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Inertia-induced dendriticlike patterns in lifting Hele-Shaw flows
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The lifting Hele-Shaw cell problem is a variant of the classical constant-gap Hele-Shaw
situation in which the cell gap width is time dependent. Experiments on Newtonian fluid
flows in lifting Hele-Shaw cells with large lifting velocities reveal the development of
dendriticlike fingered structures that compete among themselves. The usual Darcy law
description of the problem, where inertial effects are neglected, has not been able to explain
the origin of these competing sidebranched patterns. In this work we use a generalized
Darcy law and a perturbative mode-coupling theory to investigate the impact of inertia on
the pattern-forming dynamics of the system. Two main results are deduced: Inertia induces
a mechanism for finger sidebranching formation and favors the intensification of finger
competition events.
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I. INTRODUCTION

The displacement of a fluid by another is one of the most common processes involving the
development of interfacial instabilities. One of the simplest and best studied instabilities occurring
at the interface between two fluids is the Saffman-Taylor (or viscous fingering) problem [1,2].
It comprises a situation in which a more viscous fluid is displaced by a less viscous one,
in the narrow space confined between two parallel plates of a Hele-Shaw cell. Under such
circumstances, the two-fluid interface becomes unstable and the lower viscosity fluid penetrates
the other in a pattern resembling a set of fingers. These fingers proliferate and develop further
into complex patterns. The problem was originally studied by considering the longitudinal flow
in a rectangular channel [1–8], where the system evolved until a single dominating stable finger
was formed. Another very popular Hele-Shaw flow setup is the so-called radial (or circular)
geometry [9–14], in which an axisymmetric fluid injection takes place, leading to the formation of
multiply branched structures, markedly characterized by the spreading and splitting of the growing
fingers.

In addition to the traditional rectangular and radial Hele-Shaw flow configurations, a third
geometry has also attracted considerable attention: the lifting Hele-Shaw cell arrangement [15–27]. In
contrast to the conventional versions of the problem, which consider flow in constant-gap Hele-Shaw
cells, the lifting situation addresses fluid displacement in variable-gap cells. In the lifting case,
initially one has a circular interface separating a more viscous fluid surrounded by a less viscous
one. Then, while the lower cell plate is held fixed, the upper plate is lifted parallel to it, establishing
a time-dependent gap flow. During the lifting process, the outer fluid enters the gap through the
sides and displaces the inner fluid, making the interface unstable via the Saffman-Taylor instability.
As a consequence, the contracting interface deforms as the fingers of the outer fluid invade the
inner fluid. Eventually, the amplitude of the perturbations increases and longer fingers of the outer
fluid move towards the center of the cell. As time advances, eye-catching fingering patterns are
formed.

For lifting Hele-Shaw flow with Newtonian fluids, one normally observes penetrating fingers
presenting smooth boundaries and slightly inflated tips. These invading fingers clearly compete
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FIG. 1. Illustrative examples of advanced time experimental patterns for lifting Hele-Shaw flow with
Newtonian fluids. The left panel shows smooth shaped penetrating fingers obtained for low lifting velocities
(reprinted from Fig. 6 of Ref. [25] with the permission of AIP Publishing). The right panel shows convoluted,
dendriticlike invading fingers (clear fluid) formed at high lifting speeds [reprinted from Fig. 2(b) in Ref. [23]
with the permission of Springer].

among themselves, reaching different lengths [19,22,25]. For a typical illustration of these patterns,
see the left panel of Fig. 1. Such nonsplitting fingering patterns are considerably distinct from
the markedly branched structures usually obtained for injection-induced radial flows in fixed-gap
Hele-Shaw cells [9–14]. These distinguishing morphological features of the Newtonian lifting flow
system have been largely documented in the literature through laboratory experiments and intensive
numerical simulations (see [15–27], and references therein).

Despite the recent effort devoted to improving the understanding of Saffman-Taylor instabilities
in Newtonian lifting Hele-Shaw flows [15–27], some important experimental findings still lack a
theoretical explanation. One emblematic example is the following: Newtonian fluid experiments such
as the ones performed in Refs. [20,23,28] for large lifting velocities have revealed pattern-forming
structures that are completely different from the ones normally obtained in Refs. [15–27], where
lower lifting speeds have been utilized. For large lifting speeds, instead of generating nonsplitting,
smooth penetrating fingers, one encounters much more convoluted, dendriticlike fingering structures
notably characterized by the occurrence of sidebranching (i.e., fingers presenting lobes branching
out sideward). For an illustrative prototype of sidebranching pattern formation in Newtonian lifting
Hele-Shaw flows, see the right panel of Fig. 1. Even though it is well known that such fractal-like
dendritic fingering shapes can be produced during injection-driven radial flows in constant-gap
Hele-Shaw cells [29–36], as well as for displacements in lifting Hele-Shaw cells [37–39] for non-
Newtonian fluids, they do not arise when the fluids are Newtonian and the lifting velocities are low.
A theoretical explanation for the growth of competing sidebranching, dendriticlike fingers in lifting
Hele-Shaw flow for Newtonian fluids is still lacking.

