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We investigate the dynamics of two superposed layers with density contrast flowing
countercurrent inside a channel, when the lower layer is much thinner than the wavelength
of interfacial waves. We apply a low-dimensional film model to the bottom (heavier) layer
and introduce a fast and efficient method to predict the onset of flow reversal in this phase.
We study three vertical scenarios with different applied pressure gradients and compare
the temporal growth rates of linear and weakly nonlinear waves to the Orr-Sommerfeld
problem and to the weakly nonlinear theory, respectively. At the loading point, i.e., when a
large wave hump stands at the interface, our spatiotemporal analysis shows that the system
is absolutely unstable. We then present profiles of nonlinear saturated waves, pressure field,
and streamline distribution in agreement with direct numerical simulation. The reduced
model presented here allows us to explore the effect of the upper-layer speed on the wave
pattern, showing that the wave profile is very sensitive when the mean film thickness, rather
than the liquid flow rate, is maintained constant in the simulation. In addition, we show the
strong effect of surface tension on both the maximum wave hump and the crest steepness
before the loading point. Finally, we reveal how the nonlinear wave speed affects the
vortex distribution within the lower layer by analyzing the stream function under different
scenarios.
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I. INTRODUCTION

Thin films sheared by a countercurrent flow have wide industrial applications, such as in
absorption and distillation processes. During the past decades, this topic has been the subject of
several experimental observations [1–5], aiming to elucidate the role of the flow pattern on the
absorption rate. In addition, further to Yih’s work on two superposed layers under viscosity contrast
[6], several studies have investigated the linear stability of the resulting interfacial waves [7–9].

In the above-mentioned applications, the liquid film is often very thin compared to the wavelength
of interfacial waves; this has encouraged the development of integral models in which the film
dynamics is enslaved to thickness and flow rate only, with the main advantage of providing faster
numerical simulations with respect to direct numerical simulation (DNS). Since the pioneering
works of Benney [10] and Shkadov [11], these low-dimensional models have gained great
accuracy. Particularly, through a weighted residual technique applied to the boundary-layer equations
(WRIBL), Ruyer-Quil and Manneville [12] have addressed, for gravity-driven liquid films, the issues
of blowup at moderate Reynolds numbers, typical of the Benney’s model, and deviation from the
long-wave stability threshold affecting Shkadov’s model. Nowadays, low-dimensional models are
also used for films under a constant shear [13] and for flows in a slowly varying duct [14]. Concerning
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the multiphase systems, the integral models have been first employed by Jurman and McCready [15]
for liquid films sheared by a turbulent gas flow; later studies have extended the integral formulation
also to the second phase, providing an evolution equation for the interface between two superposed
layers [16,17]. However, these works follow those of Benney and Shkadov and thus experience the
aforementioned shortcomings. Amaouche et al. [18] have instead applied the WRIBL model to both
phases coflowing within a channel; nevertheless, they have accounted only for gravity-driven flows
and their model cannot be used for countercurrent scenarios, as this work does. Another interesting
approach has been developed by Tseluiko and Kalliadasis [19], where the WRIBL model is applied
to the liquid phase for liquid films sheared by a countercurrent turbulent gas flow. However, from
the gas side, the liquid film is modeled as a wavy wall and thus flows at comparable speed as treated
in this work cannot be reproduced. Subsequently, their model has also been extended to coflowing
channel flows [20]. Recently, Dietze and Ruyer-Quil [21] have developed a full two-phase WRIBL
model with application to co- and countercurrent flows in narrow channels and then extended it to
narrow tubes [22]. Nevertheless, using an integral model in the gas phase limits the thickness of the
gas layer and its speed, resulting that large channels as considered in this work cannot be analyzed.
Lately, Lavalle et al. [23] have adopted a first-order integral model to study laminar coflowing
gas-liquid channel flows, which the present work is based on.

A peculiar feature of countercurrent flows is that under certain conditions they manifest flow
reversal (or flooding), with dramatic consequences on the performances of technological devices.
Various works have therefore aimed to predict the onset of flow reversal using experimental
correlations (see review from [24] and later investigations [3,4,25]); in support, several studies
have provided new insights and novel methodologies to analyze the flooding through linear stability
[9], DNS [26], and low-dimensional models [9,19,21,22].

With this work, we provide an efficient and nonlinear method suitable for industrial uptake for
predicting the onset of flow reversal, aiming to cut down computational cost and data with respect
to DNS. We address the problem of countercurrent two-layer flows at low density contrast inside
an inclined channel, assuming the lower layer thinner than the interfacial wavelength. The surface
tension approaches the typical value of solvent extraction [27]. Our methodology originates from
the work of Lavalle et al. [23], whose shallow water Arbitrary Lagrangian-Eulerian Navier-Stokes
model (SWANS) consists of first-order depth-integrated equations applied to the lower layer and
compressible Navier-Stokes equations for the upper layer. However, as it is, the SWANS model is
unsuitable for countercurrent flows, because the shear stress exerted by the upper phase is negative
and might cause a blowup of the Rusanov numerical flux when the characteristic velocity is negative.
This flaw has been addressed in the current work by discretizing the term responsible for blowup
with a central difference approximation and by changing the Rusanov flux accordingly. Furthermore,
although it does not account for second-order streamwise viscous dissipation, this model provides
good accordance with the Orr-Sommerfeld theory and DNS due to the smallness of the Weber
number in the performed analysis. Finally, given that part of this study is based on the work of
Lavalle et al. [23], we direct the reader towards it for further mathematical and numerical details.

