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Oscillation of satellite droplets in an Oldroyd-B viscoelastic liquid jet

Fang Li,* Xie-Yuan Yin, and Xie-Zhen Yin
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027,

People’s Republic of China
(Received 8 June 2016; published 31 January 2017)

A one-dimensional numerical simulation is carried out to study the oscillation
characteristics of satellite droplets in the beads-on-a-string structure of an Oldroyd-B
viscoelastic liquid jet. The oscillation of satellite droplets is compared with the linear
oscillation of a single viscoelastic droplet. It is found that, contrary to the predictions of
linear theory, the period of oscillation of satellite droplets decreases with time, despite the
increase in droplet volume. The mechanism may lie in the existence of the filament, which
exerts an extra resistance on droplets. On the other hand, the oscillation of droplets does not
influence very much the thinning of the filament. The influence of the axial wave number,
viscosity, and elasticity on the oscillation of satellite droplets is examined. Increasing the
wave number may result in the decrease in the period and the increase in the decay rate
of oscillation, while increasing viscosity may lead to the increase in both the period and
the decay rate of oscillation. Elasticity is shown to suppress the oscillation at large wave
numbers, but its influence is limited at small wave numbers.
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I. INTRODUCTION

Instability and breakup of viscoelastic liquid jets is a fundamental problem in applications such as
inkjet printing, liquid bridges, atomization, fiber spinning, and coating. In the linear scope, instability
of viscoelastic liquid jets has been well understood. Elasticity is known to enhance instability of
viscoelastic jets, and viscoelastic jets are more unstable than their Newtonian counterparts [1–3]. For
a purely viscoelastic liquid jet, the axisymmetric mode is more unstable than all nonaxisymmetric
modes [4,5]. However, in the presence of a strong electric field or fast coflowing air, the first
nonaxisymmetric mode may become dominant [6,7]. Both viscoelasticity and surface tension have
a strong stabilizing or destabilizing influence on the instability of viscoelastic jets [1–5].

Nonlinear instability studies showed that breakup of viscoelastic jets can be greatly delayed
by elasticity [8,9]. Several one-dimensional models have been established and used in numerical
simulations [10–13]. These one-dimensional models greatly save computation time and captured
well the nonlinear characteristics of viscoelastic jets. The dynamics in droplet migration, droplet
oscillation, droplet merging, and droplet drainage was revealed by Li and Fontelos [11], and the
thinning of the filament was investigated by Ardekani et al. [12], Renardy [14], and Entov and
Hinch [15]. In the highly axially stretched state, the filament thins exponentially at a rate 1/3De,
the extension rate in the filament remains 2/3De, and the polymer stress in the filament increases
exponentially at a rate 1/3De, where De is the Deborah number. The self-similar problem at the
corner joining the filament to the droplet was solved by Clasen et al. [10] and Bhat et al. [13]. Sattler
et al. [16] and Eggers [17] studied, experimentally and theoretically, the final stages of capillary
breakup of semidilute polymer solutions. They found that highly stretched threads become unstable
and form a nonuniform “blistering” pattern (blistering instability), being different generations of
tiny drops separated by threads of highly concentrated polymer solution.

For a viscoelastic jet, at small wave numbers or low viscosities, a beads-on-a-string structure
with satellite droplets is eventually formed. However, at large wave numbers or high viscosities, no
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satellite droplet exists in the structure [12]. Moreover, at small viscosities, both main and satellite
droplets oscillate around their equilibrium positions due to the interplay of capillary and inertial
forces. Although the dynamics in a beads-on-a-string structure has been extensively explored, little
attention has been paid to the oscillation of droplets, which motivates the present work.

The paper is organized as follows. In Sec. II the one-dimensional viscoelastic model is described.
In Sec. III the numerical results are presented and discussed. A brief linear instability study of the
viscoelastic jet is carried out; the oscillation characteristics of satellite droplets in beads-on-a-string
structures are highlighted; and the effects of the axial wave number, viscosity, and elasticity on the
oscillation are investigated. In Sec. IV main conclusions are drawn.

