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We present numerical simulations of ideal magnetohydrodynamics showing suppression
of the Richtmyer-Meshkov instability in spherical implosions in the presence of an
octahedrally symmetric magnetic field. This field configuration is of interest owing to
its high degree of spherical symmetry in comparison with previously considered dihedrally
symmetric fields. The simulations indicate that the octahedral field suppresses the instability
comparably to the other previously considered candidate fields for light-heavy interface
accelerations while retaining a highly symmetric underlying flow even at high field
strengths. With this field, there is a reduction in the root-mean-square perturbation amplitude
of up to approximately 50% at representative time under the strongest field tested while
maintaining a homogeneous suppression pattern compared to the other candidate fields.
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I. INTRODUCTION

In converging flows, such as that seen in inertial confinement fusion (ICF) [1] and Z-pinch
experiments, the presence of Richtmyer-Meshkov (RM) [2–4] and Rayleigh-Taylor (RT) [5,6]
instabilities is known to limit the potential for fusion [1]. In flows such as these, the fluids involved
are often ionized, and may thus be affected by the application of external magnetic fields. The
application of such fields to flows of this kind has been seen in so-called magnetoinertial fusion
techniques, from which the magnetized liner inertial fusion (MagLIF) concept has arisen (see Sefkow
et al. [7] and references); external fields have been used in the context of electron confinement to
field lines with cited increased neutron yields at the hot spot [8,9], and of decreased alpha particle
mobility [10]. The effects of such fields on hydrodynamic instabilities in conducting fluids, under
the framework of magnetohydrodynamics (MHD), have also been investigated extensively in planar
geometries in computational [11,12] and theoretical [13–15] contexts, with the strong suggestion
that the RM instability is suppressed due to baroclinic vorticity transport away from the shocked
interface by MHD waves. (Slightly different problem formulations, for example where the field is
perturbed similarly to the density interface, result in different suppression mechanisms [16].) The
motion and effects on the symmetry of the large-scale dynamics in converging MHD flows have also
been considered under particular field configurations [17,18], and the RM instability in converging
geometry has also been examined in linear [19] and nonlinear [20] computational studies. All of the
studies cited here suggest that application of a magnetic field to a flow such as ICF or MagLIF may
improve the performance (as defined and measured by respective metrics) of the given technique.

Other methods exist for potentially decreasing the growth of perturbation amplitudes in the
converging flow. In ICF these may include doping of the shell material to control density ratios,
control of the timing of the laser firing procedure (for instance choosing so-called low-foot and
high-foot timing configurations), and ensuring a maximally smooth target shell to mitigate as much
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as possible the seeding of hydrodynamic instability. These and other techniques are reviewed in
detail in the context of the National Ignition Campaign by Lindl et al. [1] and are under continuing
research. In the effort to reduce perturbation amplitude growth, such techniques would work in
complement with judiciously applied magnetic fields as discussed above.

Some of the literature on the dynamics of magnetized converging flows in MHD suggests that
the asymmetry of the large-scale dynamics tends to be minimized if the field itself has an increased
number of planes of (finite) symmetry [18]. However, the extent of RM or RT suppression may be
affected by the use of such a field, particularly in three dimensions, depending on the particulars
of the field configuration [20]. In this study we propose a field with octahedral symmetry in order
to examine its effect on the RM and to a lesser extent RT instabilities, and the symmetry of the
base flows of these problems. Specifically, we compare a magnetic field with octahedral symmetry
of order 48 (that is, with 48 spherical symmetry operations including rotations and reflections)
with the three-dimensional fields previously considered in Mostert et al. [20], which have dihedral
symmetry with order 8. The study begins with a comparison of the base flow symmetry between
these fields, using the primary compressive shock distortion as an indicator, and goes on to interpret
and discuss the directional dependence of RM suppression to local field orientation and strength,
and the effect of the field configuration on global amplitude growth characteristics. Only spherical
flows are considered.

II. FORMULATION

A. Equations of motion

The theoretical framework for this study is ideal MHD with dimensionless variables defined as
follows:

x = x̂
L0

, t = t̂

L0/
√

p̂0/ρ̂0
,

ρ = ρ̂

ρ̂0
, p = p̂

p̂0
, (1)

u = û√
p̂0/ρ̂0

, B = B̂√
μ0p̂0

,

where ρ,v,B, and p are the density, velocity vector, magnetic field vector, and pressure, respectively,
μ0 is the free space permeability, L0 defines the (dimensional) length scale, and carets otherwise
indicate dimensional variables. In the absence of a gravitational potential, the ideal MHD equations
may be written [21]

∂ρ

∂t
+ ∇ · (ρv) = 0, (2)

ρ

(
∂v
∂t

+ v · ∇v
)

+ ∇p − (∇ × B) × B = 0, (3)

∂e

∂t
+ v · ∇e + (γ − 1)e∇ · v = 0, (4)

∂B
∂t

− ∇ × (v × B) = 0, (5)

with e the specific internal energy, related to the pressure by

e = p

(γ − 1)ρ
, (6)
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and γ the specific heat ratio, which for an assumed thermodynamically perfect, monatomic gas is
γ = 5/3. Note that the magnetic field is also solenoidal. In ideal MHD, diffusive effects are assumed
to occur over a sufficiently larger time scale than advection effects, and are thus neglected.