The article is structured as follows: Section II introduces the low-dimensional model and the
coupling technique with the upper phase. Section III shows the linear and nonlinear results and
the comparison with the Orr-Sommerfeld problem, weakly nonlinear theory, and DNS. Section IV
explores the influence of upper-layer speed and surface tension on the wave topology, as well as
the role of the nonlinear wave speed on the vortex distribution. And finally, the conclusions and the
perspectives of this work are discussed in Sec. V.

II. FILM MODELING AND COUPLING WITH THE UPPER PHASE

Consider a thin layer flowing under the gravity inside an inclined 2D channel, sheared by a
countercurrent flow driven by an applied pressure drop exerting a shear stress τ̃i and a pressure p̃i

at the interface (Fig. 1). The bottom layer flows due to gravity but also feels the opposite pressure
gradient. The assumption that the thickness of the bottom layer is smaller than the wavelength
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FIG. 1. Sketch and variable definitions of the countercurrent two-layer flow inside an inclined channel.
Index 2 defines the upper layer, while index 1 the lower one.

of interfacial waves, i.e., ε = h̃/λ̃ � 1, yields that the variation in time and along the streamwise
direction are smaller than those in the crossstream direction; it is thus found that ∂̃x � ∂̃t � ∂̃y , where
the tilde defines dimensional quantities. Under these assumptions, the Navier-Stokes equations in the
film turn into the boundary-layer equations. Their dimensionless forms up to O(ε), along with
the corresponding boundary conditions, read

∂xu + ∂yv = 0, (1a)

∂tu + u∂xu + v∂yu = −∂xp + Fr−1 sin β + Re−1∂yyu, (1b)

0 = −Fr−1 cos β − ∂yp, (1c)

u|0 = v|0 = 0, (1d)

p|h = pi(x,t) − We−1∂xxh, (1e)

∂yu|h = τi(x,t), (1f)

∂th + u|h∂xh = v|h. (1g)

The scaling is based on the uniform film thickness h̃0 and velocity Ũ0, but other choices are possible.
Consequently, Re = h̃0Ũ0ν

−1 is the Reynolds number, Fr = Ũ 2
0 (gh̃0)−1 the Froude number, and

We = ρŨ 2
0 h̃0γ

−1 the Weber number. As a matter of fact, the use of the boundary-layer equations (1)
as the beginning of the integral-model development allows us to relax the validity of such models
[28]: it must be verified that ε Re � 1 and Fr ≈ Re. Equation (1c) can be directly integrated by
means of the condition (1e), leading to the hydrostatic pressure distribution

p(x,y,t) = −
∫ x

0
G(x) dx − We−1∂xxh + Fr−1 cos β(h − y), (2)

where G(x) = −∂xpi is the interfacial pressure gradient. After replacing (2) into the x-momentum
equation (1b), we can perform the integration over the film thickness, which is the main ingredient
of thin-film low-dimensional models. We obtain

∂th + ∂xq = 0, (3a)

∂tq + ∂x

(∫ h

0
u2 dy

)
+ cos β

Fr
h∂xh = 1

Re
(
h + τi − ∂yu|0) + 1

We
h∂3xh, (3b)

where q = ∫ h

0 u dy is the liquid flow rate, ∂yu|0 the wall shear stress, and 
 = Re Fr−1 sin β +
ReG(x). A closure model is required for the wall shear stress and the integral of squared velocity,
and several ways exist to tackle this problem. We use an asymptotic expansion of the velocity field
in terms of ε, where the leading order corresponds to the parallel flow and the first order to the O(ε)
corrections. After rewriting the equations (1) at O(1) and O(ε) separately, we can find the velocity
profile u(0) + u(1), where the superscript (0) denotes the leading order while the superscript (1) the
corresponding correction. The Appendix shows this procedure along with the resulting leading- and
first-order velocity fields. The performed velocity profile is necessary to close the above-mentioned
terms of (3b), keeping in mind that the right-hand side is one order greater than the left-hand side
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and requires O(ε) corrections. In other words, in order to fulfill the consistency, we use only the
leading-order velocity (A1) to resolve the integral of squared velocity, while we need also the
first-order velocity correction (A5) for the wall shear stress term. Details of this approach are given
in Ref. [23]. Finally, the x-momentum equation (3b) becomes

