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We investigate the flow over shallow cavities as a representative configuration for
modeling small surface irregularities in wall-bounded shear flows. Due to the globally stable
nature of the flow, we perform a frequency response analysis, which shows a significant
potential for the amplification of disturbance kinetic energy by harmonic forcing within a
certain frequency band. Shorter and more shallow cavities exhibit less amplified responses,
while energy from the base flow can be extracted predominantly from forcing that impacts
the cavity head on. A structural sensitivity analysis, combined with a componentwise
decomposition of the sensitivity tensor, reveals the regions of the flow that act most
effectively as amplifiers. We find that the flow inside the cavity plays a negligible role,
whereas boundary layer modifications immediately upstream and downstream of the cavity
edges contribute significantly to the frequency response. The same regions constitute
preferred locations for implementing active or passive control strategies to manipulate
the frequency response of the flow.

DOI: 10.1103/PhysRevFluids.2.013902

I. INTRODUCTION

Under realistic conditions, surfaces on air, marine, or ground transportation vehicles are subject to
imperfections that manifest themselves as gaps, steps, bumps, dips, or other localized irregularities.
These geometric features are often the consequence of the manufacturing process or the result of
accidental damage or operational fatigue. These surface modifications lead to a rise of roughness-
induced flow responses that can take the form of a shift in preferred frequencies or the triggering of
instabilities.

While surface irregularities are unavoidable under realistic circumstances, a successful design
should exhibit a reasonable degree of robustness to such geometric deformities. It is important then
to study their influence on the stability and response of common flow configurations and extract the
mechanisms that modify the flow behavior. A study of this kind will also form a basis for control
efforts, which would aim to counteract the effect of surface irregularities and reduce their influence
to a minimally disruptive level.

In general, surface irregularities, such as bumps, steps, and gaps, cause the boundary layer
developing over a surface to separate. The separated shear layer may then reattach further
downstream, leading to a region of recirculating fluid, known as a separation or recirculation
bubble. A flow with a separation bubble first becomes globally unstable to a steady or low-frequency
spanwise-periodic three-dimensional mode [1,2]. This has been found to be true in a variety of flow
configurations. As a generic flow configuration, representative of a range of surface irregularities,
we consider the flow over an open shallow cavity. This type of flow captures many of the features
and amplification processes that are present in other configurations. Consequently, the analysis
framework that is presented here carries over in a straightforward manner to other flow configurations.

Numerous studies have investigated the effect of cavity geometry, compressibility, and incoming
boundary layer thickness on the three-dimensional instability in the flow over an open cavity [3–5].
The global instability arises from a centrifugal instability mechanism [3] involving the recirculating
flow inside the cavity [6]. In these previous studies, the boundary layer thickness upstream of the
cavity is an order of magnitude (or more) smaller than the depth of the cavity, and increasing the
boundary layer thickness has a stabilizing effect on the instability.
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In this paper, we study the case where the boundary layer thickness is of the same order of
magnitude as the depth of the cavity. We refer to this flow configuration as a shallow cavity. In
contrast to previous studies on open cavity flows, the flow is globally stable and behaves as a
hydrodynamic amplifier. In other words, the flow experiences oscillations only in the presence of
external forcing or noise and amplifies these disturbances selectively. The unsteadiness arises from a
superposition of all linear global eigenmodes with negative growth rates. For the flow over a shallow
cavity, the linear dynamics of the flow are thus more appropriately represented by its response to
external forcing [7]. This response is quantified by calculating the optimal frequency response (or
transfer function) curve and identifying the forcing structure that is linearly most amplified for a
given frequency. This amplification occurs in the absence of any unstable eigenmodes due to the
non-normality of the linear operator that governs the perturbation dynamics [8,9]. This approach has
been applied to other flow configurations that behave as amplifiers, such as, e.g., a flat plate boundary
layer [10,11], a laminar separation bubble induced by an adverse pressure gradient [12], a separated
boundary-layer flow past a bump [13], the flow behind a rounded backward-facing step [14], a
uniform-density axisymmetric jet [15], and the flow induced by radial wall injection [16]. It has
been found to successfully predict the frequencies as well as the spatial structures that dominate the
dynamics of the flow.

In Sec. II, we describe the flow configuration and give details of the numerical discretization. In
Sec. III, we present the mathematical formulation and numerical techniques to calculate the optimal
frequency response. In contrast to most previous studies, we consider both two-dimensional and
periodic three-dimensional forcing. We identify the frequency and spatial structure of the forcing
that yields the most amplified response and investigate the effect of cavity geometry on the optimal
gain. Finally, in Sec. IV, we investigate the physical mechanisms that drive and determine the optimal
response; in particular, we assess the impact of the flow within the cavity and its vicinity on the linear
response characteristics. Concluding remarks are presented in Sec. V. An Appendix gives details on
a numerical convergence study.