In this work, our main purpose is to offer a theoretical description that could justify the
appearance of such dendriticlike patterns in confined lifting flows with Newtonian fluids. During
the course of this paper, we will deduce that the development of sidebranching at the fluid-fluid
interface is induced by inertial effects. The vast majority of studies in Hele-Shaw cells neglect
the influence of inertia. This is justified by the fact that, under customary Hele-Shaw conditions
(i.e., low flow velocities, small gap width, highly viscous displaced fluid, etc.), one has a nearly
zero Reynolds number situation, so the action of inertia can be safely neglected. In this noninertial
framing, the fluid motion is perfectly described by Darcy’s law, which connects, in a very simple
fashion, the fluid velocity to the pressure gradient. However, this is not always the case. If the
conditions are such that the flow velocity is considerably high, the cell gap thickness is not
so small, or if the displaced fluid is not excessively viscous, one can have a sizable Reynolds
number flow where inertial effects cannot be discarded. Of course, under a non-negligible Reynolds
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FIG. 2. Schematic representation of the lifting (time-dependent gap) Hele-Shaw flow setup (left) and upper
view of the lifted inner fluid droplet (right).

number scenario, the usual Darcy law description of the viscous fingering problem is no longer
valid.

Recently, there has been growing interest in the impact of inertial effects on the development of
the Saffman-Taylor instability [40–48]. By using experiments and analytical and numerical methods,
these studies analyzed various Hele-Shaw flow situations where inertia plays a relevant role. In these
cases, a more elaborate, modified Darcy description has been derived based on the gap averaging
of the three-dimensional (3D) Navier-Stokes equation for the system. The consideration of inertia
resulted in the emergence of suggestive dynamical responses regarding the linear stability and the
morphology of the interfacial patterned structures: While at the linear level inertia tends to stabilize
interface disturbances, at nonlinear stages inertial effects can widen the fingers [43,44,46]. It should
be noted that these studies of the role of inertia have focused on constant-gap Hele-Shaw cells,
for injection-driven rectangular and radial flows and radial flows in the rotating Hele-Shaw setup.
However, the analysis of the effects of inertia in variable-gap Hele-Shaw flows and the understanding
of how they affect key features of the pattern-forming dynamics still need to be examined. That is
exactly what we aim to do in this work.

The remainder of this paper is structured as follows. Section II presents the derivation of the weakly
nonlinear equations for lifting Hele-Shaw flows with Newtonian fluids, when inertial effects are taken
into account. This is done by employing a second-order perturbative mode-coupling approach, which
allows one to access the onset of intrinsically nonlinear pattern-forming mechanisms. The linear
stability aspects of the system are briefly examined in Sec. III. Then, in Sec. IV, relevant information
about the influence of inertia on the development of nonlinear sidebranching structures, as well as
on the finger competition dynamics, is introduced and discussed. Finally, Sec. V summarizes our
main results and provides some concluding remarks.

II. MODE-COUPLING DIFFERENTIAL EQUATION

The basic geometry of the lifting cell problem is sketched in Fig. 2. Consider a variable-gap
Hele-Shaw cell containing a Newtonian, viscous, incompressible fluid of viscosity η and density
ρ, surrounded by another fluid of negligible density and viscosity. Between the two fluids there
exists a surface tension σ . At time t = 0 the fluid-fluid interface is circular and has initial radius
R(t = 0) = R0, while the initial plate spacing is represented by b(t = 0) = b0. Then, at time t > 0
the upper cell plate is lifted along the direction perpendicular to the plates (z axis) and the lower
plate is held fixed. The plate separation procedure is carried out in such a manner that the plates
always remain parallel to each other.

As the upper plate is moved upward, the outer fluid is sucked in and the circular interface
retracts, becoming unstable due to the Saffman-Taylor instability. The perturbed fluid-fluid interface
is described as R(θ,t) = R(t) + ζ (θ,t), where θ represents the azimuthal angle and R(t) is the time-
dependent unperturbed radius. Volume conservation provides a useful relation between R(t) and the
time-dependent cell gap width b(t): R2(t)b(t) = R2

0b0. In addition, ζ (θ,t) = ∑+∞
n=−∞ ζn(t) exp (inθ )

014003-3



ANJOS, DIAS, AND MIRANDA

denotes the net interface perturbation with Fourier amplitudes ζn(t) and integer wave numbers n.
Note that, in contrast to purely linear stability analyses (which are linear, i.e., first order, in ζ ), our
weakly nonlinear approach keeps terms up to the second order in ζ . This allows one to explore the
development of key morphological aspects of the emerging interfacial patterns at the early nonlinear
stages of the dynamics [8,12].

To examine the impact of inertia on the Newtonian lifting Hele-Shaw cell problem, we follow
the theoretical approach developed in Refs. [40–48] and consider that the fluid flow is governed by
a nonlinear generalized Darcy law equation

ρ

[
∂u
∂t

+ 6

5
(u·∇)u

]
= −∇p − 12η

b2
u, (1)

where u denotes the 2D fluid velocity and p is the 2D pressure. This generalized version of Darcy’s
law has been derived by averaging the 3D Navier-Stokes equation over the gap direction and
retaining its inertial terms. The coefficients appearing in front of the terms ∂u/∂t and (u · ∇)u in
Eq. (1) may vary, depending on the way the gap averaging is performed, but are always of order 1
[40–48].

Additionally, we consider a modified 2D continuity equation for an incompressible fluid [15,17]

∇ · u = − ḃ(t)

b(t)
, (2)

where ḃ(t) = db(t)/dt is the upper plate velocity along the z axis. Notice that, by taking the time
derivative of the volume conservation expression R2(t)b(t) = R2

0b0, one obtains a helpful connection
between the velocity of the contracting unperturbed interface Ṙ(t) = Ṙ and the velocity of the upper
plate ḃ through the relation Ṙ = −(ḃR)/2b.