∂tq + ∂x

(
q2

h
+ P

)
= 1

Re

[

h − 3q

h2
+ 3

2
τi − T

]
+ 1

We
h∂3xh. (4)

For numerical reasons, we gather all ∂xh terms at the left-hand side inside P , while T contains the
remaining correction terms of the wall shear stress; we also force the coefficient of q2/h equal to
unity for the Galilean invariance [29], without losing any properties of consistency of the model. In
this procedure indeed, we use the definition of the flow rate (A2). The terms P and T are defined as
(derivations are given in Ref. [23])

P = 2

225

2h5 + 1

15

τih

4 + 1

12
τi

2h3 + 1

2

h2

Fr
cos β, (5)

T = h3

240
Re(3
h + 14τi)∂xτi + Re2h4

(
3h

175

 + τi

24

)
∂xG + h3

15
Re2∂tG + h2

8
Re∂tτi . (6)

The characteristic velocity e2 = dP/dh = 2
45
2h4 + 4

15
τih
3 + 1

4τ 2
i h2 + h

Fr cos β must be
positive to guarantee that the system of equations is hyperbolic (Toro [30]). While this is true
for the majority of coflowing two-layer flows (see Fig. 4 in Ref. [23]), it is not always the case for
countercurrent scenarios, as in this work. Specifically, the negative shear stress τi and the resulting
term 1/15
τih

4 in the expression (5) might cause e2 to be negative. When this happens, the Rusanov
flux f , computed at the generic cell face i + 1/2, manifests blowup because the characteristic velocity
becomes complex. The Rusanov flux f reads indeed

fi+1/2 = f (v+
i+1/2) + f (v−

i+1/2)

2
− max

i+1/2±
[U + e]

v+
i+1/2 − v−

i+1/2

2
, (7)

where v = (h,hU,hw)T is the conserved variable vector and f (v) = (hU,hU 2 + P,hUw)T the
corresponding flux, whereas w =

√
We−1∂xh/

√
h is the additional numerical variable that allows

us to reduce the order of the discrete system [31]. Quantities v+
i+1/2 and v−

i+1/2 are the right and left
states across the cell face in i + 1/2, respectively. To tackle the problem of blowup, we compute e2

by using max[0,1/15
τih
4] at each time step. Note that this procedure is equivalent to discretize

the term responsible for blowup with a centered scheme. With reference to the expression (7),
the first part of the modified Rusanov flux remains then unchanged, while the second part is free
of the complex contribution. By doing so, only the numerical viscosity of the scheme is changed
(Toro [30]), while the discrete equations remain consistent with the physics described by the model
(3a), (4)–(6). As it is, the modified model is tailored to countercurrent two-layer flows.

Nevertheless, in addition to the solution proposed above, two alternatives can be sought to get
rid of the negative characteristic velocity e2: (i) the use of a fully implicit numerical scheme, which
actually increases the complexity of the solver without guaranteeing a better structure than this one;
(ii) the development of a three-equation film model, towards which the present work is meant to be
extended in future, in line with the study of Richard et al. for gravity-driven falling films [32].

At this stage, the low-dimensional model (3a), (4)–(6) is coupled to compressible Navier-Stokes
equations in the top layer. In dimensionless form those read

∂tρ2 + ∇ · (ρ2u2) = 0

∂t (ρ2u2) + ∇ · (ρ2u2 ⊗ u2) =− 1

γ2M2
∇p2 + ρ2

Fr
+ 1

Re2
∇ · T2, (8)
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TABLE I. Physical properties of the two phases considered here.

Layer ρ (kg m−3) μ (Pa s) γ (mN m−1) ρ2/ρ1 μ2/μ1

Upper 1 10
1 0.1 0.02

Lower 10 500

where the film thickness h̃0, the mean film velocity Ũ0, and the uniform upper-phase density ρ̃�
2

and pressure p̃�
2 have been used as length, velocity, density, and pressure scales, respectively. The

fluid is considered ideal; M = Ũ0/ã
� is the Mach number, Re2 = Ũ0h̃0/ν̃

�
2 is the Reynolds number,

while the Froude number Fr has the same definition as the bottom layer. In the limit of low speed
flows, the viscous stress tensor reads T2 � 2D2, where D2 is the strain tensor. In the SWANS model,
the coupling between Eqs. (8) and (3a), (4)–(6) assures the transfer of the interfacial stresses from
the top to the bottom phase; vice versa is the transfer of the interfacial velocity and the shape of the
interface. From a numerical point of view, this methodology makes use of an augmented system
in the bottom layer accounting for an evolution equation of the surface tension to avoid scheme
instabilities [31], as well as an accurate low-Mach scheme [33] with a moving mesh in the upper
phase. The coupling technique is explicit and first order in time, while the boundary conditions are
periodic. All the discretization techniques are fully developed in Ref. [23].