II. FLOW CONFIGURATION

We consider the motion of a viscous, incompressible fluid over a rectangular, shallow cavity
in a domain, �, as shown in Fig. 1. The fluid is described by its state vector, q = (u,p)T ,
which contains the pressure p and velocity u = (ux,uy,uz)T in the streamwise (x), cross-stream
(y), and spanwise (z) directions, respectively. The incoming flow at x = Xmin is prescribed by
the Blasius velocity profile. The flow variables, cavity length L, and cavity depth D, are made
nondimensional using the free-stream velocity, U∞, and the 99% boundary-layer thickness, δ, at the
inlet.

The motion of the fluid is governed by the incompressible Navier-Stokes (NS) equations in
nondimensional form, given as

∇ · u = 0,
∂u
∂t

+ u · ∇u + ∇p − 1

Re
∇2u = 0, (1)

where the Reynolds number, Re, is defined in terms of U∞ and δ.
Upon assuming that the incoming flow is spanwise independent, we seek a steady two-

dimensional solution to (1). The governing equations are recast in a weak formulation and
discretized on the computational domain shown in Fig. 1(a) using the finite-element method.
We use Taylor-Hood elements for the velocity (P2) and pressure (P1) fields. No-slip Dirichlet
condition for the velocities are imposed along the wall, u = 0, while viscous stress-free boundary
conditions, −pn + Re−1∇u · n = 0 are applied at the outlet (x = Xmax) and along the top boundary
(y = Ymax).

Figure 1(a) shows the steady base flow obtained in a computational domain with Xmin = −20.0,
Xmax = 27.5, and Ymax = 5.0, for a cavity with dimensions L = 5,D = 1 at a Reynolds number of
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FIG. 1. Flow configuration. (a) Contours of the streamwise velocity for the steady flow over a shallow
cavity with L = 5,D = 1 at Re = 1000. (b) The local temporal growth rate Im(ωloc) (solid), and frequency
Re(ωloc) (dashed) for the base flow above. (c) The wall shear coefficient for the base flow above. The thick
black line corresponds to the value for a Blasius boundary layer.

Re = 1000. This corresponds to an inlet Reynolds number based on the displacement thickness of
Reδ∗ = 350, which falls well below the threshold at which a Blasius boundary layer becomes locally
unstable (Reδ∗ = 519).

The domain size is motivated by our interest in the amplification properties of the cavity, rather
than the amplification properties of the boundary layer. The inlet Xmin and outlet Xmax are placed
sufficiently far from the upstream and downstream edges of the cavity. In addition, the value of
Xmax has been chosen such that the boundary layer at the outlet is locally stable. The top boundary
Ymax has been placed sufficiently far from the wall to allow the spatial structures of the forcing and
response to be fully captured within the domain. We have validated the convergence of the frequency
response with respect to domain size and spatial resolution; results of this study are presented in
Appendix.

The cavity depth is of the order of the boundary layer thickness, which is rather shallow compared
to previous studies on the flow over open cavities. The maximum reverse flow in the cavity is only
about 8%, and we find, using local stability analysis, that the flow is not locally absolutely unstable
anywhere within the domain. This agrees with a trend found in a previous study [17] that suggested
that the maximum reverse flow in a laminar separation bubble would need to be larger than 12%
for absolute instabilities to arise. The flow is, however, convectively unstable between 0 < x < 6.1.

The local temporal growth rate and frequency, calculated by interpolating the local flow profile onto
a Gauss-Lobatto grid with 100 points, are shown in Fig. 1(b).

In Fig. 1(c), we plot the local wall-shear coefficient and compare it to the value for a Blasius
boundary layer (f ′′(0) = 0.332, with f denoting the Blasius similarity solution). As expected, the
boundary layer upstream and downstream of the cavity is influenced by the adverse pressure gradient
brought about by the cavity. The presence of the cavity leads to an increase in the wall-shear stress.
It is interesting to note, however, that the influence upstream of the cavity is markedly less than the
effect downstream of the cavity.
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III. RESPONSE TO HARMONIC FORCING

A. Formulation

We are interested in the response of the flow in Fig. 1 to small-amplitude external forcing. We
model this forcing as a body force, f(x,t) acting on the momentum equation in (1). Assuming that the
forcing amplitude is small, the dynamics of the flow response are governed by the forced linearized
Navier-Stokes equations

∇ · u′ = 0,
∂u′

∂t
+ u′ · ∇ū + ū · ∇u′ + ∇p′ − 1

Re
∇2u′ = ψ(x)f′, (2)

where ψ(x) has been introduced to restrict the forcing to a particular region in the computational
domain. In the above expression, the ′ denotes perturbation quantities, while ¯ represents steady
base-flow variables.

Within the linear framework, we assume that the forcing can be decomposed into a sum of
independent Fourier modes in time and in the spanwise direction. The forcing thus takes on the form
f′(x,t) = f̂(x,y)ei(kz+ωt), with ω as the forcing frequency and k as the spanwise wave number, and
the perturbation state vector q′ asymptotically responds in kind, i.e., q′(x,t) = q̂(x,y)ei(kz+ωt).