By taking into consideration the potential nature of the flow [43,44], Eq. (1) can be conveniently
rewritten as

ρ

[
∂φ

∂t
− 3

5
|∇φ|2

]
= p − 12η

b2
φ, (3)

where φ is a velocity potential. By substituting u = −∇φ into Eq. (2), one can verify that φ obeys
the Poisson equation ∇2φ = ḃ/b, having the solution

φ(r,θ ) =
∑
n�=0

φn(t)
( r

R

)|n|
einθ + ḃr2

4b
. (4)

Two boundary interfacial conditions complete the definition of the moving boundary problem,
namely, the Young-Laplace boundary condition [2], which expresses the pressure jump across the
fluid-fluid interface r = R,

p = σκ, (5)

where the in-plane interfacial curvature is denoted by κ , and the kinematic boundary condition

∂R
∂t

=
[

1

r2

∂r

∂θ

∂φ

∂θ
− ∂φ

∂r

]
r=R

, (6)

which states that the normal components of each fluid’s velocity are continuous at the interface [2,9].
Now we have all necessary elements to find a mode-coupling differential equation that describes

the time evolution of the interfacial amplitudes ζn(t). First, we express φ [Eq. (4)] in terms of the
perturbation amplitudes ζn by considering the kinematic condition (6). Substituting the resulting
relations and the pressure jump condition (5) into Eq. (3), always keeping terms up to second order
in ζ , and Fourier transforming, we obtain the dimensionless equation of motion for the perturbation
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amplitudes (for n �= 0)

Reζ̈n +
[

1

b2
− Re

ḃ

10b
|n|

]
ζ̇n −

{

(n) + Re

1

2b
(|n| − 1)

[
b̈ − 3ḃ2

2b

]}
ζn

=
∑
n′ �=0

[F (n,n′) + ReH (n,n′)]ζn′ζn−n′ +
∑
n′ �=0

[
1

b2
G(n,n′) + ReI (n,n′)

]
ζ̇n′ζn−n′

+ Re
∑
n′ �=0

[G(n,n′)ζ̈n′ζn−n′ + J (n,n′)ζ̇n′ ζ̇n−n′ ], (7)

where 
(n) = (|n| − 1)(ḃ/2b3) − b3/2|n|(n2 − 1)/q3Ca,

Re = ρb0ḃ0

12η
(8)

defines a Reynolds number that quantifies the effect of inertia on the system, ḃ0 = ḃ(0),

Ca = 12ηḃ0

σ
(9)

is a capillary number that measures the ratio of viscous and surface tension forces, and

q = R0

b0
(10)

represents the initial aspect ratio.
Furthermore, the mode-coupling terms are given by

F (n,n′) = |n|b1/2

{
ḃ

2b3

[
sgn(nn′) − 1

|n| − 1

2

]
− b3/2

q3Ca

[
1 − n′

2
(3n′ + n)

]}
, (11)

G(n,n′) = b1/2{|n|[sgn(nn′) − 1] − 1}, (12)

H (n,n′) = |n|b1/2

(
ḃ

2b

)2{
3

5
sgn[n′(n − n′)] − sgn(nn′)

[
2

(
1 − bb̈

ḃ2

)
+ |n|

5

]

+
(

1 + 2

|n|
)(

1 − bb̈

ḃ2

)
+ |n′|

5

}
, (13)

I (n,n′) = |n|b1/2

(
ḃ

2b

){
6

5
sgn[n′(n − n′)] + sgn[n(n − n′)] +

(
1 − |n|

5

)
sgn(nn′)

+ |n′|
5

− 2

|n| − 1

}
, (14)

and

J (n,n′) = b1/2
{

3
5 |n|[sgn[n′(n − n′)] − 1] + |n|sgn(nn′) − 1

}
, (15)

where the sgn function equals ±1 according to the sign of its argument. We have nondimensionalized
Eqs. (7)–(15) as follows: (i) In-plane lengths are rescaled by R0, (ii) b(t) is scaled on its initial value
b0, and (iii) likewise, time is rescaled by the characteristic time T = b0/|ḃ0|. We direct the reader’s
attention to the fact that, for the rest of this paper, we use the dimensionless version of all the
equations.

Equations (7)–(15) constitute one of the central results of this work, offering the time evolution
of the perturbation amplitudes ζn(t) accurate to second order, incorporating the action of inertial
effects into the Newtonian lifting Hele-Shaw cell problem. To one’s advantage the system is neatly
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described by three governing physical parameters Re, Ca, and q. Notice that when Re = 0, Eq. (7)
reproduces the simpler results obtained in Ref. [24] for the corresponding problem without inertia.
It is worth noting that, if Re = 0, b2
(n) represents the linear growth rate of the noninertial
system. Throughout our study, as in most experimental and theoretical studies in lifting Hele-Shaw
flows [18,19,21,22,25], we assume a constant lifting speed, so b = 1 + t .