III. LINEAR AND NONLINEAR DYNAMICS OF THE COUPLED SYSTEM

Using the SWANS solver, we aim to study countercurrent two-layer vertical flows at low density
contrast. Table I lists the physical properties of the two phases: density and viscosity ratios are
chosen for numerical reasons, i.e., computational time of DNS, which we compare our model to.
The performed direct numerical simulations are obtained by means of the TPLS flow solver, making
use of the level-set method [8,34].

We run SWANS simulations varying the applied pressure gradient and the film thickness in
accordance with the most unstable wavelength: we look at the sign of the displacement of the
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r

FIG. 2. Map obtained from SWANS simulations, showing cases of downward-traveling waves (circles),
standing waves (squares), and upward-traveling waves (crosses) at the most unstable wavelength. The solid line

is the Orr-Sommerfeld standing-wave curve [35]. The Froude number is now defined as F̂r
2 = �p̃/λ̃/(ρ2g).
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TABLE II. Flow parameters and dimensionless numbers for the three tests detailed. Uniform film thickness
h̃0 = 0.8 mm and channel height H̃ = 10 mm are unaltered. Now R̂e2 = Re2Ũ2Ũ

−1
0 λ̃h̃−1

0 , with Ũ2 the average
gas equilibrium velocity.

Test λ̃ (mm) �p̃/λ̃ (Pa/m) ũ|h(m/s) k̃h̃1 Re1 R̂e2 Fr We c (m/s) cDNS (m/s)

DW 15.74 13.13 0.0299 0.32 0.38 2148 0.07 0.005 2.32×10−2 2.47×10−2

SW 14.65 13.64 0.0259 0.34 0.35 2478 0.06 0.004 4.25×10−3 4.62×10−3

UW 13.69 14.15 0.0217 0.37 0.32 2814 0.05 0.003 −2.66×10−2 −2.26×10−2

traveling waves computed by the solver SWANS and cover the map in Fig. 2. This map quickly
reveals the regions where the wave is moving upwards against the gravity. This phenomenon is
crucial due to its potential towards leading to flooding, the operational limit of industrial grade
absorption, and distillation columns. Furthermore, Fig. 2 has an immediate interpretation towards
experiments and industrial procedures, because it links the applied pressure gradient driving the gas
flow to the liquid flow rate, which can be recovered from the uniform film thickness h̃0 through
the analysis of the base state (or from the leading order with h̃ = h̃0). In detail, three different
situations appear in Fig. 2: a countercurrent saturated interfacial wave travels down with the gravity
(DW for downwards wave), stands in a fixed position (SW corresponding to the so-called loading),
or travels upwards driven by the top layer (UW as flooding). We have thus provided a nonlinear
and highly efficient method to predict the onset of upward-traveling waves; a comparison with the
standing-wave curve obtained through a solution of a corresponding Orr-Sommerfeld eigenvalue
problem shows excellent agreement. However, the main advantage of our approach with respect to
the Orr-Sommerfeld analysis is the straight extension to those configurations with nonflat walls and
more general geometries. In addition, the low-dimensional formulation of the SWANS solver allows
for a fast solution and returns much lower computational data in comparison to a full two-phase
DNS simulation of the same kind.

Among the SWANS simulations performed in Fig. 2, we focus on the three scenarios described
in Table II. Noteworthy is that We is small and this explains why we use a first-order film model,
given that the damping by viscous dissipation plays less because of the smoother interface. An
initial perturbation of the uniform flow is applied in the form of h = h0[1 + ε sin(2πx/λ)] (and so
for q), where the amplitude is ε = 10−3. For each test, Fig. 3 shows the temporal growth of the
first three harmonics (with wave numbers k = 2π/λ, 2k, and 3k, respectively). We compare with
good agreement the numerical growth of the first harmonic to the Orr-Sommerfeld problem. We
also notice that the second and third harmonics are enhanced by nonlinear interactions governed by
the fundamental harmonic; at this stage, they grow with rate proportional to the first harmonic [36],
i.e., ωi{n} = nωi{1}, as also observed in our simulations. Remarkably, the model is able to capture the

FIG. 3. Temporal growth rate of the first three harmonics (blue square, green diamond, and red cross,
respectively) corresponding to the three tests of Table II: (a) DW, ω̃i h̃0/ũ|h = 0.3551; (b) SW, ω̃i h̃0/ũ|h =
0.5326; (c) UW, ω̃i h̃0/ũ|h = 0.8084. Lines: Orr-Sommerfeld problem (blue) and weakly nonlinear theory
(green and red); symbols: SWANS.
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FIG. 4. Time evolution of the interface subject to a localized Gaussian pulse for the SW scenario. Time is
scaled with H/|USW|, where USW = −2.69 m/s is the mean undisturbed upper-layer velocity of the SW case.

temporal growth of the harmonics, although their length is comparable with the film thickness, and
again this must be due to the small We number.