We discretize the equations using the above-mentioned finite-element method on the same mesh
as the one used to obtain the base flow in Fig. 1. At the inlet, along the wall, and on the top
boundary, we impose homogeneous no-slip Dirichlet conditions for the velocity, û = 0. At the
outlet (x = Xmax), we apply a viscous stress-free boundary condition, −p̂n + Re−1∇û · n = 0. The
discrete linear system can then be rewritten in the form

(L + iωB)q̂ = BfPf̂, (3)

where L and B are sparse matrices representing the Navier-Stokes equations in the frequency domain,
Bf applies a selected spatial restriction on the forcing, and P denotes a prolongation matrix from the
velocity space to the velocity-pressure space, q̂ = Pû.

We are interested in finding the forcing that is most amplified by the flow. To this end, we measure
the amplitude of the forcing and the response using respective L2 norms, which can be expressed in
terms of the inner products 〈f̂,f̂〉 = f̂H Qff̂ ≡ ∫

�
f̂H f̂ dV , and 〈q̂,q̂〉 = q̂H Qq̂ ≡ ∫

�
ûH û dV , where

Qf = PT QP and Q is defined to produce the Euclidean norm of the velocity in the full state-vector
over the entire computational domain.

For a particular value of the frequency ω and spanwise wave number k, and a prescribed forcing
distribution, the amplification is given by the energy gain G2(k,ω,f̂) = 〈q̂,q̂〉/〈f̂,f̂〉. The maximum
possible amplification is obtained by maximizing this gain over all possible forcing structures. The
discrete optimization problem reads

G2(k,ω) = max
f̂

q̂H Qq̂

f̂H Qff̂
= max

f̂

f̂H RH QRf̂

f̂H Qff̂
, (4)

where R(k,ω) ≡ (L + iωB)−1BfP is referred to as the discrete resolvent operator.
Formally, the solution to this problem can be obtained by calculating the singular value

decomposition (SVD) of R. The leading singular value, Go, identifies the optimal forcing f̂o that
leads to the optimal response q̂0. Specifically, the optimal forcing is given by the principal right
singular vector, while the optimal response follows from the principal left singular vector.

Since we are only interested in the largest singular mode, a different approach is taken here. Instead
of calculating the SVD, we solve the optimization problem (4) by using the Rayleigh quotient and
recasting it as a Hermitian eigenvalue problem of the form

Q−1
f RHQRf̂ = G2 f̂. (5)
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FIG. 2. Optimal gain curve Go(0,ω) for two-dimensional forcing.

We generate the large sparse matrices, L,B,Q, and Bf using FreeFem++, and solve the eigenvalue
problem (5) in MATLAB using the Arnoldi-Krylov subspace method. In addition, we perform
the matrix inverses using sparse LU decompositions. The leading eigenvalue and eigenvector
respectively produce the optimal gain Go(k,ω) and the optimal forcing f̂o(k,ω). The corresponding
optimal response q̂o(k,ω) is straightforwardly calculated using (3).

B. Response to two-dimensional forcing

We first set k = 0 and consider the response to purely two-dimensional forcing. Figure 2 shows
the optimal gain curve obtained. The maximum gain, Gmax|k=0 = 625 is obtained for a frequency
of ωmax|k=0 = 0.465, and Fig. 3 shows the associated optimal forcing and response for a selection
of frequencies. The optimal forcing for ω = 0.465 is located in the boundary layer upstream of the
cavity and consists of flow structures that are tilted against the mean shear. It has largest magnitude

FIG. 3. The real component of the streamwise velocity of the optimal forcing (left) and response (right)
for a range of frequencies for two-dimensional forcing. (a) ω = 0.30, (b) ω = 0.465, (c) ω = 0.75, and
(d) ω = 1.25.
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FIG. 4. The optimal gain curves obtained by applying a masking function to compare the contribution of the
region x < Xm (dashed) and x > Xm (dotted) to the overall gain (solid) for (a) Xm = 10.0 and (b) Xm = 15.0
for a cavity with L = 5 and D = 1 at Re = 1000.

near the upstream edge of the cavity. This corresponds to the locally convectively stable/unstable
boundary. The most amplified global frequency is also close to the frequency of the most unstable
local mode at this location.

The optimal response has largest magnitude near the downstream edge of the cavity and develops
into the boundary layer downstream. This corresponds to the locally convectively unstable/stable
boundary. Its spatial structure is very similar to that observed for Tollmien-Schlichting (TS) waves
in previous studies [10,13]. This finding highlights and confirms the importance of the inviscid Orr
mechanism in the nonmodal amplification of disturbances in the flow. In previous studies [13,14]
where the incoming boundary layer was relatively thin with respect to the cavity depth, the optimal
forcing that exploits the Orr mechanism was found to be localized near the separation point. In
contrast, in this study, the Orr mechanism remains important some distance upstream of the cavity.
We expect this to be true for flow over other geometries where the boundary layer thickness is of the
same order as the height of the surface irregularity.

