, resulting in the large-scale low-frequency oscillations in the temporal evolution of the
gas or liquid kinetic energy (the small-scale high-frequency oscillations may be due to turbulence
and its interaction with the wave). Therefore, we can approximately estimate the number of waves
captured by the simulation. For the M0, M1, and M2 meshes, about 20 waves are captured after the
steady state is reached. For the M3 mesh, due to the shorter simulation time, only about four waves
are observed.

B. Formation of sheets

Due to the velocity difference between the gas and liquid across the interface, a Kelvin-Helmholtz-
like wave develops on the interface and propagates downstream. As the interfacial wave grows, the
radius of curvature at the wave crest continues to decrease and eventually liquid sheets form.

It is generally believed that the wave that appears first is a two-dimensional one and then transverse
instabilities (such as Rayleigh-Taylor and Rayleigh-Plateau instabilities) develop at the rim of the
liquid sheet. This quasi-2D wave and its development are shown in Figs. 3(a)–3(d). The temporal
evolution of the wave can be seen more clearly by a sequence of snapshots of the interface at the
plane z = H [see Fig. 3(e)]. The wave initially takes a Gaussian-like shape. The minimum radius
of curvature is located near the wave crest and decreases from 189.7 μm at 17.3 ms to 43.1 μm at
17.6 ms. Then the wave tends to fold forward. At a time between 17.7 and 17.9 ms, the two interfaces
on both sides of the wave crest become parallel and form a liquid sheet. At this point, the thickness of
the liquid sheet, denoted by e, is 174 μm. As the sheet is pulled and stretched by the fast gas stream,
its thickness decreases in time. At t = 18.2 ms [the last profile in Fig. 3(e)] the minimum sheet
thickness decreases to about 50 μm. At this scale the capillary time is τca = (ρle

3/σ )1/2 ≈ 0.05 ms
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FIG. 3. Development of a quasi-2D interfacial wave, forming a liquid sheet: (a)–(d) time snapshots of the
interface; interface profiles at plane z = H with (e) the original scale and (f) the x axis scaled by the Dimotakis
speed UD .

and the Ohnesorge number is Oh = μl(σρle)−1/2 ≈ 0.02. There are still e/� = 16 grid points for
the sheet thickness. It can be seen that at this time of t = 18.2 ms the tip of the liquid sheet starts
to fold. The radius of curvature at the hinge point is about 25 μm. The fact that the tip of the sheet
folds, instead of forming a Taylor-Culick end rim as expected for this time scale and Oh number, is
a testimony to the strong interaction of the liquid sheet with the gas stream. The wave amplitude at
t = 18.2 ms is comparable to H bringing the interaction to a maximum.

The celerity of the interfacial wave is approximately a constant and agrees well with the Dimotakis
speed

UD = Ul + √
rUg

1 + √
r

, (2)

which is about 2.23 m/s for the present case. If the x axis is shifted by UD with respect to the origin
of wave formation x0 and t0, the waves at different times collapse, except the amplitude, as shown in
Fig. 3(f). The agreement between the computed interfacial wave celerity with the Dimotakis speed
is a robust observation affirmed by other waves captured in the simulation. This is also consistent
with the well-documented 2D case [10].

Beyond the conventionally known quasi-2D waves, it is observed from the simulation results that
the liquid sheet also forms in a fully three-dimensional manner [see Figs. 4(a)–4(d)], resulting in a
significant transversely deforming rim at the sheet edge. This transverse wavelength is of the order of
the width of the domain. (This may indicate that the domain width is too small for the long-wavelength
modes in transverse instabilities.) It has been shown before that the Rayleigh-Plateau instability can
induce transverse deformation of the rim, which later develops into fingers [26,27]. However, here
the formation of 3D structures is clearly much faster than the Rayleigh-Plateau rim instability would
be and even occurs before the rim is formed at about t = 19.6 ms in Fig. 4(c).

Other different mechanisms can contribute to the formation of the 3D wave. In particular, it has
been shown by the transient growth theory that the 3D perturbations of a two-phase mixing layer
can be more unstable than the 2D ones [28].

Furthermore, the turbulent gas flow on top of the interface impose significant 3D forcing on
the interfacial wave. As the Reynolds number of the gas boundary layer is large (Reδ = 2000), the
gas stream becomes turbulent at about x/H = 2−3. Two instantaneous turbulent vortical structures
of the gas flow above the interface are shown in Figs. 4(e) and 4(f). Due to the low speed of the
liquid stream, the interface serves as a deformed “wall” and imposes a shear to the gas flow like
in typical turbulent boundary layers. As a result, the early streamwise development of vortices is
quite similar to that observed in turbulent boundary layers [29]. Quasistreamwise vortices near the
transition region [30] can be clearly seen in Fig. 4(e). The footprints of these turbulent vortices

014005-6



SPRAY FORMATION IN A QUASIPLANAR GAS-LIQUID . . .