We further check whether the SW mode is connected to an absolute instability. Indeed, Vellingiri
et al. [9] have investigated the instability of gas-liquid film flows showing that the generation of
the standing wave occurs at the upper limit of the absolute instability region. Lately, Schmidt et al.
[35] have demonstrated that at low density contrast the loading curve is always associated to an
absolute instability. In order to inspect this tendency in the SW case, we study the response of the
system subject to a localized disturbance by applying at the equilibrium a Gaussian pulse of the form
f (x,0) = 2.5×10−3 exp[−(x − c0)/2w2], centered in c0 = 0.7L with width w = L/40. However,
the simulation with periodic boundary conditions requires a sufficiently long domain to avoid wave
contamination; the length of the domain has been therefore chosen as ten times the wavelength
associated to the SW scenario (see Table II). Figure 4 shows that after a sufficiently long time the
pulse develops in both directions and the instability grows at the source, thus confirming that the
system is absolutely unstable.

Moving back to the initial sinusoidal perturbation, the main wave saturates once the nonlinear
effects begin to play in the system. The last two columns of Table II compare the speed c of the
saturated waves between our model and the DNS; the small discrepancy is to be expected and
has been also discussed by Ruyer-Quil et al. [37]. Figure 5 depicts instead the interfacial wave
at different times for these three scenarios. As the waves saturate, agreement of the wave profile
is shown between SWANS and DNS. The mismatch can be due to the omission of second-order
elongation stresses in the film model and to the coupling strategy, which is quasistatic in the sense
that the coupling is explicit in time. Figure 5 also shows that the amplitude of saturated waves
slightly decays when increasing the applied pressure gradient [see Figs. 5(a)–5(c)]. This unusual
behavior is explained because the applied pressure gradient has been mostly increased by reducing
the imposed wavelength (i.e., growth of the frequency in a space-dependent experience), driving to
a decrease of the amplitude, as observed by Liu and Gollub [38] for falling liquid films.

Figure 6 represents the pressure field and the wall-fixed streamline pattern inside the lower layer
and in the proximity of the interface. The streamlines are computed as a contour of the stream
function � = ∫ y

0 u dy, where the leading-order velocity (A1) has been used for the lower layer. We
notice again agreement between the DNS [Figs. 6(d)–6(f)] and our model SWANS [Figs. 6(a)–6(c)],
which captures well the different topology inside the heavier phase. We remark that the behavior in
the lower layer extensively varies in the three flow scenarios; on the contrary, the upper-layer vortex
generated by the wake behind the wave slightly changes because so does the wave profile among these
three cases. Particularly, we observe a small tendency of our model to squeeze this vortex against
the interface; again, this can be due to the coupling strategy, which is more sensible at the interface.
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FIG. 5. Interface position every t = 0.1 s for the three performed scenarios: (a) DW within
t = [0.6-0.9] s; (b) SW within t = [0.5-0.8] s; (c) UW within t = [0.4-0.7] s. Time increases with solid line,
dashed line, dotted-dashed line, solid thick line. Black dots: DNS from [35]. Grid discretization in SWANS:
�x = 131 μm (DW); 122 μm (SW); 114 μm (UW); and �y = 38 μm.

Noteworthy is that the recirculation zones captured by our integral model in the wall-fixed
reference frame are consistent with the long-wave approximation. Indeed, the shear stress τi in the
velocity profile (A1) might be negative due to the countercurrent flow, and as a consequence, the
lower-layer velocity is not monotonic, as it happens for cocurrent film flows instead, permitting
recirculation zones underneath main wave humps.

IV. ANALYSIS OF WAVE PATTERN AND VORTEX DISTRIBUTION

In this section, we describe the wave topology in the vicinity of the loading condition and explore
the influence of both the upper-layer speed and the surface tension on the wave amplitude, speed,
and steepness. Following Barthelemy et al. [39] and with reference to Fig. 7, we define the crest
steepness as Sc = aπ/λc; similarly, an analogous definition for the trough steepness St is introduced.
Finally, we investigate the velocity field within the lower layer with a particular focus on the genesis
of recirculation zones occurring in the three scenarios previously discussed.

A. Influence of the upper-layer speed

Concerning turbulent gas-liquid flows, previous works [19,26] have shown that increasing the
countercurrent gas speed leads to an increase in the amplitude of the wave when the Reynolds
number of the film is fixed; meanwhile, the maximum and minimum of the wave profile increase
and decrease in amplitude, respectively.
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FIG. 6. Pressure distribution and streamlines for the three performed scenarios: (a) DW at t = 0.8 s; (b) SW
at t = 0.8 s; (c) UW at t = 0.5 s. Comparison between SWANS (a–c) and DNS from Ref. [35] (d–f). Pressure
scale: H̃�p̃/λ̃.