At lower frequencies, 0.2 < ω < 0.465, Fig. 3(a) shows that the spatial shape of the optimal
structures is similar, but the optimal forcing and response have longer wavelengths and extend over
a larger distance upstream and downstream of the cavity. The amplitude gain of these structures (in
our case, for ω = 0.3) is markedly lower though. At higher frequencies, 0.465 < ω < 1.25, Fig. 3(c)
shows that the optimal forcing and response have shorter wavelengths and are more localized towards
the upstream and downstream edge of the cavity, respectively. At even higher frequencies, ω � 1.25,
Fig. 3(d) shows that the optimal forcing and response correspond to the amplification of vortical
free-stream disturbances by the convective nature of the flow. Similar structures have been observed
in previous studies [14,15] and are associated with the continuous spectrum of L.

We can identify the contribution of different regions of the flow to the amplification (gain) by
applying a masking function to the norm matrix Q. We employ this technique to compare the contri-
bution of the cavity with the contribution of the boundary layer further downstream. The contribution
of the downstream boundary layer is found using the Heaviside step function H (x − Xm), where Xm

is some streamwise location downstream of the cavity. The contribution of the cavity is found using
−H (x − Xm). Figure 4 shows the optimal gain curves obtained for Xm = 10.0 and Xm = 15.0. In
both cases, we find that the region with the cavity preferentially selects a higher frequency than the
region with the boundary layer downstream. Comparing the contribution of the cavity to the overall
gain, we find that the optimal gain for Xm = 10.0 amounts to 75% of the optimal gain for the full
domain. For Xm = 15.0, this rises to 90%. This observation highlights the dominant role of the
cavity and the boundary layer immediately downstream in the frequency selection mechanism.

C. Response to spanwise-periodic three-dimensional forcing

We now set k > 0 and consider the response of the flow to three-dimensional but spanwise-
periodic harmonic forcing. Figure 5(a) reports how the maximum gain Gmax(k) and the frequency at
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FIG. 5. (a) The maximum gain, Gmax (solid), and the frequency at which this occurs, ωmax (dashed), as a
function of the spanwise wave number k. (b) The optimal gain curve for forcing with k = 0.7.

which it occurs ωmax(k) vary with the spanwise wave number k. For each value of the spanwise wave
number k, we find (ωmax,Gmax) using a secant method. We observe that the maximum gain occurs
for a forcing with a spanwise wave number k = 0.7. This corresponds to a spanwise wavelength of
Lz = 2π/k = 8.97 cavity depths. The frequency at which the maximum gain occurs decreases nearly
linearly with increasing spanwise wave number. This suggests that the structure most amplified by
harmonic forcing shows strong spanwise shear layers which mathematically manifest themselves in
a constant spanwise phase velocity, and thus explains the observed linear dependence of the peak
frequency on the spanwise wave number. A phase locking of the most amplified structures across
different spanwise wave numbers would corroborate this hypothesis.
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FIG. 6. The real component of the streamwise velocity of the optimal forcing (left) and response (right) for
a range of frequencies for forcing with k = 0.7. (a) ω = 0.25, (b) ω = 0.4, (c) ω = 0.75, and (d) ω = 1.25.

The optimal gain and forcing are displayed in Fig. 6(b). The optimal forcing consists of flow
structures in the boundary layer, as before tilted against the mean shear. The optimal response consists
of flow structures in the boundary layer tilted in the direction of the mean shear; it corresponds to
oblique waves developing in the boundary layer. The optimal response at ω = 0.25 and ω = 0.75
behaves in a manner similar to that observed for two-dimensional forcing. At ω = 1.25, however,
the optimal forcing and response are now localized in the boundary layer rather than the free stream.
These correspond to an amplification of perturbations in the separated shear layer above the cavity
to produce a response in the boundary layer downstream of the cavity. Structures corresponding to
the amplification of vortical free-stream disturbances could also be found, but now correspond to
suboptimal singular values.

D. Effect of Reynolds number

Next we consider the effect of the Reynolds number on the optimal response to two-dimensional
forcing. The results are shown in Fig. 7(a) together with the local temporal growth rate (b) for
increasing Reynolds numbers. For Re = 1000 there exists only one pocket of convective instability
in the flow, 0 < x < 6.1.

For Re = 1300, this pocket is larger, 0 < x < 6.7, and a second pocket of convective instability
exists downstream of the cavity, where the boundary layer is locally unstable to Tollmien-Schlichting
(TS) waves, x > 21. To consider the effect of this second pocket of instability, we apply a masking
function to the norm matrix Q; more specifically, we focus on the contribution of the region
x > Xm. This is shown in Fig. 8. For both cases, we find that, at low frequencies, the region x > Xm

FIG. 7. (a) Optimal gain curves for two-dimensional forcing, and (b) the local temporal growth rate curves
for Re = 1000 (circles), Re = 1300 (squares), and Re = 1500 (diamonds).
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FIG. 8. The optimal gain curves obtained by applying a masking function to compare the contribution of
the region x < Xm (dashed) and x > Xm (dotted) to the overall gain (solid) for (a) Xm = 10 and (b) Xm = 15
for a cavity with L = 5 and D = 1 at Re = 1300.

experiences larger gain than the region x < Xm. This effect is related to the downstream pocket
of instability associated with the TS-instability mechanism. The high-frequency behavior is, once
again, dominated by the region x < Xm representing the influence of the cavity.