We point out that, with respect to Hele-Shaw systems, the original idea related to the truncation of
the infinite coupling to just second order is not actually ours, but has been proposed some time ago by
other authors, for the rectangular Hele-Shaw geometry [49,50]. This fact has been also acknowledged
in Ref. [8]. Then Miranda and Widom [12] extended the second-order weakly nonlinear analysis
to the radial Hele-Shaw (injection-induced) geometry. More recently, Alvarez-Lacalle et al. [51,52]
used a slightly different second-order weakly nonlinear scheme to investigate pattern formation
in various Hele-Shaw cell configurations. It should be noted that the use of second-order weakly
nonlinear analyses is also popular in the study of pattern formation in solidification [53,54]. We
refer the readers to Refs. [8,12,49–54] to find useful detailed information about the perturbative
series’ criteria of smallness of parameters, convergence properties, and other technical aspects of
the weakly nonlinear theory.

III. INFLUENCE OF INERTIA AT THE LINEAR REGIME

Although our current study focuses on the intrinsically nonlinear aspects of the interface dynamics,
directly connected to the morphology of the emerging patterns, in this section we briefly discuss the
purely linear part (i.e., linear in ζ ) of the equation of motion (7),

Reζ̈n +
[

1

b2
− Re

ḃ

10b
|n|

]
ζ̇n −

{

(n) + Re

1

2b
(|n| − 1)

[
b̈ − 3ḃ2

2b

]}
ζn = 0. (16)

Equation (16) is a second-order ordinary differential equation (ODE), presenting time-dependent
coefficients (in view that b is time dependent). This is in contrast to the considerably simpler
equivalent first-order ODE obtained in the usual vanishing Reynolds number limit of the lifting
Hele-Shaw cell problem [15–27]. Consequently, contrary to the noninertial lifting case (Re = 0),
already at the linear level, it is not easy to obtain closed form analytical expressions for the linear
growth and stability of the system when Re �= 0.

However, useful information about the influence of inertia at the linear regime can be extracted
from the linear growth rate λ(n) = [ζ̇n/ζn], which can be numerically evaluated by utilizing Eq. (16).
Figure 3 plots the linear growth rate λ(n) as a function of the Fourier mode n, for three increasingly
larger values of the Reynolds number. This is done by considering characteristic physical parameters
Ca = 2.5 × 10−4 and q = 103, taken at time t = 1.3. By examining Fig. 3, one can verify that the
wave number of the fastest growing mode nmax [i.e., the mode n associated with the maximum
value of λ(n)] is just slightly increased (31 � nmax � 35) when Re is varied from 0 to 0.1. Since
nmax is connected to the typical number of interfacial fingers rising at the linear level [22,25,26],
one anticipates that the number of emerging fingers should not be significantly influenced by the
action of inertia. On the other hand, the magnitude of the growth rate of maximum growth λ(nmax) is
considerably reduced when Re is increased, indicating that inertia would tend to stabilize the system.

Moreover, by observing Fig. 3 one can see that the critical mode ncrit of the system, i.e., the mode
for which λ(n) = 0, is also only modestly increased (54 � ncrit � 60) when Re changes from 0 to
0.1. Therefore, the width of the band of unstable modes (region of Fourier modes within the interval
0 � n � ncrit) just widens a little when Re assumes larger values. So, as in the case of nmax, ncrit is
not dramatically altered when Re is varied. In contrast, as mentioned above, the magnitude of the
maximum growth rate λ(nmax) is substantially diminished by the action of inertia. Therefore, one
can say that the major effect of inertia at the linear level is in fact to restrain the growth of interfacial
disturbances.

These linear predictions for the current variable-gap Hele-Shaw situation are in line with similar
results obtained for the constant-gap, injection-driven flow studied in Refs. [44,46], when inertial
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FIG. 3. Linear growth rate λ(n) as a function of mode n, for three values of the Reynolds number Re. The
maxima of the curves are indicated by circles. Here Ca = 2.5 × 10−4, q = 103, and t = 1.3.

effects have been taken into account. Moreover, we have also found that the variable-gap system
becomes increasingly unstable for higher values of Ca and q. Considering the mentioned difficulties
in extracting analytical information about the lifting Hele-Shaw problem with inertia, the basic
trends involving nmax, ncrit, and λ(nmax) are essentially what one can get at the purely linear level.

As one could imagine, the theoretical impediments regarding access to analytical results are even
more serious in the description of the second-order weakly nonlinear dynamics, where the resulting
mode-coupling expressions for the interacting modes [obtained from Eqs. (7)–(15)] are usually too
lengthy and messy to be managed analytically. Despite this fact, our mode-coupling approach still
allows one to gain insight into important morphological aspects of the emerging patterns under
Newtonian lifting Hele-Shaw flows. This last point will become clear in the next section.

IV. EFFECT OF INERTIA ON NONLINEAR PATTERN-FORMING MECHANISMS

In this section we make use of Eqs. (7)–(15) and apply our weakly nonlinear theory to investigate
how inertia may impact the shape of the emerging fingering patterns and the finger competition
dynamics in the Newtonian lifting Hele-Shaw flow problem. To begin our discussion, it is convenient
to rewrite the net interfacial perturbation in terms of cosine and sine modes

ζ (θ,t) = ζ0 +
∞∑

n=1

[an(t) cos(nθ ) + bn(t) sin(nθ )], (17)

where an = ζn + ζ−n and bn = i(ζn − ζ−n) are real valued. In the Fourier expansion (17), we include
the n = 0 mode to maintain the area of the perturbed shape independent of the perturbation ζ . Within
the scope of our second-order description, mass conservation imposes that the zeroth mode is written
in terms of the other modes as [12]

ζ0 = − 1

4R

∞∑
n=1

[
a2

n(t) + b2
n(t)