With the present study, we supplement the analysis of the wave pattern by describing the influence
of the upper-layer speed in the case of laminar two-layer flows at low density contrast. In addition,
we show that the wave topology is very sensitive to the parameter that we fix in the simulation,
e.g., equilibrium film thickness or mean liquid flow rate. Indeed, it is worthy to recall that fixing

FIG. 7. Description of the parameters used to define the crest steepness, from Barthelemy et al. [39].
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FIG. 8. Saturated wave profile at different upper-layer velocities U2 with constant q
g

1 (i.e., constant film
thickness h0). The case at U2 = 1 corresponds the loading condition SW. Velocity is scaled with the mean speed
of the SW scenario, USW = −2.69 m/s.

the Reynolds number does not always imply fixing the liquid flow rate, and this depends on the
equilibrium velocity chosen for the definition of the Reynolds number. The equilibrium liquid flow
rate q1 [which can be obtained from the leading-order local flow rate (A2) for a flat interface] can
be expressed as the sum of a gravity contribution q

g

1 and a shear contribution given by the effect of
the upper layer, qs

1:

q1 = 1

3
h3Re Fr−1 +

[
τi

h2

2
+ 1

3
h3Re G

]
= q

g

1 + qs
1 . (9)

The gravity contribution of the flow rate, i.e., q
g

1 = 1/3h3Re Fr−1, corresponds to the flow rate of a
vertical liquid film in a passive gas atmosphere. Therefore, fixing q

g

1 in the simulation is the same
as fixing the uniform film thickness.

In our work instead, the Reynolds number is defined through the effective liquid flow rate q̃1,
namely, Re = q̃1/ν, whereby fixing Re is equivalent to keeping the liquid flow rate constant, which
has a functional meaning for experimental reproduction. In what follows, we describe how the wave
profile is sensitive to the upper-layer speed, starting from maintaining constant q

g

1 and then q1. All
the values of U2 encountered in this section are meant as mean speed in the upper phase and are
scaled with the mean speed of the SW case USW = −2.69 m/s.

Figure 8 shows that as the upper-layer speed increases, the saturated wave profile is strongly
affected when q

g

1 is fixed in the simulation (i.e., constant film thickness h0). It is important to recall
that the overall film flow rate changes with U2 to accommodate a constant q

g

1 . Figure 9(a) exhibits
instead that the maximum (minimum) height slightly increases (decreases) when U2 augments;
meanwhile, the nonlinear wave velocity decreases [Fig. 9(b)]. This behavior is in line with liquid-gas
turbulent flows [19,26], although the rate of variation of the wave height is now smaller due to
the different conditions adopted here: laminar flow, low density contrast, lower surface tension,
and smaller wavelength. Also, increasing U2, the crest steepness Sc increases whereas the trough
steepness St is slightly affected [see Fig. 9(c)].

On the other hand, the wave pattern changes extensively when the effective liquid flow rate q1 is
fixed while the upper-layer speed is increased. This corresponds to the case of a vertical film with
fixed flow rate at different gas speeds and has a proper physical meaning. Figure 10 sketches the
wave profile at different upper-layer speeds: unlike the previous case, we note that an increase of
the countercurrent upper-layer speed barely modifies the shape of the saturated wave. Furthermore,
Fig. 11(a) shows that the wave crest increases in amplitude when U2 increases, and the minimum
film thickness increases as well, unlike before. This happens because, at constant flow rate, the liquid
decelerates when the countercurrent upper-layer speed increases, and the equilibrium film thickness
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FIG. 9. Evolution of (a) maximum and minimum wave height, (b) nonlinear wave speed, (c) crest and
trough steepness, at different upper-layer velocities U2 with constant q

g

1 (i.e., constant film thickness h0). The
case at U2 = 1 corresponds to the loading condition SW. The upper-layer velocity is scaled with the mean speed
of the SW scenario USW = −2.69 m/s, whereas the nonlinear wave speed c with the averaged film velocity
U0 = 0.0219 m/s of the SW case.

increases accordingly, given that q1 = hU1 = const. Therefore, the increase of the maximum and
minimum wave height is sustained by the increase of the main film thickness with U2. Conversely,
the steepness of the crest and the trough behaves similarly as the previous case [Fig. 11(c)]. Finally,
the wave profile is more sensitive to U2 when the equilibrium film thickness, rather than the liquid
flow rate, is maintained constant.