B. Problem geometry and interface initialization

We define a Cartesian, three-dimensional geometry with coordinates (x,y,z). For descriptive
purposes and to aid in some aspects of the initialization, spherical coordinates (r,φ,θ ), with θ the polar
angle (colatitude), are also used as defined in the usual manner. A Riemann problem is initialized by a
spherical Riemann interface (RI), centered at the origin with radius RR , separating two quiescent flu-
ids which differ in density and pressure by a factor of 3 and 12.1, respectively, where the low-density,
low-pressure fluid is on the inside of the interface. This particular formulation allows the formation
of inward-traveling fast and slow MHD shocks, of which the fast shock is of particular interest for
its symmetry characteristics, and two outward-traveling MHD rarefaction waves, whose presence is
incidental. The chosen density and pressure ratio over the RI allows an initial sonic Mach number of
2 for the fast MHD shock, on the x axis. This initial Mach number is not uniform over the interface
since the geometry of the magnetic field, discussed in Sec. II C, in general affects the speed of the
fast shock generated by the Riemann problem depending on the local field orientation and strength.

Flows both with and without a density interface (DI) in addition to the RI are considered. In the
absence of a DI, which is used for the RM problems and defined below, the Riemann problem is
used to examine the effect of the magnetic field on the large-scale asymmetry of the base flow. In the
presence of a DI, the Riemann problem is used to accelerate the DI to provoke the RM instability.
Defining now this DI, we consider single-interface flows as follows. A perturbed DI is placed at a
radius R0 < RR (that is, on the inside of the RI). The fast shocks generated by the Riemann problem
will accelerate the DI, provoking the RM instability. We define the DI by a spherical harmonic for-
mulation similar to that of Lombardini et al. [22] with the surface ζ0(θ,φ) according to the expansion

ζ0(θ,φ) = r0 − η0

∞∑
l=0,2,4,...

l∑
m=0,2,4,...

flmYlm(θ,φ), (7)

with coefficients

flm =
√

(2l + 1)Cl

cos
(
2πωm

l

)
√∑l

j=−l cos
(
2πω

j

l

)2
, (8)

where ωm
l and ω

j

l are randomly generated numbers in [0,1] and Cl is an “angular power spectrum”

Cl = 1

4(2k + 1)

1

σ0

√
2π

exp

(
− (l − k)2

2σ 2
0

)
. (9)

The quantity k is a “dominant spherical wave number,” which we set k = 32, and σ0 is a standard
deviation, set σ = 1. Equation (7) differs from that of Lombardini et al. [22] and Mostert et al. [20]
by selecting only even l and m, with m � 0. This ensures that the density interface is normal to the
boundaries at φ = 0,π/2 and θ = 0,π/2, so that the principal planes x,y,z are true symmetry planes
for the initial density interface. The amplitude is set such that the standard deviation of the interface
position is approximately 4% of the wavelength. The DI and RI are regularized with a hyperbolic
tangent profile with μ = 270, μ being the tanh frequency, following Mostert et al. [20]. In this study
only light-heavy interface flows withA = 2/3 are considered, whereA is the Atwood number defined

A = ρin − ρout

ρin + ρout
(10)

with ρin and ρout the inner and outer densities, respectively.
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FIG. 1. Initial conditions showing (single) density interface (DI) (beige) and magnetic field lines (black) in
three dimensions for the various field configurations. Simulation is done on the octant domain. For clarity, the
two-loop field is shown with the x axis pointing up. (a) Uniform field, (b) Two-loop field, and (c) Octahedral
field.

C. Magnetic field configurations

The magnetic fields used in this study can be seen in Fig. 1 around an example density interface.
The uniform and two-loop fields have been previously considered by Mostert et al. [20] and are used
again here for comparison with the presently considered third field, which is octahedrally symmetric.
The reference magnetic field strength B0 is set according to the field strength parameter, defined as
the ratio of thermodynamic to magnetic reference pressures,

β0I = 2p0

B2
0

. (11)

The reference field strength is taken on the DI, on the x axis in each case. The field configurations
are formulated as follows:

Uniform, unidirectional field.