]
. (18)

Without loss of generality we may choose the phase of the fundamental mode so that an > 0 and
bn = 0.
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The most representative pattern-forming mechanisms of the viscous fingering instability, as they
occur in noninertial, injection-driven Hele-Shaw flows, can be identified as spreading, splitting,
and competition [2]. Some time ago it was shown that these basic nonlinear morphological
mechanisms could be consistently reproduced by considering the weakly nonlinear coupling of
just a few participating Fourier modes [8,12]: (i) The characteristic shape of the fingers (e.g.,
finger widening and narrowing) could be provided by the interplay between a fundamental mode
n and its first-harmonic cosine mode 2n, while (ii) finger competition events (related to finger
length variability) could be described by the interaction of a fundamental mode n and its sine
and cosine subharmonic modes n/2. Moreover, it has also been demonstrated that the mechanism
of sidebranching formation for the flow of non-Newtonian (shear-thinning) [29–36] fluids in the
injection-induced, radial Hele-Shaw problem (still neglecting inertial effects) would require the
presence of mode 3n [34,36]. In this way, the dendriticlike growth detected in such non-Newtonian
flows could be reproduced by considering the nonlinear coupling between a fundamental mode n

and its harmonics 2n and 3n. We direct the interested readers to Refs. [8,12,34,36] for a detailed
discussion about the mode-coupling strategy, its description, and proposed interpretation of the
typical pattern forming-mechanisms occurring in Hele-Shaw flows.

Before proceeding, we would like to make an important point about the weakly nonlinear results
that will be presented in the rest of this work. One should not expect that our simulated weakly
nonlinear interfacial patterns will quantitatively reproduce the fully nonlinear morphological features
revealed in experimental realizations of the lifting Hele-Shaw problem, like the ones depicted in
Fig. 1. These laboratory experiments focus on the fully nonlinear stages of pattern evolution, where
the finger sizes are very large and the finger shapes are considerably complex. On the other hand,
our perturbative weakly nonlinear analysis holds at the onset of nonlinearities, where the interfacial
disturbances ζ must be significantly smaller than the corresponding unperturbed interfacial radius
R(t). In addition, in order to better understand and describe the mechanisms involved in the pattern
formation process, our simulated weakly nonlinear interfaces consider the coupling of a small
number of relevant Fourier modes. So we do not intend to precisely recreate the advanced time,
extremely intricate lifting Hele-Shaw cell patterns detected experimentally. Of course, a perturbative
Fourier analysis like ours would not be able to accomplish such a nontrivial task.

The main objective of our weakly nonlinear approach is to extract useful information about the
complicated, fully nonlinear pattern-forming dynamics of the system, already at the lowest nonlinear
order (i.e., at second order in ζ ) and do that by describing the major pattern formation mechanisms
(e.g., finger sidebranching and finger competition) by conveniently utilizing the interaction of just
a few pertinent Fourier modes. Therefore, despite its limitations, the weakly nonlinear analysis
presented here and in Refs. [8,12,34,36] is still useful in the sense that it can predict and capture the
chief nonlinear behaviors that will eventually emerge at advanced time stages of the Hele-Shaw cell
dynamics. It should be emphasized that the effectiveness of this particular weakly nonlinear strategy
has been amply substantiated by a number of analytical, numerical, and experimental studies in the
Hele-Shaw flow literature (see, for instance, Refs. [22,52,55–63]).

A. Inertia-induced sidebranching patterns

Our purpose here is to try to get valuable information about the possibility of producing
dendriticlike sidebranching patterns in Newtonian lifting Hele-Shaw flows via the influence of
inertia. As commented earlier, finger tip-narrowing, tip-broadening, and tip-splitting phenomena
can be described by considering the influence of a fundamental mode n on the growth of its
harmonic 2n. It can be shown [24] that an enhanced tendency of the inward moving fingers of the
outer fluid to get wider (narrower) occurs when a2n > 0 (a2n < 0). So a positive growth for the cosine
amplitude of the first harmonic mode 2n would mean a tendency toward finger tip widening of the
invading fingers of the outer fluid. Moreover, as proposed in Refs. [34,36], if the harmonic cosine
mode amplitude a3n is positive and sufficiently large, it can produce interfacial lobes branching out
sideward, leading to sidebranching formation.
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FIG. 4. Snapshot of the weakly nonlinear fluid-fluid interface (top panels), illustrating the typical fingering
patterns that may arise during Newtonian lifting Hele-Shaw flows. A close-up view of the resulting patterns
(for the areas delimited by dashed lines) is shown in the bottom left corner of each plot. The corresponding time
evolution of the rescaled cosine amplitudes an(t)/R(t) for modes n, 2n, and 3n, where n = 20, is depicted in
the bottom panels. The values taken for the Reynolds number are (a) Re = 0, (b) Re = 0.01, and (c) Re = 0.1.
In addition, Ca = 2.5 × 10−4 and q = 103. The final times used are (a) tf = 0.7, (b) tf = 0.7, and (c) tf = 1.3.

So, to probe the possible resulting shapes of the fingers during Newtonian lifting Hele-Shaw
flows with inertia, we consider the nonlinear coupling of the three morphologically relevant modes
n, 2n, and 3n and rewrite Eq. (7) in terms of the cosine amplitudes. As expected, the resulting
mode-coupling equations are unfortunately pretty long and complicated. However, the time evolution
of the amplitudes an(t), a2n(t), and a3n(t) can be obtained by numerically solving such coupled
nonlinear differential equations. Once this is done, the shape of the interface can be acquired by
using Eqs. (17) and (18).