FIG. 4. Development of a fully 3D interfacial wave: (a)-(d) time snapshots of the interface and (e) and (f)
turbulent vortical structures in the gas-liquid mixing layer (visualized by the λ2 criterion).

on the interface can be clearly seen in Fig. 4(a), which corresponds to the same time snapshot as
Fig. 4(e), evidencing the effect of the gas turbulence on perturbing the interface. The later growth of
the interfacial wave introduces significant modulation to the gas turbulence, for example, the flow
separation downstream of the wave enhances turbulence development [see Fig. 4(f)]. The interaction
between turbulence and the interfacial wave formation is very complex and is beyond the scope of
the present paper.

Finally, complex capillary wave interactions on the interface also contribute to triggering irregular
3D waves. As shown in Fig. 5, the capillary waves propagate both upstream (waves A and C) and
downstream (wave B). The capillary wave speed can be estimated as

Uca =
√

πσ

ρlλ
, (3)

where λ is the wavelength. For λ = 2�M2, Uca ≈ 3.54 m/s. Therefore, small-scale capillary waves
indeed can overcome the Dimotakis speed (UD ≈ 2.23 m/s) and move upstream. The upstream and
downstream propagating waves B and C meet and accelerate the development of the C wave.

FIG. 5. Interfacial waves interaction (results by the M2 mesh). Symbols indicate locations of the wave
crests at plane z = H . The Dimotakis speed (black dashed line) is plotted for comparison.
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FIG. 6. Temporal evolution of the shear layer near the wave crest. (a)–(c) Streamwise velocity contours near
the wave crest (gas-liquid interfaces are indicated by white lines). The line plots are the streamwise velocity
profiles in the y direction at the wave crest. The y location of the interface is denoted by yinfc.

C. Effect of mesh resolution

It has been shown previously that the boundary layer of the injected gas stream must be well
resolved, since otherwise the gas-assisted atomization and the frequency of the interfacial instability
will not be accurately captured [12]. In the present study, we found that requiring sufficient numerical
resolution to compute the formation of the sheet and the rim indeed introduces a stricter requirement
on mesh size. As shown in Fig. 3(b), the radii of the wave crest can go down to about 43.1 μm
(t = 17.6 ms) or even lower to 25 μm when the sheet folds, which is much smaller than the injected
gas boundary layer thickness δ (≈ 200 μm). Furthermore, the thickness of the shear layer above the
wave crest significantly decreases as the wave develops (see Fig. 6). The shear layer thickness is
initially similar to the boundary layer thickness of the injected gas stream δ (see t = 17.1 ms) and
then it drops rapidly as the wave grows to about 15 μm at t = 17.7 ms. The M0 mesh (� = 25 μm)
is clearly insufficient to resolve the wave crest curvature and the shear layer; as a result, the formation
of the sheet is not properly captured. As shown in Fig. 7(a), the rim is completely missed and the
tip of the liquid sheet breaks erroneously, forming numerous tiny ligaments and droplets. The result
for the M1 mesh (� = 12.5 μm) is better, but two sides of the rim are still poorly resolved. For the
M2 and M3 meshes (� = 6.25 and 3.125 μm), about four and seven cells, respectively, are used to
resolve the minimum radius of the wave and about three and six cells for the shear layer above the

FIG. 7. Close-up at the sheet formed at the wave crest for different mesh resolution.
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FIG. 8. Ligaments formation due to fingering at the tip of a liquid sheet. The color on the interface indicates
the streamwise velocity.

wave crest. As a result, the sheet formation and the rim dynamics are well captured [see Figs. 7(c)
and 7(d)]. In such cases, no fingers or droplets are formed at this early stage.

D. Formation of ligaments

The transverse instability of the rim is known to generate fingers at the tip of a liquid sheet [27].
The formation of a finger at the rim is well captured by the present simulation as shown in Fig. 8.
The streamwise fluid velocity is also plotted on the interface and it can be seen that the velocity
increases gradually from the base to the round tip of the finger, indicating that the finger is stretched
by the surrounding fast gas stream. Eventually, the short finger develops into a long ligament, which
breaks later to form droplets.