B = B0êx, (12)

following Mostert et al. [20], and where êx is the x-unit vector. This field may be physically realized
by the placement of a current coil across the domain, oriented in the x direction. This field is
considered dihedrally symmetric with a symmetry order of 8. This means that in a spherical domain,
the smallest volume containing the field that could be used to represent the field in the whole through
a combination of translations and reflections has a volume an eighth of the domain.

Two-loop field. This field results physically from the placement of a pair of current loops with
radius RL at Cartesian coordinates (qi,0,0) = (±X0,0,0) (where qi is the location of the ith current
loop). Each current loop is oriented normally on its respective axis. The magnetic field at a given
point in space is then calculated according to Smythe [23]:

Bax,i = αiB0
1

π
√

Qi

[
E(κi)

1 − �2 − χ2
i

Q − 4�
+ K(κi)

]
, (13)

Bra,i = αiB0
ζi

π
√

Qi

[
E(κi)

1 + �2 + χ2
i

Q − 4�
− K(κi)

]
, (14)

following Mostert et al. [20], where the subscripts ax and ra signify components in the axial and
plane-radial directions of the ith current loop, respectively. The total magnetic field is calculated from
the summed contributions from each current loop using (13) and (14). Qi = (1 + �)2, κi = √

4�/Qi ,
� = rra/RL, ξi = (q − qi)/rra , and q − qi is the axial distance from the current loop. For example, if
a current loop is centered on the x axis (as is the case for this field configuration), then q = x. E and K

are respective elliptic integrals of the first and second kind (calculated here according to the algorithm
of Carlson [24]), and rra is the projected radial position for the ith current loop. αi = {α0, − α0}
scales the magnetic field such that the magnetic field strength parameter β0I = 2p0/|B(R0)|2, and
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FIG. 2. Initial conditions, shown in x-y plane, for cases (a) L1, (b) L2, and (c) L6 (see Table I for description
of case abbreviations). The outer interface (Riemann problem interface) generates the shocks to accelerate the
perturbed density interface (inner). Magnetic field lines are overlaid in green.

N = 2 is the number of current loops. Hence, it is referred to here by the shorthand term “two-loop
field.” This field can be considered dihedrally symmetric with a symmetry order of 8. Hence, it
has the same symmetry as the uniform-field configuration. However, its two-dimensional analog,
considered in Mostert et al. [18,20], has an additional reflection axis over the uniform-field case.
Here, in a plane containing the x axis, as in Fig. 2(b) below, the magnetic field resembles its
two-dimensional analog and in this sense has greater symmetry over the uniform case.

Octahedrally symmetric field. For this field configuration, three pairs of current loops are placed at
(±X0,0,0), (0,±Y0,0), (0,0,±Z0), with a magnetic field at a given point in space calculated using (13)
and (14) summed over N = 6 loops with scaling factors αi = {α0,−α0,α0,−α0,α0,−α0}. This field
has octahedral symmetry with a symmetry order of 48, and in this sense more closely approximates
spherical symmetry than the other two candidates. It is referred to here as the octahedrally symmetric
field, or octahedral field, to stress its symmetry properties, or equivalently as the “six-loop field” to
refer to its physical arrangement.

D. Magnetic field strength

For this study, and in particular for comparisons between the uniform and octahedral cases, we
consider three magnetic field strengths, which are chosen β0I = 32,16, and 8. They are motivated in
part by the field strengths considered in previous studies such as Mostert et al. [20], but the strongest
is chosen in particular according to the critical field strength parameter derived by Sano et al. [25]
given in that study by

βcrit ≡ 2

γ
α−2

(
c∗
s2

vlin

)2(
P ∗

p0

)−1

, (15)

where vlin is the linear, hydrodynamic growth velocity of the shocked interface, α is an adjustment
factor accounting for the nonlinear growth phase, usually of order 0.1 [26,27], c∗

s2 is the sound speed
in the postshock light side of the interface, P ∗ is the postshock pressure on the interface, and p0 is
a reference pressure as above. Sano et al. note directly that for weak shocks (for example, M � 3),
fields with β � 100 may effectively suppress the RM instability. A conservative estimate in our
formulation using (15) suggests 0.5 < βcrit < 20 depending on the ratio c∗

s2/vlin. Note furthermore
that Sano et al.’s study regards in particular the RM instability in normal field orientation, for which
the RM instability may not be as effectively suppressed as for parallel interface-field orientations
[20], although Sano et al. note similar values of βcrit in their simulations with parallel orientations
[25]. In light of these approximations, we regard the estimate for critical field presented here as
a region in which our field is sufficiently strong to suppress the RM instability in the sense that
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TABLE I. Description of case abbreviations accounting for the types of problem, field configuration, and
nondimensional strength β0I . β0I = ∞ indicates an unmagnetized case (zero field strength).