For even larger Reynolds number, Re = 1500, the flow is locally unstable from the inlet to the
outlet except for a small region downstream of the cavity. From Fig. 7(a), we note that the frequency
that is optimally amplified changes very little as the Reynolds number increases. This implies that the
pocket of instability associated with the cavity has a markedly stronger influence on the amplification
properties of the flow than the TS mechanism.

We observe a similar trend for the response to three-dimensional forcing (not shown here).
The frequency and spanwise wave number that are optimally amplified change very little as the
Reynolds number increases. We expect this trend to carry on for higher Reynolds numbers. These
results suggest that even under conditions where the boundary layer is unstable, the amplification
associated with the cavity will have a dominant influence on the dynamics.

E. Relation to global stability

The flow first becomes globally unstable to a centrifugal cavity mode with k ≈ 5 at
Re ≈ 1750. The structure of this unstable mode is different from the optimal responses seen in
Fig. 6. This establishes that the behavior of the flow as a (globally unstable) amplifier is independent
of the behavior of the flow as a (globally stable) oscillator at higher Reynolds numbers. The flow
displays a clear selection principle for a preferred frequency and spanwise wavelength. Moreover,
the amplification mechanism due to harmonic forcing is not linked to a resonance with a particular
eigenmode, as can be seen from the eigenvalue spectra plots in Fig. 9.

FIG. 9. The least stable part of the eigenvalue spectrum for two-dimensional (k = 0, circles) and three-
dimensional (k = 0.7, squares) perturbations to the steady flow in Fig. 1.
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FIG. 10. Optimal gain vs frequency for cavities with D = 1 and L = 5 (circles), L = 4 (squares), and
L = 2 (diamonds) at Re = 1000.

F. Effect of cavity geometry

We carry out a parametric study to investigate the effect of cavity geometry on the frequency and
spanwise wavelength of the most amplified mode. Figures 10 and 11 show the effect of varying the
length L and depth D of the cavity on the optimal gain curves for a range of spanwise wave numbers
k = 0,1,2. As expected, a shorter or more shallow cavity has a lower maximum gain. The difference
between the gain curves is significant for k = 0 and k = 1, but little for k = 2. This suggests that the
response to forcing with higher spanwise wave numbers becomes less sensitive to cavity geometry;
only forcing that impacts the shallow cavity head on can extract energy from the base flow and
result in significant amplification over a limited frequency range. Figure 12 summarizes how the
gain, frequency, and spanwise wave number of the most amplified response vary with cavity length.
We find that longer cavities experience a larger optimal gain and preferentially select and amplify a
higher frequency and a lower spanwise wave number (larger spanwise wavelength).

IV. FREQUENCY SELECTION MECHANISM

We can understand more about the frequency selection mechanism using a perturbation or
sensitivity analysis of the frequency response or the resolvent norm. Similar to a structural sensitivity
analysis of the stability [18], which identifies the regions in the flow where self-amplification
(i.e., the product of instability and receptivity) is maximal, a similar analysis for amplifier flows
will reveal the regions in the flow where a frequency-selective response mechanism is most
prevalent.

FIG. 11. Optimal gain vs frequency for cavities with L = 5 and D = 1 (circles), D = 0.8 (squares), and
D = 0.5 (diamonds) at Re = 1000.
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FIG. 12. Gain (squares), frequency (crosses), and spanwise wave number (circles) of the most amplified
response for a cavity with D = 1 at Re = 1000.

A. Formulation

We consider the effect of small perturbations to the linearized operator L on the optimal gain G.
Mathematically, we carry out a perturbation analysis for the eigenvalue problem (5) that we solve to
obtain the optimal gain and the optimal forcing. The perturbed problem reads

RH QR δf̂ + (δR)H QR f̂ + RH Q(δR) f̂ = G2Qf δf̂ + 2G(δG)Qf f̂. (6)

Collecting terms containing δf̂, we obtain (G2Qf − RH QR) δf̂ = 0 from the original unperturbed
problem (5). This subsequently simplifies the problem to

(δR)H QR f̂ + RH Q(δR) f̂ = 2G(δG)Qf f̂. (7)

Premultiplying the above expression by f̂H , we obtain

f̂H (δR)H QR f̂ + f̂H RH Q(δR) f̂ = 2G(δG) f̂H Qf f̂. (8)