In Fig. 4 we illustrate the typical weakly nonlinear pattern morphologies that may emerge in
lifting Hele-Shaw flows with Newtonian fluids if the effects of inertia are taken into consideration.
In the top panels, we plot the shape of the contracting fluid-fluid interface for three increasing values
of the Reynolds number Re. In order to facilitate the visualization of the morphological details of the
resulting fingering structures, we plot the entire interface (for 0 � θ � 2π ) in the top right corner of
the panels plus a close-up view of part of it (for the angular sector 0 � θ � π/2) in the bottom left
corner. Finally, in the bottom panels of Fig. 4, for each value of Re, we depict the time evolution of
the rescaled cosine amplitudes an(t)/R(t) for the three participating modes.

In Fig. 4 we take the initial conditions an(0) = 6.5 × 10−4 and a2n(0) = a3n(0) = 0 so that modes
2n and 3n are both initially absent. Likewise, we take ȧn(0) = 6.2 × 10−3 and ȧ2n(0) = ȧ3n(0) = 0.
It worth pointing out that the values for the initial perturbation amplitudes are selected in such a
way that the amplitudes for the first harmonic a2n (responsible for setting the finger shape as wide
or narrow) and harmonic a3n (responsible for setting the sidebranching behavior) are considerably
smaller (in this case they have been set to zero) than the amplitude of the fundamental mode an.
Note that the fundamental mode mostly sets the initial n-fold symmetry for the pattern. This is
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done to avoid artificial growth of modes a2n and a3n imposed solely by the initial conditions. In
this way we guarantee that the interfacial behaviors we observe are spontaneously induced by the
weakly nonlinear dynamics and not by artificially imposing large initial amplitudes for a2n and a3n.
In addition, we take Ca = 2.5 × 10−4, q = 103, and n = 20.

The patterns shown in Fig. 4 have been obtained after time has evolved in the interval 0 � t � tf ,
where tf is the time at which successive interfaces are about to cross one another. Since this crossing
is not detected in experiments and fully nonlinear simulations in lifting Hele-Shaw flows [22,25],
we adopt the largest time before crossing as the upper bound time (t = tf ) for the validity of our
theoretical description. The value of n (n = 20) used in Fig. 4 is obtained by setting λ(3n) = 0 for
the highest Re and tf (i.e., Re = 0.1 and tf = 1.3). This ensures that 3n is a critical mode at the
largest time taken, so modes n, 2n, and 3n will always remain inside the band of unstable modes
during the entire lifting process.

Specifically, Fig. 4 considers the possible shapes assumed by the fingers for the following values
of the Reynolds number: (a) Re = 0, (b) Re = 0.01, and (c) Re = 0.1. First, we analyze the case in
which inertial effects are completely neglected [Fig. 4(a)]. In this noninertial lifting scenario, nothing
really exciting happens and reasonably unstructured fingers are formed. In the absence of inertia, the
morphology of the inward moving fingers is basically determined by the growth of the fundamental
mode n, which reaches much larger amplitudes than the modes 2n and 3n. This is clearly illustrated
by the growth of amplitudes represented in the bottom panel of Fig. 4(a). Therefore, when Re = 0,
the amplitudes a2n and a3n are very small and there is no sign of sidebranching formation.

On the other hand, Fig. 4(b) reveals something different: For this nonzero value of Re, one
notices that the morphology of the penetrating inward moving fingers of the outer fluid begins to
change, where fingers become slightly sharper at their tips and wider at their sides. By observing the
bottom panel of Fig. 4(b), one can see that this suggestive morphological event is due to the favored
nonlinear growth of both harmonic modes 2n and 3n, which now have sizable positive amplitudes.
Since the only difference between the situations depicted in Figs. 4(a) and 4(b) is the nonzero value
of Re used in Fig. 4(b), we can say that the changes in the finger shape shown in Fig. 4(b) are driven
by inertial effects.

An even more revealing morphological behavior is observed in Fig. 4(c), where Re is nonzero
and larger than the value used in Fig. 4(b). By inspecting the interface depicted in the top panel
of Fig. 4(c), one verifies something quite interesting, namely, the evolution of broadened, threefold
shaped invading fingers, clearly showing interfacial lobes that branch out sideways. This produces
the formation of sidebranching patterns in our Newtonian lifting Hele-Shaw flow system. Such a
curious pattern-forming behavior can be justified by resorting to our mode-coupling approach: From
the bottom panel of Fig. 4(c) one can see that this scenario is promoted by the enhanced nonlinear
growth of mode 3n (with the appropriate positive phase), which, jointly with the nonlinear growth of
mode 2n, results in sidebranched finger shapes. All this results from the action of inertia. The onset
of sidebranching formation depicted in Fig. 4(c) provides a possible theoretical explanation for the
development of complex sidebranching structures (right panel of Fig. 1) detected experimentally in
Refs. [20,23,28].