Case abbreviation Type of problem Field configuration β0I

L0 Richtmyer-Meshkov None (hydrodynamic) ∞
L1-32 Richtmyer-Meshkov Uniform unidirectional 32
L1-16 Richtmyer-Meshkov Uniform unidirectional 16
L1-8 Richtmyer-Meshkov Uniform unidirectional 8
L2-32 Richtmyer-Meshkov Two-loop 32
L6-32 Richtmyer-Meshkov Octahedrally symmetric 32
L6-16 Richtmyer-Meshkov Octahedrally symmetric 16
L6-8 Richtmyer-Meshkov Octahedrally symmetric 8
N1-8 Pure Riemann problem Uniform unidirectional 8
N2-8 Pure Riemann problem Two-loop 8
N6-8 Pure Riemann problem Octahedrally symmetric 8

Sano et al. consider, and we expect the field strengths β0I = 8,16 to be sufficiently strong for RM
suppression.

E. Case abbreviations

Finally, we designate abbreviations for each problem. An abbreviation is prefixed with “L” for the
light-heavy interface problem and “N” for the no-interface problems used to examine symmetry of
the base flows, followed by “0” for the hydrodynamic (no-field) case, “1” for uniform field, “2” for the
two-loop field, and “6” for the six-loop field, which is octahedrally symmetric. This number signifies
the number of current loops that may be used to physically generate the field in question. A suffix
is used to signify the field strength, β0I . Table I outlines all the problems considered in this study.
In addition, though they are not explicitly labeled here, versions of each magnetized RM problem
with unperturbed DIs are also run to aid in calculation of the diagnostics of perturbation growth.

Figure 2 shows the initial condition in density, in the x-y plane, for some of the problems listed
in Table I. Note that in the y-z plane, not shown in Fig. 2, the field lines are everywhere normal to
the plane in L1 and everywhere tangential to the plane in L2 (at x = 0).

III. METHODOLOGY

We use a second-order nonlinear compressible upwind finite volume method developed by
Samtaney et al. [28], which uses a Roe-type Riemann solver and a projection method to
enforce the solenoidal property of the magnetic field. We simulate on a Cartesian adaptively
refined octant-domain mesh of the Berger-Colella type, using the Chombo framework [29], with
nondimensional extents (0,2) in each principal direction; we use an unrefined mesh size of 643 with
three levels of refinement for an effective resolution of 5123, and a refinement criterion based on local
density gradient, |∇ρ| > 0.02ρ. This mesh is sufficiently refined to resolve the maximum-amplitude
perturbation according to the study by Mostert et al. [20]. In fact, in that study the physical domain
was larger and the initial perturbation amplitude root-mean-square smaller than here, for the same
total refined resolution; hence the present effective resolution per wavelength is higher than in the
cited study. For the cases at stronger field (β0I = 8,16), we use nondimensional extents (0,1.7) with
the same mesh size to avoid very large field strengths at the outer boundaries.

It is possible that the outward-moving waves generated by the Riemann problem may reflect in
some manner off the outer boundaries of the domain and potentially interact with the main features
of the flow at later times. In the results presented here, although such interactions may occur, they do
not present themselves in any meaningful way and they are most likely dominated by the effects of
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FIG. 3. z vorticity in the x-y plane showing major features of the Riemann problem N6-8 (see Table I for
description of abbreviations) at t = 0.32. Magnetic field lines projected into the x-y plane overlaid in green.
Fast shock, slow shock structure, slow expansion, and “kink” described. Fast expansion is not visible.

high pressure and magnetic field gradients near the features of interest. Hence, their potential effects
are not considered in this study.

IV. RESULTS

A. Base flow

Before considering the RM problems in detail, we first characterize the base flow in the presence
of the octahedral field in order to observe the effect of the field on the implosion symmetry. That
is, we characterize the spherical Riemann problem in the absence of a DI, described by the case
N6-8 in the context of the previously considered cases N1-8, N2-8 (see Table I for description of
abbreviations). The N6-8 Riemann problem is shown in Fig. 3 at a representative time. The waves
present are, ordered outwards from the center, a fast MHD shock, a slow MHD shock, a contact
discontinuity (CD), a slow MHD expansion, and a fast MHD expansion (see for example Fig. 2 of
Mostert et al. [20], in which this sequence of waves is also prevalent). Qualitatively, as for the other
field configurations [18], the structure of the Riemann problem also exhibits symmetry equivalent
to that of the magnetic field, owing to the variation of the magnetic field vector over the domain and
hence of the various MHD characteristic speeds. In particular, there are reflections (denoted “kinks”
by Mostert et al. [18]) in the slow MHD shock system at values of φ,θ where the slow magnetosonic
speed is at a local minimum (in fact, locally zero), or equivalently where the magnetic field is locally
parallel to the shock surface. These are clearly visible in Fig. 3.