The term on the right-hand side provides a normalization condition for the forcing. We normalize
the forcing such that f̂H Qf f̂ = 1. The two terms on the left-hand side are conjugates. We can thus
rewrite the expression above as follows

G(δG) = Re(f̂H RH Q(δR) f̂), (9)

which can further be simplified, using the relation Rf̂ = Gq̂, to arrive at

δG = Re(q̂H Q(δR) f̂). (10)

What remains to be established is a relation between changes in L and associated changes in
the resolvent R ≡ (L + iωB)−1BfP. The perturbation to an inverse matrix is given by δ(M−1) =
−M−1(δM)M−1. If we write A ≡ (L + iωB)−1 for convenience, we can express δR in terms of δL
as

δR = −A(δL)ABfP. (11)

Substituting this expression into (10), we obtain

−δG = Re(q̂H QA(δL)ABfP f̂),

−δG

G
= Re(q̂H QA(δL) q̂),

−δG

G2
= Re((BfPf̂)H AH QA(δL)q̂). (12)
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We are interested in the sensitivity of the optimal gain G to small localized changes in the linear
governing equations such that δG = 〈∇LG,δL〉. Following Giannetti and Luchini [18] [Eq. (8.4)],
the perturbation of a particular component of the linearized operator can be captured by the product
of the corresponding components of the forcing and response vectors. Equivalently, by introducing
a δ function to localize the perturbation, we deduce that the structural sensitivity is equivalent to the
dyadic product of the optimal forcing and the velocity response, i.e.,

∇LG = Sij = G2Re(f̂i û
∗
j ). (13)

In this expression the subscripts i,j indicate the ith or j th component of the forcing or response. This
expression is related to the sensitivity of the optimal gain to base-flow modifications, as introduced
in Ref. [19], where ∇ūi

G = G2Re(û∗
j ∂j f̂i − f̂j ∂i û

∗
j ). Base-flow modifications are one specific way

of perturbing the governing equations and can lead to noticeable changes in the optimal gain. We
consider the effect of more general perturbations to the governing equations; in particular, we seek
to identify the regions and mechanisms that drive the optimal frequency response. A region of high
sensitivity is a region where small changes have a large effect on the gain; consequently, this region
is influential in the linear nonmodal amplification of disturbances by harmonic excitation.

For three-dimensional forcing, the sensitivity tensor Sij consists of nine entries, each describing
how the ith component of forcing drives the j th component of the response. Analyzing the individual
components of Sij enables us to identify not only the regions of our flow domain that are influential,
but also the component-wise interactions that are responsible for the optimal response to harmonic
forcing. We do not suggest that these components be individually perturbed—physically, this would
be infeasible. Rather, we consider this to be a useful mathematical formalism to identify their relative
contribution to the gain.

B. Validation: Application to parallel Poiseuille flow

Before applying the above concept of structural sensitivity of the frequency response to the case
of shallow cavities, we illustrate and validate this idea by considering the optimal response of plane
Poiseuille flow at Re = 2000 to steady and harmonic forcing. From previous studies [20–22], we
know that the lift-up mechanism is responsible for the largest gain of steady streamwise vortices
to produce streaks. This involves energy transfer from the cross-stream and spanwise components
to the streamwise components of velocity. The Orr mechanism also acts to amplify boundary-layer
disturbances slanted against the mean shear to produce TS waves. This involves energy transfer
within the streamwise and/or spanwise components only.

We find that the largest gain is obtained for steady forcing with a spanwise wave number k = 1.62.
The optimal forcing takes the form of steady streamwise vortices, with a large spanwise velocity
near the walls and large cross-stream velocities near the centerline. The forcing is constant in the
streamwise direction. The corresponding optimal response takes the form of steady, streamwise-
independent streaks with large streamwise velocities near the wall. The associated lift-up mechanism
is responsible for the nonmodal amplification [20,22]. In Fig. 13, we plot the nine components of
the sensitivity tensor for the optimal response and find that the gain is most sensitive to the spanwise
component of forcing, producing a streamwise response. This observation is related to the energy
transfer from the spanwise component of the vortical motion to the streamwise velocity of the streak.
It is interesting to note that the gain is not sensitive to the cross-stream components of forcing as we
would have expected from previous studies [20–22]. This is because the cross-stream components
of the forcing have large magnitudes far from the wall, whereas the optimal response has large
magnitudes near the wall. This spatial separation implies that the cross-stream components are far
less efficient at amplifying structures near the walls and thus have a smaller effect on the gain than
the spanwise components of the forcing (which have large magnitudes near the wall).