It is worthwhile to point out that the sidebranching phenomenon detected in Fig. 4 is inherently
nonlinear and could not be either predicted or captured by a purely linear perturbative description
of the lifting Hele-Shaw problem, even if inertial effects are taken into account. To illustrate this
important point, in Fig. 5(a) we plot the linear interface shape and in Fig. 5(b) the weakly nonlinear
interface shape for Re = 0.1 at time tf = 1.3. The interfaces depicted in Fig. 5 are plotted by using
exactly the same physical parameters and initial conditions utilized to produce the patterns depicted
in the top panel of Fig. 4. The only difference between Figs. 5(a) and 5(b) is that, while Fig. 5(a) is
obtained by numerically solving the purely linear (in ζ ) Eq. (16), Fig. 5(b) results from the numerical
solution of the second-order O(ζ 2) mode-coupling equation (7).

By inspecting Fig. 5 it is evident that, despite the consideration of a sizable Reynolds number,
one does not observe any tendency towards sidebranching formation in the linear description of
the problem [Fig. 5(a)]. Linearly, regardless of the incorporation of inertial effects, the shape of the
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FIG. 5. Snapshot of (a) a linear interface [obtained by solving Eq. (16)] and (b) a weakly nonlinear interface
[obtained by solving Eq. (7)], for a Reynolds number Re = 0.1, taken at time tf = 1.3. All physical parameters
and initial conditions are the same in both (a) and (b) and are identical to those utilized in Fig. 4(c).

pattern is dominated by the growth of fundamental mode n, while the harmonic modes 2n and 3n just
cannot keep up with it. On the other hand, the weakly nonlinear morphology revealed in Fig. 5(b)
emerges due to the coupling and enhanced nonlinear growth of modes 2n and 3n. This observation
reinforces the necessity of considering the nonlinear interaction among participating modes [through
the second-order mode-coupling equations (7)–(15)] in order to get sidebranched morphologies via
a perturbative scheme. In spite of the somewhat complicated nature of Eqs. (7)–(15), their use pays
off, revealing, already at lowest nonlinear order, the onset of the dentriticlike fingering formation in
lifting Hele-Shaw cells with Newtonian fluids.

Before we close our analysis about the occurrence of inertia-induced sidebranching, it should
be stressed that we have searched for additional types of patterns within and beyond the range of
parameters (Re, Ca, and q) and initial conditions considered in Fig. 4, but have not found any other
significantly distinct type of finger morphologies than the representative ones already presented in
Fig. 4. By the way, it should be pointed out that we have not been able to identify the development of
finger tip splitting in our system. Therefore, at least within the scope of our weakly nonlinear theory,
one can say that when Re is sufficiently high, the basic morphological mechanism for Newtonian
lifting confined flows is actually finger sidebranching.

Nevertheless, it is still of interest to have an improved understanding of how the sidebranching
phenomenon behaves when the capillary number Ca and the initial aspect ratio q are varied. This
issue is addressed in Fig. 6, which illustrates how the rescaled perturbation amplitude of the mode 3n

[a3n(t)/R(t)] varies with time, for three characteristic values of Ca, two values of q, and Re = 0.1.
To plot Fig. 6 we have used the same set of initial conditions utilized in Fig. 4. As we also did in
Fig. 4, the values of n used for each of the situations analyzed in Fig. 6 are set by the condition
λ(3n) = 0, evaluated at t = tf = 1.3.

By examining Fig. 6 it is apparent that, for all these different situations, the rescaled amplitude
a3n(t)/R(t) increases with time. This ensures consistent growth of the harmonic mode 3n with a
positive phase, something that naturally enhances tendency toward finger sidebranching. It is also
pretty clear that, larger values of Ca and q lead to augmented sidebranching. These weakly nonlinear
findings are consistent with the linear stability results discussed in Sec. III, where we have seen
that higher magnitudes of Ca and q do tend to destabilize the system. In any case, from Figs. 4
and 6 we learn that the most favorable conditions for the emergence of dendriticlike structures in
our Newtonian lifting flow system are the ones involving larger values of Re, Ca, and q.

B. Influence of inertia on finger competition

Besides the typical format of the fingers discussed in Sec. IV A, as already mentioned in Sec. I,
another conspicuous aspect verified during lifting Hele-Shaw flows is the phenomenon of finger
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FIG. 6. Rescaled perturbation amplitude a3n(t)/R(t) plotted as a function of time, for Reynolds number
Re = 0.1, three values of the capillary number Ca, and two values of the initial aspect ratio q.

competition. Numerical simulations and experiments [17,19,22,23,25,37–39,43] consistently show
a competition (i.e., a finger length variability) among the fingers of the invading less viscous fluid,
which advance towards the center of the Hele-Shaw cell. Taking into consideration the relevance of
the finger competition dynamics to lifting Hele-Shaw flows in general, in this section we examine
how it is affected by inertia.

We follow Ref. [12] and consider finger length variability as a measure of the competition among
fingers. Within our mode-coupling approach, the finger competition mechanism is described by the
influence of a fundamental mode n, assuming n is even, on the growth of its subharmonic mode
n/2. Similar to what we have done in Sec. IV A, here the equations of motion for the subharmonic
mode amplitudes an/2 and bn/2 can be obtained by using Eqs. (7)–(15). The mode-coupling finger
competition mechanism is based on a very simple idea: The action of the subharmonic mode breaks
the n-fold rotational symmetry of the fundamental mode by alternately increasing and decreasing
the length of each of the n fingers. This candid mechanism mimics the actual finger competition
phenomenon observed in laboratory and numerical experiments of Hele-Shaw flows. It is worth
noting that the validity and correctness of this finger competition mechanism for advanced time
stages of the Hele-Shaw cell dynamics have already been tested by extensive numerical simulations
[57,58].