We are interested in how the symmetry of the octahedral-field base flow compares to that of the
other, previously considered cases. A key metric for the base flow symmetry is the symmetry of the
imploding fast shock system, having been examined previously to find that the uniform field case
suffers from a clear asymmetry in its fast shock system particularly at high field strengths [18], while
the two-loop field provides a more symmetric implosion (at a slight cost to RM suppression [20]).
Here we measure the shock asymmetry by taking the mean and root-mean-square (rms) deviation in
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FIG. 4. Asymmetry evolution of the fast shock systems of the cases N1-8, N2-8, and N6-8 as they collapse to
the origin in the pure Riemann problem (see Table I for case abbreviations). Abscissa shows mean shock position;
ordinate shows root-mean-square deviation in shock position normalized by the mean. The octahedral-field
case exhibits a greater degree of symmetry in its fast system over the other cases for all but early times in the
collapse. The brief spike in the octahedral case at early time is due to greater influence of the field at larger
shock radii.

radial position of the p/p0 = 3 isosurface, taking this isosurface to describe the shock position and
using its statistics to describe the fast shock symmetry. Figure 4 compares the octahedral-field base
flow N6-8 to the uniform case base flow, showing the variation of rms shock position (normalized
by its mean position) as it collapses to the origin. A high rms is considered to indicate a more
asymmetric flow.

Immediately from Fig. 4 the octahedral-field case can be seen to show a lesser degree of asymmetry
over the other cases for all but early times (large shock radii). While the greater symmetry of the field
is a contributor to this, there are present two other very influential factors which stem from a common
effect. First, note that the field strength parameter β0I is defined at the radius r = 1 in anticipation of
the placement of the DI there in the RM cases considered below. While in the uniform-field case this
is not important since the field is (obviously) uniform everywhere, in the octahedral-field case the
field strength increases dramatically with radius. This leads to a more pronounced effect of the field’s
nonspherical symmetry on the shock system symmetry at startup of the Riemann problem—that is,
for r > 1. The two-loop case (N2-8) does not show as high an asymmetry at early times, probably
since the field increase past r = 1 is not as dramatic as in the octahedral case. Second, the field
continues to decrease in strength as the shock collapses through r < 1 in the octahedral case, further
reducing the effect of the field and its asymmetries as the shock collapses.

Thus, there are two primary contributors to the increased symmetry of the octahedral field base
flow over the other cases: the increased degree of spherical symmetry of the field, and the decreasing
influence of the field on the shock system as it collapses. It is important to note that while the
two-loop field has dihedral symmetry similarly to the uniform field case, it does benefit from the
second of these contributors, as observed in a previous study [20].

B. RM instability

1. Effect of field symmetry

Equipped with an understanding of the base flow, we proceed now to comparison of the RM
cases. In particular, we wish to compare interface perturbation growth of the uniform, two-loop,
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FIG. 5. Density field in the x-y plane at comparable times for L cases (see Table I for description of
abbreviations) with β0I = 32 showing overlaid magnetic field lines. Growth due to the RM instability is
visibly reduced in each magnetized case when compared to the unmagnetized (L0) case. The transmitted
fast shock is at approximate nondimensional radius 0.1 in each case. The x-z plane shows a similar density
field and plane-projected field lines. (a) L0, t = 0.593, (b) L1 − 32, t = 0.592, (c) L2 − 32, t = 0.590, and
(d) L6 − 32, t = 0.586.

and octahedral cases, with the hydrodynamic case as the unmagnetized reference. The uniform and
two-loop field configurations were previously considered by Mostert et al. [20] so are not in principle
new, although the initial conditions here differ from the previous study. We begin with a comparative
study between all cases at the weakest field strength β0I = 32, followed by a comparison between the
uniform and octahedral cases across all strengths. In the cases considered, the primary accelerating
shock is the fast MHD shock. The slow MHD shock may also influence the DI, and in strong
magnetic fields the slow shock system has been known to severely disrupt the symmetry of the DI
[20]. However, this effect appears in only the strongest cases and is not examined in detail here.

Figure 5 shows snapshots of the density field, with magnetic field lines overlaid, at comparable
times for L0, L1-32, L2-32, and L6-32 in the x-y plane. The suppression mechanism is the transport
of vorticity away from the interface roughly along field lines, as extensively studied previously
[11–14,20,30], by sub-fast MHD waves arising from the shock refraction process as the fast shock
system processes the DI.