Beyond fingering at the rim of the liquid sheet, holes appearing in the liquid sheet are observed
to be another way to break the liquid sheet and to produce ligaments. Similar to the fingers, the
liquid sheet is also stretched by the gas stream and becomes thinner and thinner. At a certain
stage, holes are formed in the liquid sheet (see Fig. 9). The two holes are initially very small
(highlighted by different dashed lines) but later they expand rapidly, causing the liquid sheet to
rupture. Several small ligaments are generated and the orientations of these ligaments are more
diverse, different from the ligaments formed by fingering, which tend to align with the streamwise
direction.

For a stationary liquid sheet, holes are formed only when the sheet thickness is very small
[e ∼ O(10) nm] and the disjoining pressure becomes active. For a dynamic liquid sheet it has been
shown in recent experiments that holes can form at a much larger thickness [e ∼ O(10) μm] [7,8].
For example, in the experiment on splashes by Marston et al. [8], the sheet thickness estimated by
the hole expansion velocity and the Taylor-Culick theory is about 9−16 μm. Several effects may
explain the piercing of a liquid sheet at such large thicknesses, including Marangoni effects and
perturbations from bubbles or droplets too small to be visible. Random perturbations from unseen
objects are difficult to model and Marangoni forces are not included in the present simulation. Here
holes appear when the thickness of the liquid sheet decreases to about the cell size �. This numerical
cutoff length scale (the smallest � used is about 3.1 μm) is much larger than breakup thickness of a
stationary sheet but is comparable to or even smaller than the length at which dynamic liquid sheets
are seen to break in experiments.

An example of the evolution of a hole formed in a liquid sheet is shown in Fig. 10. The measured
hole expansion velocities in the streamwise and transverse directions are Uh,x ≈ 2.70 m/s and
Uh,z ≈ 0.978 m/s, respectively. As can be seen from the cross sections of the hole in the y-z and x-y
planes, the sheet thickness near the hole is very uneven. The minimum sheet thickness just before

FIG. 9. Ligaments formation due to holes in a liquid sheet. The color on the interface indicates the
streamwise velocity.
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FIG. 10. Evolution of a hole formed in a liquid sheet. (a)–(c) Close-up at the hole expansion. Also shown
is the liquid volume fraction (red) at the (d)–(f) y-z and (g)–(i) y-x planes cutting through the holes.

the hole appears is about 22 μm and after the sheet rupture the thickness in the vicinity of the hole
varies from 27 to 85 μm. The Taylor-Culick velocity

Uh,TC =
√

2σ

ρle
(4)

can be calculated based on the sheet thickness, yielding Uh,TC = 0.95 ∼ 1.68 m/s. It can be seen
that Uh,z agrees well with Uh,TC. The excess of Uh,x over the Taylor-Culick prediction is due to the
streamwise stretching the liquid sheet, which causes the hole to expand faster in the x direction than
in the z direction.

It should be mentioned that the measurement of the hole expansion speed is indeed challenging.
Since several holes usually form simultaneously and then merge quickly, to measure the hole
expansion speed one needs to have enough time snapshots of the interface before the holes merging.
Due to the high storage requirement for such large-scale simulations, this is in general quite difficult
to achieve. Therefore, although many holes are observed, there is indeed a limited number of them
for which we can accurately measure the expansion speed. More efficient methods in characterizing
of the statistics of holes are still to be explored in future works.

Since mechanisms of sheet rupture, such as disjoining pressure, are absent in the present study, the
initial formation of the holes is mesh dependent. However, it is quite clear that the subsequent hole
development and the rim around the hole are well resolved with the M3 mesh. As a consequence,
a further increase of mesh resolution will only delay the pinch-off point but will not affect the
ligaments formed from the expansion of the holes.
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FIG. 11. Droplet generation due to ligament breakup. The turbulent vortices surrounding the ligament are
plotted in (b) by the λ2 criterion. (a) t = 20.2 ms, (b) t = 20.3 ms, (c) t = 20.4 ms, and (d) t = 20.45 ms.

E. Formation of droplets

Eventually, the ligaments break into small droplets and one realization of the breakup process is
shown in Fig. 11. The ligament here is the same one as shown in Fig. 8. The ligament exhibits a very
irregular shape compared to typical Rayleigh-Plateau breakup of a stationary ligament. The ligament
diameter varies from 72 to 244 μm along its axis. The stretching by the surrounding turbulent gas
stream [see Fig. 11(b)] clearly contributes to the irregular breakup. The neck behind the tail of the
ligament pinches off, forming a big droplet of d ≈ 200 μm. The retraction of the ligament tail from
the pinch-off point forms a big liquid blob in the middle of the ligament. Similar behavior is also
observed in experiments [3]. Coalescence of small droplets can be seen also in Fig. 11(c). At the
end, a series of droplets varying from 95 to 230 μm is produced.