We find that large gains are also obtained for three-dimensional harmonic forcing. We consider the
case with wave numbers α = 1 and k = 1. For this set of parameters, the largest gain is obtained for
forcing with a frequency of ω = 0.38. The optimal forcing takes the form of near-wall structures with
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FIG. 13. The components of the sensitivity tensor Sij = Re(f̂i û∗
j ) of the most amplified response due to the

lift-up mechanism for plane Poiseuille flow at Re = 2000 with α = 0 and k = 1.62.

large streamwise and spanwise components aligned against the mean shear. The optimal response
takes the form of near-wall structures also with large streamwise and spanwise components slanted
in the direction of the mean shear. This response is similar to an oblique Tollmien-Schlichting
wave. The Orr mechanism is responsible for the nonmodal amplification [20]. Figure 14 shows the
components of the sensitivity tensor for this response. We find that the gain is most sensitive to the
streamwise and spanwise components of the forcing and response. Since α = k here, the gain is
equally sensitive to the streamwise and spanwise components. For different values, we would expect
the gain to be more sensitive to the component of the dominant direction.

These findings should be compared to the results from an input-output analysis for channel
flow [21], where the effect of the different components of forcing on the different components of the

FIG. 14. The components of the sensitivity tensor Sij = Re(f̂i û∗
j ) of the most amplified response at ω = 0.38

due to the Orr mechanism for plane Poiseuille flow at Re = 2000 with α = 1 and k = 1.
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FIG. 15. The components of the sensitivity tensor Sij = Re(f̂i û∗
j ) of the most amplified response to two-

dimensional forcing shown in Fig. 3(b).

response have been deduced from the transfer functions of the nine forcing-response combinations.
Spanwise and cross-stream components of forcing have been found to have the largest influence,
while the largest response is found in the streamwise components. Our results on the sensitivity of
the frequency response for plane channel flow corroborate these findings.

C. Application to flow over a shallow cavity

We consider the structural sensitivity of the optimal response to two-dimensional and three-
dimensional forcing. In Figs. 15 and 16, we display the components of the sensitivity tensor for
the most amplified modes. The highest magnitudes are observed in the components involving the
streamwise and spanwise components, in the regions of the boundary layer upstream and downstream
of the cavity. This fact highlights the importance of convective non-normality in driving the response.
The small influence of the cross-stream components suggests that the lift-up mechanism is not
influential in the amplification process. Furthermore, we do not see any footprint or involvement of
the flow inside the cavity on the optimal frequency response.

FIG. 16. The components of the sensitivity tensor Sij = Re(f̂i û∗
j ) of the most amplified response shown in

Fig. 6(b).
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FIG. 17. The Frobenius norm of the structural sensitivity tensors for the optimal response to (a) two-
dimensional and (b) three-dimensional harmonic forcing.

We can identify the region of the flow that drives the response more clearly by taking a suitable
norm of the sensitivity tensors. To this end, Fig. 17 depicts the Frobenius norm of the sensitivity
tensors for the optimal response to two-dimensional and three-dimensional harmonic forcing. For
two-dimensional forcing, the sensitivity is largest at the upstream edge of the cavity. This agrees
perfectly with the local stability analysis, which identifies the upstream edge of the cavity as the
stable/unstable boundary. There is a clear relationship between the global optimal frequency response
and the local stability analysis for two-dimensional forcing.

In contrast, for three-dimensional forcing, the sensitivity is largest in the regions just upstream
and downstream of the cavity. As a consequence, these regions play a dominant role in the selection
of the optimal response to harmonic forcing. The same figure furthermore suggests that, for the
amplification of disturbances in the flow over a shallow cavity, the changes induced by the cavity in
the boundary layer directly upstream and downstream are more important than the flow in the cavity
itself.

We can understand this better in terms of competition between the different dynamics and
time scales associated with the flow inside the cavity and the flow outside the cavity. The slow
recirculating flow inside the cavity is associated with a centrifugal instability mechanism [6] that
leads to a low-frequency global instability. The boundary layer developing outside the cavity is
associated with the nonmodal Orr mechanism that leads to strong amplification of disturbances with
a smaller wavelength.

In response to harmonic forcing, these instability mechanisms can produce a response either
through resonance with a particular mode, or pseudoresonance. We can compare the potential
strength of these responses. We choose two modes from the global spectrum shown in Fig. 9 that
represent a response in the cavity (labeled C, with an eigenvalue −0.01 + 0.02i), and a response in
the boundary layer downstream (labeled B, with an eigenvalue −0.19 + 0.43i). We also calculate
the associated adjoint global modes. We normalize the modes to have unit energy norm so that
q̂H Qq̂ = q̂+H Qq̂+ = 1.

The potential strength of a pseudoresonance between the two modes can be quantified by the
inner product between them, q̂H

C Qq̂B . We obtain a value of 0.02, which suggests that the response in
the cavity and the response in the boundary layer mode are almost orthogonal to each other. There
is thus very little potential for interaction between these two modes.

The potential for amplification of the forcing due to non-normality can be quantified by the
inverse of the inner product between the mode and its associated adjoint (q̂H Qq̂+)−1 [8]. For the
cavity mode, we obtain a value of 1.82, whereas for the boundary layer mode, we obtain a value of
3.48 × 107.