Visualizing the same flows now in vorticity, Fig. 6 shows that vorticity transport from the interface
occurs for all magnetized cases as it also shows the relative positions of the fast and slow shock
systems. The slow shock system remains distant from the DI for cases L1-32 and L2-32, but for

013701-9



W. MOSTERT, D. I. PULLIN, V. WHEATLEY, AND R. SAMTANEY

FIG. 6. z component of vorticity at comparable times for L cases (β0I = 32) with overlaid magnetic field
lines. Interface position shown in black contour. Vorticity remains on the interface for the unmagnetized
(L0) case, but is transported roughly along field lines, according to the field geometry, in each magnetized
case. Although vorticity remains close to the interface where the field is tangential to it, RM growth is
reduced there. The x-z plane shows a similar y-vorticity field and plane-projected field lines. (a) L0, t = 0.593,
(b) L1, t = 0.592, (c) L2, t = 0.590, and (d) L6, t = 0.586.

L6-32 it may influence the DI directly, by refraction through it, or indirectly by disturbing vorticity
transport near the DI. It does, however, not appear to affect the global perturbation amplitude growth
(see Fig. 7) or the general appearance of the DI.

Figure 7 shows the root-mean-square perturbation amplitude across the domain for each case. The
amplitudes for perturbations in cases L1, L2, L6 are estimated by subtracting the interface position
from that of the unperturbed simulations. This is done so that large-scale variation of the interface
position due to the magnetic field—a large-scale dynamic effect influenced by asymmetry in the
fast shock systems (see Sec. IV A)—does not interfere with the estimation of local amplitudes. In
each case (barring L0), the interface position vector for the unperturbed case is interpolated onto
the coordinates (φ,θ ) in the perturbed case, which allows a pointwise subtraction of one from the
other. Such a subtraction need not be performed in the case L0, since the unperturbed interface in
that case is clearly a sphere with radius equal to the mean position of the perturbed interface. Note
the amplitude defined in this way is necessarily positive. The growth curve for L6 is comparable to
that of L1 in particular, suggesting that the RM instability is suppressed to the same extent, globally,
between the uniform unidirectional and the octahedrally symmetric fields. Of the fields examined,
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FIG. 7. Root-mean-square perturbation amplitude, taken across entire octant domain, for cases L0, L1, L2,
L6 (see Table I). All magnetized cases show reduced RM growth over the unmagnetized (L0) case, with the
most reduction seen in case L6.

L2 suppresses the RM instability the least in a global sense. At very late times, the curve for L6-32
can be seen to increase again. This apparent increase is due to the RT-driven phase inversion of the
perturbations on the interface, and in fact occurs in all flows with late-time RT effects (see Mostert
et al. [20] for further examples).

The transport of vorticity away from the interface is particularly clear on the axes (φ = 0,π/2) in
each case since the field is normal to the interface at these φ for L2-32 and L6-32. In L6-32, while
the field is also locally normal to the interface at φ = π/4, the vorticity remains close to the interface
even at late times since the field is weak on that part of the interface. The primary difference in RM
suppression in this plane between L2-32 and L6-32, then, should be in how the DI evolves around
φ = π/4, due to the differing field orientation there. However, the vorticity transport pattern visible
in Figs. 5(c) and 5(d) at this angle from the horizontal appears very similar between L2-32 and
L6-32. Thus, the differences in RM suppression between these cases must occur in another plane.

Consider then the y-z plane, where the plane-projected field geometries are very different between
all cases. Figure 8 shows the x vorticity in this plane for the different field configurations. L1-32
does not show plane-projected field lines since they are everywhere normal to the plane. First, in
comparing Figs. 8(b) and 8(c), perturbations appear smaller in case L1-32. The reasons for this are
twofold. First, the field magnitude is stronger at all points on the interface in this plane for L1-32 than
in L2-32, naturally providing stronger RM suppression. Second, the field is everywhere tangential
to the interface in case L1-32, which as mentioned above provides a greater suppressive effect than
in L2-32, where the field is everywhere normal in this plane.

The field L6-32 is also non-normal to the interface for most of its extent. Furthermore, the field
strength on the interface in this plane is on average stronger than in L2-32. These two factors
immediately explain the greater L6-32 RM reduction seen in Fig. 7. In fact, looking at Fig. 9,
which shows a probability density function (PDF) of strength across the entire interface for each
configuration, we see that the octahedral field in fact tends to be stronger in an overall sense than
the two-loop field for this β0I , despite its tail to weaker field strengths. This highlights an important
feature of the two-loop configuration: among the three Cartesian planes, there is one plane in which
it behaves differently with respect to the RM instability from the others, and it happens to be the less
effective in RM suppression there. The same is true for the L1 configuration, except that in its odd
plane it is slightly more effective in RM suppression than in the other Cartesian planes. Nonetheless,
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FIG. 8. x vorticity at comparable times (the same as in Fig. 6, L cases at β0I = 32), showing now the y-z
plane with overlaid magnetic field lines. This plane is distinct from the x-y and x-z planes in particular for the
L1 and L2 cases since the plane-projected field is different here. Field lines are not shown for the L1 case since
they are everywhere normal to the plane. Note the similarity between Figs. 6(d) and 8(d). (a) L0, t = 0.593,
(b) L1, t = 0.592, (c) L2, t = 0.590, and (d) L6, t = 0.586.