II. ONE-DIMENSIONAL VISCOELASTIC MODEL

Consider an infinitely long cylindrical liquid jet of radius R and axial velocity U . For convenience,
a relative coordinate system (r,θ,z) moving together with the jet is utilized to describe the problem,
where r , θ , and z are the radial, azimuthal, and axial coordinates, respectively. The liquid is a
dilute polymer solution of density ρ. The viscoelasticity of the liquid is described by the Oldroyd-B
constitutive equation [18]. The medium surrounding the jet is air; the hydrodynamic effect of the air
is neglected. The governing equations are the continuity equation, the momentum equation, and the
constitutive equation:

∇ · v = 0, (1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p + ηs∇2v + ∇ · τp, (2)

τp + λ

[
∂τp

∂t
+ v · ∇τp − (∇v)T · τp − τp · ∇v

]
= 2ηp D, (3)

where v is the velocity vector, p is the pressure, ηs is the viscosity of the solvent, τp is the polymer
stress tensor, λ is the stress relaxation time, ηp is the viscosity of the polymer, the superscript T

denotes the transpose, and D = 1/2[∇v + (∇v)T ] is the rate-of-strain tensor. At the jet surface, the
kinematic and dynamic boundary conditions must be satisfied:

dF

dt
= 0, (4)

pn − 2ηs D · n − τp · n = σ∇ · nn, (5)

where F = r − h(z,t) = 0 is the surface function being h the radius of the perturbed jet, d/dt is the
material derivative, n is the outward unit vector normal to the surface, and σ is the surface tension
coefficient.

Suppose that the jet is perturbed by a long-wavelength axisymmetric disturbance. The slender-
body approximation can be applied [8,19]. By choosing the radius of the jet R, the capillary time
τc =

√
ρR3/σ and the capillary force σ/R as scales of length, time, and pressure, respectively,

the governing equations and boundary conditions (1)–(5) yield the following nondimensionalized
one-dimensional equations [10–12]:

∂h

∂t
+ u

∂h

∂z
= −h

2

∂u

∂z
, (6)

∂u

∂t
+ u

∂u

∂z
= − ∂

∂z
(∇ · n) + 3βOh

1

h2

∂

∂z

(
h2 ∂u

∂z

)
+ 1

h2

∂

∂z
[h2(τzz − τrr )], (7)

∇ · n = 1

[1 + (∂h/∂z)2]
3/2

[
1 + (∂h/∂z)2

h
− ∂2h

∂z2

]
, (8)
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τzz + De

(
∂τzz

∂t
+ u

∂τzz

∂z
− 2τzz

∂u

∂z

)
= 2(1 − β)Oh

∂u

∂z
, (9)

τrr + De

(
∂τrr

∂t
+ u

∂τrr

∂z
+ τrr

∂u

∂z

)
= −(1 − β)Oh

∂u

∂z
, (10)

where u is the axial velocity component, and τzz and τrr are the zz and rr components of the polymer
stress tensor. The relevant dimensionless parameters are the Ohnesorge number Oh = η0/

√
ρσR,

where η0 = ηs + ηp is the zero-shear viscosity of the solution, the Deborah number De = λ/τc, and
the solvent to solution viscosity ratio β = ηs/η0. The one-dimensional equations (6)–(10) are the
same as those in Refs. [10–13]. In particular, (6) and (7) can be written in conservative form [10–12]:

∂h2

∂t
+ ∂h2u

∂z
= 0, (11)

∂h2u

∂t
+ ∂h2u2

∂z
= ∂

∂z

[
h2

(
K + 3βOh

∂u

∂z
+ τzz − τrr

)]
, (12)

where

K = 1

[1 + (∂h/∂z)2]
3/2

[
1 + (∂h/∂z)2

h
+ ∂2h

∂z2

]
. (13)

III. NUMERICAL RESULTS

The one-dimensional equations are solved by using an adaptive implicit finite difference method
[20]. In order to guarantee the required accuracy that the maximum relative error of all quantities
is below 0.1%, 1000 grids are used in space discretization, and the dimensionless time step is
5 × 10−4. The code is verified by comparing with the result in Refs. [10,12]. Due to symmetry, only
a half-wavelength segment of the jet is calculated. At two ends z = 0 and z = λ/2, where λ is the
wavelength, the following periodic boundary conditions are imposed:

∂h

∂z
(z = 0,t) = ∂h

∂z

(
z = λ

2
,t

)
= 0, (14)

u(0,t) = u

(
λ

2
,t

)
= 0, (15)

∂τzz

∂z
(0,t) = ∂τzz

∂z

(
λ

2
,t

)
= 0, (16)

∂τrr

∂z
(0,t) = ∂τrr

∂z

(
λ

2
,t

)
= 0. (17)

At the initial time, the surface of the jet is supposed to be perturbed by a cosine wave,

h(z,t = 0) =
√

1 − ε2
0

2
+ ε0 cos(kz), (18)

where k is the axial wave number and ε0 is the initial amplitude of the wave. In the calculation ε0 is
taken to be 0.05.