To have a more general analysis of the droplets formed in atomization, we investigate the size
distribution of droplets in a cubic box located downstream of the breaking wave. The sampling region
is indicated in Fig. 1. The edge length of the cubic box is 2H (8 � x/H � 10, 0.5 � y/H � 2.5,
and spanning the whole width of the domain). The average number of droplets nd (d) as a function
of the droplet volume-based diameter d is plotted in Figs. 12(a)–12(d), where nd (d) is defined as

nd (d) = N (d)

Ns

, (5)

where N (d) is the total number of droplets collected within the bin centered at d and Ns is the
number of samples. The bin width is varied in d, starting from 6.25 μm and then increasing by a
constant ratio 1.2. The reason for using wider bins for larger d is to reduce the fluctuations due to
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FIG. 12. Size distribution of droplet number. (a)–(d) Histograms of nd for different meshes. The bin width
increases with d by a constant ratio 1.2 from 6.25 μm. The size distribution of nd for different sample number is
shown for the (e) M2 and (f) M3 meshes, directly. Also shown is (g) the comparison of nd for different meshes.
The vertical dash lines in (a)–(d) indicate d = 2� for different meshes.

low numbers of larger droplets. Furthermore, it should be noted that the generation of droplets of
size smaller than 2� for each mesh is quite likely not well captured in the present simulation. As a
result, the droplets on the left of the dashed line (d = 2�) are less trustworthy.

The droplets statistics are collected after the atomization has reached a statistically steady state
(see Fig. 2) and over time intervals of about 54 ms for the M0 to M2 meshes and 5.6 ms for the
M3 mesh. Sampling is conducted every 10 time steps for the M0 and M1 meshes and every 25 and
50 time steps for the M2 and M3 meshes, respectively. The sensitivity of droplet size distributions
for the sample number Ns is tested for the M2 and M3 meshes [see Figs. 12(e) and 12(f)]. The size
distribution of droplet number for the M2 mesh clearly converges for Ns > 1680 (for a sampling time
interval of about 6 ms). Due to shorter simulation time for the M3 mesh, the sample number is also
smaller compared to other cases. When Ns is small, such as Ns = 500 in Fig. 12(f), the overall trend
of nd remains similar but exhibits more fluctuations. The fluctuations are more profound for large d

as the value of nd is low. The maximum samples we collect for the M3 mesh is about Ns = 1671 over
a time interval about 5.6 ms, during which about three to four waves break and produce droplets.
From the M2 results [Fig. 12(e)] it seems like 5.6 ms is about the minimum sampling time that is
required to achieve a statistically converged size distribution.

As shown in Fig. 12(g), the profiles of nd for the M1, M2, and M3 meshes are quite similar.
The M0 result is significantly different from the others, indicating that the coarse M0 mesh is
insufficient for accurate prediction of droplet statistics. When the mesh size decreases, not only
are more small droplets (d � 50 μm) captured (as expected), but we also observe that more large
droplets (d � 180 μm) are collected. These large droplets (d � 180 μm), such as those shown in
Fig. 11, are typically generated from thicker ligaments, which are in turn produced by fingering at
the end rim of the sheet (see Fig. 8) or hole-induced sheet rupture (see Fig. 9). If the mesh is not
sufficiently fine to capture the Taylor-Culick rim at the edge of a liquid sheet (or at the edge of a
hole) as shown in Fig. 7, then such a thick ligament may not get a chance to form. Instead, many
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FIG. 13. Comparison of droplet (a) and (b) number and (c) mass PDF profiles with the log-normal and �

distribution functions. The bin width increases with d by a constant ratio of 1.2 from 3.125 μm. The mesh sizes
for different cases are indicted by vertical dashed lines with corresponding colors.

tiny ligaments will be produced due to numerical breakup. As a consequence, the number of large
droplets appearing in the M0 result is significantly lower than that for M3.