the uniform field sees a very different expression of the RM instability in this plane as a result of its
axisymmetry there. Owing to its symmetry, the octahedral configuration does not suffer from these
characteristics, and provides similar effects on the RM instability in mode and extent in each of the
Cartesian planes. The effect that this has on the shape of the perturbations on the DI is explored in
Sec. IV B 2 below.

Lastly, we briefly consider the effect of field symmetry on the maximum compression, ρ̄max, of
the inner fluid, which we define as the volume-average density of the inner fluid at the time of near
stagnation of the inner fluid, that is, at the time just after first reshock of the DI. Since effect of field
symmetry is also of interest, we also define the standard deviation, s(ρ), of the inner fluid density
at this time, for each configuration. Table II shows estimates for these for the field configurations
considered here, and suggests that the configuration of the magnetic field does not appreciably affect
the maximum compression of the inner fluid. These values are approximate and depend on the time
of measurement, called tR .
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FIG. 9. Probability density functions (PDFs) showing strength distribution across the unit sphere for
configurations 2 (dashed) and 6 (solid). Configuration 1, which is not shown, has a delta-function distribution at
|B|/|B0| = 1 since it is uniform. Evidently, configuration 6 tends to have a higher field strength on the interface
than configuration 2 for the given β0I (=32), which partly explains the increased reduction in RM growth in
case L6 over L2 seen in Fig. 7.

2. Effect of field strength

We lastly examine the influence of field strength on the degree of suppression, comparing the
uniform and octahedral configurations at β0I = 8,16,32. The two-loop configuration is not addressed
here, since it is already known from Mostert et al. [20] that RM suppression in the two-loop field
decreases relative to the uniform configuration with increasing field strength.

Figure 10 shows the rms amplitude growth for the different field strengths, comparing uniform and
octahedral cases. It shows that, as expected, increasing field strength leads to an increased degree of
suppression. In cases L6-8, L6-16, and L6-32 (L1-8, L1-16, L1-32) the perturbation amplitudes are
reduced to approximately 50%, 68%, and 76% (51%, 61%, 70%), respectively, of the unmagnetized
case L0 at the arbitrarily chosen representative time t = 0.5. In particular, the peak perturbation
amplitudes decrease with increasing field strength for both configurations. Note that, particularly
for the strong-field case, the slow shock interacts with the DI in the octahedral field configuration,
as seen in Fig. 11. The reason that this interference occurs in the octahedral case to a greater extent
than in the uniform case is the greater slow magnetosonic speed near the initial Riemann interface at
early times in the former case, leading to greater slow shock speeds and earlier slow shock-interface
interaction. As the field strength increases, these slow shocks also become more compressive so that
they disturb the gross symmetry of the DI if and when they interact with it.

TABLE II. Approximate mean density of reshocked inner fluid ρ̄max (“maximum compression”) and
standard deviation, s(ρ), for tested field configurations, with time tR of measurement just after reshock of
the DI.

Configuration L0 L1-32 L2-32 L6-32

ρ̄max 24.0 24.7 25.7 22.7
s(ρ) 4.3 3.8 3.8 3.6
tR 0.87 0.86 0.86 0.87
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FIG. 10. Root-mean-square perturbation amplitude growth comparing uniform and octahedral cases across
all field strengths. See Table I for description of abbreviations in the legend. Degree of RM suppression
increases with field strength for both configurations. At the highest strength β0I = 8, the relative suppression
of the octahedral case (L6-8) versus the uniform (L1-8) is reduced over that of the others, probably owing to
influence of the slow shock system.