As discussed in Refs. [12,24], in the scope of the mode-coupling picture, an increased variability
among the lengths of fingers of the outer fluid penetrating into the inner fluid corresponds to an
increase in the growth of the sine subharmonic mode amplitude bn/2 (or, equivalently, to a decrease
in the growth of the cosine subharmonic amplitude an/2). This effect describes the competition
of inward moving fingers observed in actual lifting Hele-Shaw flows [17,19,22,23,25,37–39,43].
Note that if these behaviors for an/2 and bn/2 are reversed, such that modes an/2 would be favored
over modes bn/2, the mode-coupling description would disclose competition of the outward moving
fingers of the inner fluid. However, this is not what is observed in Refs. [17,19,22,23,25,37–39,43].

To exemplify the characteristic impact of inertia on the finger competition behavior, Fig. 7
illustrates a parametric plot of the difference between the sine and the cosine perturbation amplitudes
for the subharmonic mode [bn/2(t) − an/2(t)], relative to the amplitude of the fundamental mode
an(t). This kind of plot is convenient in the sense that it simultaneously expresses the behavior
of both bn/2(t) and an/2(t) (which are responsible for the finger competition mechanism) with
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FIG. 7. Parametric plot expressing the behavior of bn/2(t) − an/2(t) with respect to variations in an(t), for
two values of the Reynolds number Re and two values of the capillary number Ca.

respect to the growth of the fingers as a whole (provided by the fundamental mode). In Fig. 7
we set two values for the Reynolds number Re = 0 (solid curves) and Re = 0.01 (dashed curves)
and two distinct capillary numbers Ca = 2.0 × 10−4 and 2.5 × 10−4. In addition, we set q = 850.
The initial conditions are taken as an(0) = 10−7, ȧn(0) = 5 × 10−7, an/2(0) = bn/2(0) = 10−8, and
ȧn/2(0) = ḃn/2(0) = 5 × 10−8. Similar to what we did in Fig. 4, the values of n used for each of the
situations analyzed are set by the condition λ(n) = 0 [i.e., the largest Fourier mode between n and
n/2 is taken as the critical mode], evaluated at t = tf = 0.7. In Fig. 7 one can readily compare the
finger competition behavior for the cases with and without inertia.

From Fig. 7, first we verify that the difference bn/2 − an/2 increases when the amplitude of the
fundamental mode an assumes larger values. It turns out that, within the scope of our mode-coupling
description, this is precisely the behavior of the subharmonic modes that favors inward finger
competition (i.e., prevalence of the growth of bn/2 over the growth of an/2). In addition, for any
given value of an, since the dashed curves are above the corresponding solid ones, it is evident that
when Re = 0.01, bn/2 − an/2 is larger than for Re = 0. This observation suggests that, due to inertia,
nonlinear effects naturally enhance tendency toward competition of the inward fingers. Finally, by
inspecting Fig. 7, an interesting aspect of the nonlinear dynamics can be observed: A larger value
of Ca leads to a relatively modest inhibition of the inward finger competition, despite the fact that
the system is more linearly unstable for higher capillary numbers. This weakly nonlinear theoretical
result is consistent with experimental findings of Ref. [25] regarding the role of capillary effects on
finger length variability behavior in lifting flows with Newtonian fluids.

V. CONCLUSION

In classical formulations of Hele-Shaw cell problems, the width of the cell gap is constant. In
this work we considered the development of viscous fingering patterns in a lifting Hele-Shaw cell
with Newtonian fluids, where the cell gap is time dependent. Lifting Hele-Shaw flows at low lifting
velocities lead to the emergence of smooth, nonsplitting fingers that compete among themselves.
These fingering structures can be appropriately predicted and described by a conventional Darcy law
approach, for which inertial effects can be neglected. However, at large lifting speeds, even though
the inward moving fingers still compete, completely different dendriticlike patterns are formed.
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Seemingly, a theoretical justification for the rising of such peculiar sidebranched patterns still needs
to be offered.

In this paper we used a generalized Darcy law description for the Newtonian lifting Hele-Shaw
cell problem, which is based on the gap averaging of the 3D Navier-Stokes equation for the system.
Within this theoretical scheme, inertial effects are not necessarily negligible and can be properly
taken into account. Additionally, we tackled the problem by employing a mode-coupling perturbative
approach. Our weakly nonlinear analysis was performed at the lowest (second-order) nonlinear level
and was able to capture chief morphological pattern-forming behaviors of the Newtonian confined
lifting flow. This was done by considering the coupling of just a few relevant, interacting Fourier
modes. In this framework, our theoretical results point to the fact that the rising of the dendriticlike
structures detected experimentally in Refs. [20,23,28] is due to inertia. We also found that inertial
effects tend to enhance the competition among invading fingers. In conclusion, our work indicates
that, depending on the fluid flow circumstances, inertia may have a significant impact on the
pattern-formation dynamics of the Newtonian lifting Hele-Shaw cell problem.

A possible extension of this work could address fully nonlinear numerical simulations of the
lifting Hele-Shaw problem with Newtonian fluids, now adding the contribution of inertial effects,
as prescribed by the nonlinear generalized Darcy law (1). Hopefully, such a numerical study could
check some of our weakly nonlinear theoretical findings and also reproduce more accurately the
complex advanced time sidebranching structures experimentally revealed in Refs. [20,23,28].
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