The probability distribution function (PDF) of droplet number Pn and mass Pm is shown in
Figs. 13(a) and 13(c), respectively, where Pn and Pm are defined as

Pn(d) = N (d)

�d

∑
N (d)

(6)

and

Pm(d) = m(d)

�d

∑
m(d)

, (7)

where �d is the bin width and m(d) represents the total mass of droplets collected in the bin centered
at d. It can be shown that Pm can be related to Pn as

Pm(d) = Pn(d)

(
d

dv

)3

, (8)

where dv is the mean volume-based diameter, expressed as

d
3
v =

∫ ∞
0 Pn(d)d3dd∫ ∞

0 Pn(d)dd
. (9)

Due to the fact that more large droplets (d � 180 μm) are captured when the mesh is refined,
Pn is observed to be increasingly convex from M0 to M3. The shape of Pn for the M1–M3 meshes
indeed agrees quite well for d > 200 μm. It is clear that the number of tiny droplets (d � 10 μm)
increases when the mesh is refined and thus is still mesh dependent. The peak of Pn is still not well
captured even with the finest mesh used here. However, these tiny droplets consist of only a small
fraction of the total mass, as shown in Fig. 13(c). Compared to the droplet number distribution, for
some applications the droplet mass distribution is indeed more important in characterizing sprays.
It is observed that the main contribution to the mass is from droplets of d � 40 μm (the peak of Pm

is located in 50 � d � 100 μm), which are well captured by fine meshes like M2 and M3 used in
the present study.

Finally, the log-normal and � distribution functions are employed to fit the PDF results. The
log-normal distribution function is given as

Pn,L(d) = 1

dσ̂
√

2π
exp

[
− (ln d − μ̂)2

2σ̂ 2

]
, (10)

014005-13



LING, FUSTER, ZALESKI, AND TRYGGVASON

where the mean and the variance of ln d are μ̂ and σ̂ 2, respectively. The Gamma distribution can be
expressed as

Pn,G(d) = βα

�(α)
dα−1 exp(−βd), (11)

where α = (μ̃/σ̃ )2 and β = α/μ̃, and the mean and variance of d are denoted by μ̃ and σ̃ 2,
respectively.

A comparison between the present simulation results and the PDF models is shown in Fig. 13. The
log-normal distribution is fit with σ̂ � 1.2 and μ̂ � 2.2, while the � distribution is fit with α � 1.2
and β � 0.04. The corresponding distributions of droplet mass for log-normal and � models are
obtained by Eq. (8) (dv,L = 54 μm and dv,G = 51 μm).

Both the log-normal and � distributions have been observed in liquid atomization processes
[6,31]. For the present simulation results, impressive agreement between the log-normal distribution
and the M3 result is observed. In Fig. 13(b) we plot dPn as a function of d on a log-log scale to
show more clearly the distribution for small d. From Eq. (10) it is known that for a log-normal
distribution, ln(dPn,L) is a parabolic function of ln(d) and the M3 results well match the right branch
of the parabola. The � distribution fits well for d � 150 μm for the M1 and M2 meshes, yet seems
to underpredict the droplet number for large droplets.

The recent experiments by Marty [32] with a similar setup also show that the log-normal
distribution is a good approximation of droplet number distribution for a wide range of parameters.
The experimentally observed log-normal shape of the droplet number PDF is qualitatively consistent
with the present simulation results. As shown in Eq. (10), the variance of ln d, σ̂ , is an interesting
dimensionless number to characterize the distribution profile and is independent of the mean
diameter. It is also shown by Marty [32] that σ̂ remains between 1 and 1.8 for a wide range of
parameter combinations (M varying from about 1.5 to 16 and Reδ from about 500 to 2000). The
value of σ̂ = 1.2 obtained in the present simulation (M = 20 and Reδ = 2000) lies in the range of
experimentally measured values.

To further comment on these results, it is worth noting that the PDF of droplet size is indicative
of the distribution of scales in two-phase turbulence. It supplements the power spectrum P (k) as
a rich diagnostic of the presence of large and small scales simultaneously. In the power spectrum
of single-phase turbulence, an algebraic range, close to the theoretical prediction of the k−5/3

Kolmogorov spectrum, has been observed experimentally and numerically. The ratio between the
largest and the smallest wave number in that range, lI / lK , is a measure of the width of the spectrum
and also the degree of “full” development of turbulence, where lI and lK are the scale of energy
injection and the Kolmogorov scale, respectively. In the PDF of droplet size, a scaling with the
obvious character of the Kolmogorov scaling has not been found yet. However, as some evidence
points to a log-normal PDF at high velocity, the standard deviation σ̂ that scales as |ln(dmin/dmax)|
then can provide a diagnostic of the presence of a wide range of scales. A large σ̂ corresponds to a
fully developed multiphase turbulence. The fact that σ̂ falls in a similar range is an indication that
the experiments and the simulations are in the same degree of full development of atomization.