However, the greater influence of the slow shock system in the octahedral case does not necessarily
disturb the ability of the octahedral field to suppress the instability in general, as shown by Fig. 10 and
suggested qualitatively by comparison of the peak amplitudes on the x axis in Fig. 11. Furthermore,
interaction of the slow shock with the DI may not occur in all cases anyway, for two reasons. First,
whether or not the slow shocks reach the DI at all is largely problem dependent, since choosing a
greater initial radius for the Riemann interface may ensure that the slow shocks remain far from
the DI at late times. Second, one might choose a method of initialization not involving a Riemann
problem of this kind: for example, the accelerating fast shock could in principle be initialized in the
absence of other compressible waves by specifying the appropriate jump conditions ab initio. We

FIG. 11. z vorticity in the x-y plane for cases L1-8 and L6-8 at comparable times (see Table I) with the
DI shown in black contour. The slow shock system visibly interferes with the DI in L6-8. Such interference is
absent or very nearly so in L1-8. (a) L1 − 8, t = 0.507 and (b) L6 − 8, t = 0.487.
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FIG. 12. Density isosurface and pressure contours for cases L0, L1-8, L6-8 (see Table I) at comparable
times. The near plane is y-z. Qualitatively, the magnetized cases see reduction of perturbation growth due to
RM instability. However, L1-8 visibly shows directional preference for RM suppression near the y-z plane,
while L6-8 shows a more homogeneous suppression of RM instability across the isosurface. (a) L0, t = 0.510,
(b) L1 − 8, t = 0.507, and (c) L6 − 8, t = 0.505.

thus consider the slow shock system interference with the DI in this study as a potentially avoidable
side effect.

Apart from the effect of the slow shock system on the DI in the octahedral case, the effect of
the field on the extent of RM suppression in these problems is a matter of degree. In this sense, all
fields are at least “critically strong” according to the criterion of Sano et al. [25], in the qualitative
sense that the RM instability is suppressed. This consideration and more quantitative assessments
are however complicated by, first, the three-dimensional, converging geometry of the problem
considered; second, the great variation in field orientations and strength across the DI; third, the
influence of Rayleigh-Taylor instability, particularly at late times; and fourth, the complex vorticity
transport patterns present in the flow.

Finally, the effects of field symmetry on directional dependence of RM suppression are apparent
particularly at the highest field strengths. Figure 12 shows density isosurfaces for cases L1-8 and
L6-8 compared with L0. While the RM instability is clearly suppressed in both magnetized cases
shown, L1-8 shows a clear directional preference in suppression in the y-z plane, where the field
is everywhere tangential to the interface (normal to the plane). The DI is corrugated nearly entirely
within the y-z plane, while perturbations in a direction normal to that plane are less evident. This
is because the out-of-plane baroclinic vorticity transport does not affect the in-plane perturbations.
Contrast this with L6-8, which owing to its symmetry shows a more homogeneous directional
dependence. Effect of the slow shock system on the DI is not visible in Fig. 12.

V. CONCLUDING REMARKS

This study examines the effectiveness of an octahedrally symmetric magnetic field configuration in
preserving the symmetry of an imploding flow in ideal magnetohydrodynamics and in the suppression
of the Richtmyer-Meshkov instability in such flows. The field was chosen for its especially high
degree of symmetry, and compared with other previously considered field configurations.

With the applied magnetic field, the imploding flow has a symmetry which matches that of the field,
and exhibits less asymmetry in its imploding fast shock than the other field candidates, suggesting
a more symmetric base flow. Further, the octahedrally symmetric field performs comparably to the
uniform-field case and better than the two-loop field case in suppression of the Richtmyer-Meshkov
instability in the global root-mean-square of perturbation amplitude growth.

This investigation highlights the potential usefulness of applied magnetic fields with high degrees
of symmetry in converging flows where maintenance of implosion symmetry is a key performance
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factor, and that such fields can remain effective in suppression of hydrodynamic instabilities in flows
of this kind.

ACKNOWLEDGMENTS

This research was supported by the KAUST Office of Sponsored Research under Award No.
URF/1/2162-01. V.W. acknowledges support from an Australian Research Council Discovery Early
Career Researcher Award (Project No. DE120102942).

[1] J. Lindl, O. Landen, J. Edwards, E. Moses, and NIC Team, Review of the National Ignition Campaign
2009-2012, Phys. Plasmas 21, 020501 (2014).

[2] R. D. Richtmyer, Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl.
Math. 13, 297 (1960).

[3] E. E. Meshkov, Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn. 4, 101
(1969).

[4] G. H. Markstein, Flow disturbances induced near a slightly wavy contact surface, or flame front, traversed
by a shock wave, J. Aero. Sci. 24, 238 (1957).

[5] L. Rayleigh, Scientific Papers, Vol. II (Cambridge University Press, Cambridge, England, 1900).
[6] G. I. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes,

i, Proc. R. Soc. London A 201, 192 (1950).
[7] A. B. Sefkow, S. A. Slutz, J. M. Koning, M. M. Marinak, K. J. Peterson, D. B. Sinars, and R. A. Vesey,

Design of magnetized liner inertial fusion experiments using the Z facility, Phys. Plasmas (1994-present)
21, 072711 (2014).

[8] M. Hohenberger, P.-Y. Chang, G. Fiksel, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F.
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