B. Influence of the surface tension

In order to investigate the effect of the surface tension on the wave topology, the wavelength has
been increased compared to the previous cases to avoid a fall in the stable region (surface tension
stabilizes short waves). At �p/L = 14.28 Pa/m, h0 = 0.8 mm, and γ = 10 mN/m, we chose the
wavelength of the most unstable mode corresponding to the loading curve, namely, λ̃ = 45.9 mm. At

FIG. 10. Saturated wave profile at different upper-layer velocities U2 with constant liquid flow rate q1.
The case at U2 = 1 corresponds the loading condition SW. Velocity is scaled with the mean speed of the SW
scenario USW = −2.69 m/s.
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FIG. 11. Evolution of (a) maximum and minimum wave height, (b) nonlinear wave speed, and (c) crest and
trough steepness at different upper-layer velocities U2 with constant liquid flow rate q1. The case at U2 = 1
corresponds the loading condition SW. The upper-layer velocity is scaled with the mean speed of the SW
scenario USW = −2.69 m/s, whereas the nonlinear wave speed c is scaled with the averaged film velocity
U0 = 0.0219 m/s of the SW case.

this value of λ̃, we explore the effect of increasing the upper-layer speed U2 and the surface tension γ ,
maintaining q

g

1 constant (i.e., film thickness h0 constant). This choice is due to the previous analysis,
which emphasized that the greatest variations of the wave pattern with U2 occur when q

g

1 is fixed
rather than at constant flow rate q1. Noteworthy is that varying the surface tension must be consistent
with the asymptotic velocity field (A5), which defines the dimensionless group � = (h̃0/λ̃)2 Re/We
as distinctive for the change of the capillary term.

As the surface tension augments, Fig. 12 sketches the saturated wave profile at U2 = 0.75, scaled
with the mean upper-layer speed of the loading point Ul = −4.19 m/s. Note that for this value of
the upper-layer speed, the waves are moving downwards. We notice that an increase of the surface
tension leads to a decrease of the amplitude of the saturated wave. This is also confirmed by Dietze
[40] for vertical falling liquid films in a passive gas atmosphere. This trend allows us also to explain

FIG. 12. Saturated wave profile at different surface tensions γ when the upper-layer speed is U2 = 0.75.
Dimensionless numbers: Re1 = 0.31, Fr = 0.048, and � = (h̃0/λ̃)2 Re/We = 0.31 (at γ = 10 mN/m), 0.62
(at γ = 20 mN/m), and 1.26 (at γ = 40 mN/m).
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FIG. 13. Evolution of (a) maximum and minimum wave height, (b) nonlinear wave speed, and (c) crest
and trough steepness, at different upper-layer velocities U2, with constant q

g

1 (i.e., constant film thickness h0).
Dimensionless surface tension coefficients � as in Fig. 12: 0.31 (solid line), 0.62 (dashed line), and 1.26 (dotted
line). The vertical line in each plot represents the loading condition. The upper-layer velocity is scaled with the
mean speed of the loading point Ul = −4.19 m/s, whereas the nonlinear wave speed c with the averaged film
velocity U0 = 0.0132 m/s at the loading point.

the main outcome of Fig. 13. It is first revealed that at higher values of surface tension, both the
maximum of the wave hump and the crest steepness are barely modified by increasing the counter
upper-layer speed [see dotted lines in Figs. 13(a)–13(c)]; conversely, for low surface tensions those
variations with U2 are more pronounced and the amplitudes of max(h) and Sc decay after the loading
point, as the nonlinear wave speed decreases [see solid lines in Figs. 13(a)–13(c)]. In addition,
increasing the surface tension γ leads to a decrease of both the maximum wave hump and the crest
steepness, and this is more notable before the loading point (vertical bar in each plot). Indeed, before
the loading point the effects of inertia and gravity overcome those of the countercurrent flow, and
the liquid film is affected with γ as in a vertical falling scenario in a passive gas atmosphere [40].
Conversely, after the loading point only the nonlinear wave speed is affected by the surface tension,
with a tendency of accelerating the wave downwards when γ increases. Finally, it is interesting
to compare the results in Fig. 13 (solid lines only) with those in Fig. 9, where the wavelength is
smaller. We find that increasing λ̃ leads to an increase of the peak of the saturated wave before the
loading point. This tendency is also in agreement with the vertical falling liquid films described by
Dietze [40].

C. Influence of the nonlinear wave speed on the internal agitation

Lastly, we focus on the flow dynamics in the reference frame moving with the wave speed, where
streamlines and trajectories coincide. This allows us to elucidate the regions of high transfer and
is therefore relevant for industrial uptake. Figure 14 shows the streamlines in the reference frame
moving with the wave speed for the DW [Figs. 14(a) and 14(b)] and UW [Figs. 14(c) and 14(d)]
tests and compares with good agreement the model [Figs. 14(a) and 14(c)] to the DNS [Figs. 14(b)
and 14(d)]. Note that since in the SW case the wave stands in a fixed position, the fixed and moving
reference frames coincide. Remarkably, we notice two vortices in the DW scenario, and zero for the
UW. In the SW case, instead we observe one single vortex that is clearly located at the wave hump
[see also Fig. 6(b)]. Interestingly, the two vortices of the DW case are similar to those observed by
Trifonov in countercurrent air-water flows [41]. In order to clarify the presence and the location of
those vortices, we write the stream function in the lower layer, taking into account the wave speed c.

014001-13



LAVALLE, VILA, LUCQUIAUD, AND VALLURI

FIG. 14. Lower-layer stream-function contours in the wave reference frame. DW scenario: (a) model at
t = 0.8 s, (b) DNS; UW scenario: (c) model at t = 0.5 s, (d) DNS.