In spite of the reasonable performance of the distribution models, the physical reasons for the
agreement are still not fully understood. The idea behind the log-normal model is that the formation
of droplets is a sequential cascade of breakups, where the larger mother drops break into smaller
daughter drops. The ratio between the daughter and mother drops in each breakup is a random
fractional number that follows a normal distribution. As a result, the size of the droplets formed
at the end follows a log-normal distribution. In contrast to the breakup process, the coalescence
between droplets introduces an inverse cascade, i.e., smaller droplets collide and merge to form
bigger droplets or the coalescence of the smaller blobs constitutive of a ligament form bigger blobs.
These aggregation scenarios will result in a � distribution for the droplet size [6]. The simulations
presented here show that the spray formation is through a sequence of different complex mechanisms
and neither of these two PDF models is therefore likely to completely capture these mechanisms.
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We have observed breakups in sequence: The bulk liquid first breaks into thin liquid sheets, then the
sheets into fingers and ligaments, and at last the ligaments into droplets of different size. However,
the process of spray formation is clearly not a sequence of random breakups like suggested in the
log-normal distribution model. (We rarely see a droplet, once formed, further break into smaller
droplets in the fine mesh runs.) On the other hand, coalescence of droplets, the assumption behind
the � distribution model, is only occasionally observed. Therefore, it is also quite likely that the
aggregation would not have a significant impact on the droplet size either.

Notice that both of these classical distributions, the log-normal and the �, are obtained when a
scaling process is observed, that is, when nonlinear effects occur over a large range of scales. For
example, Kolmogorov turbulent cascade for the log-normal distribution and Einstein-Smoluchowski
aggregation dynamics for the � distribution, both span a wide range of scales from �min to �max. The
fact that ln(�max/�min) is large is a condition of applicability of the central limit theorem in these
theories. Here the best fit to the log-normal distribution indicates that ln(�max/�min) ∼ 2σ̂ ≈ 2.4.
Compared to many scaling observations performed in physics over a moderate range of scales, to be
specific with just one decade as ln(�max/�min) � ln 10 ≈ 2.3, the present system has a sufficiently
large range of scales to consider scaling hypotheses, but not yet a “truly” large range of scales as
in Kolmogorov turbulent cascade experiments at large Reynolds numbers. The absence of a truly
large range of scales makes it difficult to draw definite conclusions from the fit of the droplet size
probability distribution to the classical theories, but it also indicates that none of these theories is
without doubt in its range of validity.

Another analysis of the droplet size distributions that does not involve a single scaling process is to
consider several distinct processes at different scales, for instance, rim drops from the disintegration
of the Taylor-Culick rims and film drops from the disintegration of the thin sheets. In some
experiments [4] hints of the bimodal distributions that would result from two distinct processes
have been seen. We observe no such effects in our distributions.

IV. CONCLUSION

Spray formation in a gas-liquid mixing layer was investigated by DNS in the present study. To
examine whether the simulation fully resolves all the physical scales, the mesh resolution was varied
and the finest mesh consisted of about 4 × 109 cells. The simulation results clearly show the detailed
processes of how the bulk liquid jet breaks into sheets, then ligaments, and finally droplets. The
development of the interfacial wave is crucial to the sheet formation. Both quasi-2D and fully 3D
waves were observed. For the 3D waves, the development of the 3D structure was clearly much
faster than the Rayleigh-Plateau instability in the end rim. Ligaments were shown to be generated by
fingering at end rims of liquid sheets and also by expansion of holes in liquid sheets. A sequence of
hole evolutions were shown and the measured expansion velocity was found to agree well with the
Taylor-Culick theory. Due to the interaction with the surrounding turbulent gas stream, ligaments
generally exhibit irregular shapes and complex dynamics when they break into droplets. The size
distributions of droplets in a sampling box downstream of the breaking wave were investigated for
different meshes. It was found that the coarse M0 mesh will miss not only the small droplets, but
also the larger ones. The reason is that if the development of the wave is not well resolved (the mesh
is not sufficiently fine for the curvature of the wave crest or the shear layer above the wave), the sheet
formation will be erroneous, resulting in fake breakups and many tiny ligaments and drops, instead
of larger droplets and thicker ligaments as observed in the fine mesh results. Finally, the log-normal
and � distributions were employed to fit the PDF data and the log-normal model seems to fit better
with the simulation results of the fine meshes.
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