The consequence of these two factors is that perturbations in the boundary layer experience much
stronger amplification due to the Orr mechanism in comparison to perturbations in the cavity over
a range of forcing frequencies. In the regions immediately downstream and upstream of the cavity,
the Orr mechanism is stronger due to the “non-Blasiusness” of the boundary layer profiles. These
regions therefore play a dominant role in the response of the flow.
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V. SUMMARY AND CONCLUSIONS

In this study, we have analyzed the linear dynamics of the laminar flow over a shallow cavity. The
flow configuration is chosen such that the boundary layer is locally stable at the inlet and outlet of the
computational domain. The flow is characterized by a pocket of local convective instability extending
from the upstream edge of the cavity to some distance downstream of the cavity. Nonetheless, the
flow is globally stable.

We have determined the linear frequency response for two-dimensional and three-dimensional
harmonic forcing and have identified the spatial structure of the optimal forcing and response
corresponding to the largest possible gain. We find that the flow exhibits substantial optimal
gains for both two-dimensional and three-dimensional forcing, but the largest gain is obtained for
three-dimensional forcing. The most effective forcing takes the form of streamwise-elongated flow
structures in the boundary layer upstream of the cavity, inducing a response that takes the form of an
oblique wave (reminiscent of an oblique Tollmien-Schlichting wave). These structures suggest that
the Orr mechanism plays an important role in the nonmodal amplification of the forcing. Moreover,
we establish that the optimal response is not linked to resonance with any particular eigenvalue
and that it is distinct from the globally unstable cavity mode that develops at higher Reynolds
numbers.

While the gain to harmonic forcing increases as the Reynolds number is increased, the frequency
and spanwise wave number where this amplification is observed shows only a weak dependence
on the Reynolds number. This observation suggests a robust frequency and structure selection
mechanism that is active across a range of Reynolds numbers. Locating the spatial domains that
are most sensitive to harmonic forcing revealed that high-frequency structures are most effectively
influenced by the cavity, while low-frequency structures are best triggered further downstream of
the cavity. For selecting the most amplified frequency, however, the cavity plays an important role.

We have investigated the effect of cavity geometry on the optimal frequency response. This
reveals that the optimal gain curves for forcing at higher spanwise wave numbers is less affected
as the cavity’s length and depth are varied. The optimal response for longer cavities has a higher
frequency and a larger spanwise wavelength.

Finally, we have introduced a sensitivity analysis that captures the effect of small changes in the
linear governing equations on the optimal gain. By overlapping the optimal forcing and response,
similar to structural sensitivity analyses of globally unstable flows, we identify the regions of highest
sensitivity in the flow; these correspond to regions that drive the frequency response and identify
regions in the flow that are responsible for the observed amplification of preferred frequencies. For
the shallow cavity, the regions upstream and downstream of the cavity exhibit the highest sensitivity
and are most involved in the selection process of the most-amplified frequencies. This suggests that
the optimal response and the shape of the flow’s transfer function are driven by the modification that
the cavity exerts on the boundary layer (in particular, immediately upstream and downstream of the
cavity) rather than by the flow in the cavity itself.

Besides the analytic aspect of our investigation, this study has implications for the design of
active or passive control strategies that aim to mitigate the amplification of particular frequencies

TABLE I. Domain size (Xmin, Xmax, Ymax) and number of finite elements (ntri) used in the calculations. The
optimal gain Gmax|k=0 and frequency (ωmax|k=0) of the most amplified two-dimensional mode are listed for four
different mesh configurations.

Xmin Xmax Ymax ntri Gmax|k=0 ωmax|k=0

M1 −20 27.5 5 214647 625 0.465
M2 −20 27.5 7 306067 647 0.460
M3 −25 32.5 5 233280 629 0.460
M4 −20 27.5 5 321522 625 0.470
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FIG. 18. The optimal gain curves for two-dimensional forcing, computed on four different meshes: M1

(crosses), M2 (circles), M3 (squares), and M4 (diamonds).

by surface irregularities, such as small gaps, dips, steps, protrusions, or other localized roughness
elements. Our analysis provides guidance for an effective setup of actuator and sensor elements and
suggests that manipulation of the regions immediately upstream and downstream of the irregularities
is most appropriate for controlling roughness-induced flow responses.
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APPENDIX: NUMERICAL CONVERGENCE

We calculate the base flow and optimal frequency response to two-dimensional forcing on several
different meshes in order to assess the reliability and convergence of the results. Table I compares
the frequency and optimal gain while varying the number of degrees of freedom and domain size.
The optimal gain curves are plotted in Fig. 18. Mesh M1 is used throughout this study. Mesh M2

has the same spatial resolution as M1, but a larger value of Ymax. Mesh M3 has the same spatial
resolution as M1, but a larger value of Xmax. Mesh M4 has 1.5 times the spatial resolution of M1,

but the domain size is the same. The results show a maximum discrepancy of less than 5% for the
optimal gain and optimal frequency with respect to M1. We conclude that mesh M1 is sufficient to
produce results that are grid independent.
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