Integrating the velocity profile (A1), one gets (the constant of integration vanishes for consistency
with the cross-stream velocity v(1))

�(x,y) = 


(
h

y2

2
− y3

6

)
+ τi

y2

2
− cy. (10)

Figure 15(a) sketches the stream function at the wave crest abscissa; a necessary condition for the
presence of the vortices is that the stream function have a local minimum or maximum. We then
realize that for c = 0 (SW case), only one extreme can be observed and is located next to the
interface; if c < 0 (UW case), no vortices (or possibly a small one at the top) can be recovered;
and when c > 0 (DW case), we can observe also a vortex next to the bottom wall, as confirmed
by our simulations in Fig. 14. In Fig. 15(b), the stream function at the wave trough abscissa is
sketched instead. In this case, the absence of local extrema suggests that no vortices exist in that
region, although a small recirculation zone can be observed at the bottom when c < 0. Again, this
is entirely confirmed by our simulations in Fig. 14, in accordance also with DNS. Interestingly,
Eq. (10) highlights that the stream-function distribution between crest and trough changes thanks
to the evolution along x of the shear stress, the pressure gradient, and the interface. For the sake of
precision, note that since h(x) [and therefore the related quantities τi(x) and G(x)] slightly changes

FIG. 15. Stream function � for different wave speeds: (a) wave crest and (b) wave trough.

014001-14



ULTRAEFFICIENT REDUCED MODEL FOR COUNTERCURRENT . . .

among the three performed tests, the stream function � of Fig. 15 corresponds to the SW case, to
which we added a prescribed wave speed c. Summarizing, we reveal that the wave speed affects the
agitation and the vortex distribution within the lower layer.

V. CONCLUSIONS

In conclusion, this work is based on the development and application of a first-order low-
dimensional model to countercurrent two-layer flows in a channel. This model, coupled to
compressible Navier-Stokes equations in the upper phase through a moving mesh technique, provides
an efficient method to predict the onset of flooding. In presence of low density contrast and low
surface tension, the temporal growth of linear and weakly nonlinear waves matches with the results
of the Orr-Sommerfeld and the weakly nonlinear theory. An analysis of the response of the system
to a localized Gaussian pulse shows that the loading point is connected to an absolute instability.
Furthermore, the comparison of saturated wave profiles, pressure field, and streamline patterns shows
agreement with the DNS. Using this coupled model, we then investigated the influence of upper-layer
speed and surface tension on the wave pattern. We have found that increasing the upper-layer speed
has a stronger effect when the liquid film thickness is maintained constant, rather than when the
liquid flow rate is kept fixed in the simulation. When varying the surface tension instead, both the
maximum wave hump and the crest steepness are affected before the loading point. Finally, we have
given some insights regarding the vortex distribution within the lower layer, revealing that when
the saturated wave is traveling downwards, more recirculation zones are to be expected.

The extension of this work would move towards the analysis of gas-liquid flows, taking into
account the turbulence and then including mass transfer. Of high interest is also the issue of whether
a low-dimensional integral approach is able to capture the mode competition possibly arising in this
type of flow.
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APPENDIX: THE VELOCITY FIELD WITHIN THE FILM

At the leading order, the double integration of the momentum equation 
 + ∂yyu
(0) = 0 through

the appropriate boundary conditions (1d) and (1f) leads to

u(0)(x,y,t) = τiy + 


(
hy − y2

2

)
, (A1)

which is the local velocity profile at order zero. The corresponding flow rate reads

q(0)(x,t) = τi

h2

2
+ 1

3

h3. (A2)

Through the continuity equation (3a), one then obtains the cross-stream velocity:

v(1) = Re ∂xG
y3

6
− (∂xτi + 
∂xh + Re ∂xGh)

y2

2
. (A3)

At the first order, the momentum equation accounts for inertia and surface tension, namely,

∂tu
(0) + u(0)∂xu

(0) + v(1)∂yu
(0) = 1

We
∂3xh − cos β

Fr
∂xh + 1

Re
∂yyu

(1). (A4)
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Its double integration using the respective boundary conditions (1d) and (1f) gives the correction of
the leading-order velocity profile:

u
(1)
1 = Re

24
(2h − y)(−y2 + 2hy + 4h2)y[(
h + τi)
∂xh − Re∂tG]

+ Re2

360
[
(y5 + 24h5 + 15h2y3 − 6hy4 − 20h3y2) + 3τi(−10h4 + 5hy3 − 2y4)]y∂xG

+ Re

24
[(4h3 − y3)τi + (2h3 + y3 − 2hy2)
h]y∂xτi − Re

6
(3h2 − y2)y∂tτi

+ Re

2

(
1

We
∂3xh − cos β

Fr
∂xh

)
(2h − y)y. (A5)
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