As to the physical properties of the liquid, we choose ρ = 1000 kg/m3, η0 = 3.7 mPa s, ηs =
1 mPa s, λ = 0.17 ms, and σ = 0.06 N/m, the same as in Ref. [12]. The radius of the jet is taken to
be 140 μm. As a result, the values of the dimensionless parameters are Oh = 0.04, β = 0.27, and
De = 0.8, which are maintained unchanged in the calculation unless specified otherwise.
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FIG. 1. The temporal growth rate ωr versus the axial wave number k for (a) different values of Oh, De = 0.8,
and (b) different values of De, Oh = 0.4. β = 0.27.

A. Linear instability study of the viscoelastic liquid jet

It is well known that linear theory can correctly describe the motion of a jet initially perturbed by
a small disturbance [21,22]. Assume that the disturbance is of normal mode form a exp(ωt + ikz),
where a is the initial amplitude of the disturbance, ω is the complex frequency with the real part ωr

the temporal growth rate and the imaginary part ωi the angular frequency, and i is the imaginary
unit. Substitution of the normal mode into (1)–(5) and linearization yields a set of homogeneous
equations. In order that the equations have nontrivial solutions, the determinant of the coefficient
matrix must be equal to zero, which gives the following dispersion relation:

Q(k)k−2ω2 + 2C∗ω[2Q(k) − 1] + 4C∗k2[Q(k) − Q(l)] − 1 + k2 = 0, (19)

where

l =
√

k2 + ω

C∗ , C∗ = Oh
1 + βωDe

1 + ωDe
, Q(x) = x

I0(x)

I1(x)
,

where In(x), n = 0,1, is the nth-order modified Bessel functions of the first kind with respect to the
argument x. The dispersion relation (19) is coincident with those in Refs. [1,23].

The effects of viscosity and elasticity on the instability of the viscoelastic jet are shown in Figs. 1(a)
and 1(b), respectively. In Fig. 1(a), the temporal growth rate ωr decreases as the Ohnesorge number
increases, indicating that viscosity has a stabilizing effect on the instability of the jet. In Fig. 1(b) the
growth rate increases as the Deborah number increases, indicating that elasticity has a destabilizing
effect on the instability of the jet. Most intriguingly, neither viscosity nor elasticity influences the
cut-off wave number, which is always equal to 1. That is, a viscoelastic jet is unstable for any
disturbance of wavelength larger than the circumference of the jet, analogous to a viscous or inviscid
jet [3,21]. Based on this fact, in the nonlinear study, the axial wave number should be smaller than 1.

B. Oscillation characteristics of satellite droplets

A typical profile of the beads-on-a-string structure with an oscillating satellite droplet between
two adjacent main droplets is shown in Fig. 2(a), where the droplets are connected by a thin filament
of axially uniform thickness. The time evolution of the radius of the jet at z = λ/2 (where the
satellite droplet lies), denoted by hλ/2, is shown in Fig. 2(b). As clearly seen from the figure, the
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FIG. 2. (a) Typical profile of the beads-on-a-string structure with an oscillating satellite droplet between
two adjacent main droplets. (b) The time variation of the radius of the jet at z = λ/2. k = 0.7, Oh = 0.1,
De = 0.8, β = 0.27.

satellite droplet oscillates at large times. The oscillation is damped by viscosity and eventually dies
out, resulting in an almost spherical shape of the satellite droplet.

It seems difficult to analyze the oscillation of the satellite droplet in the presence of the filament.
Fortunately, its oscillation is analogous to the shape oscillation of a single viscoelastic drop of the
fundamental mode m = 2 [12]. There have been some reports about oscillation of single viscoelastic
drops in the literature [24–28]. Ardekani et al. [12] compared the periods of oscillation of satellite
droplets estimated from the one-dimensional simulation with those predicted by linear theory of
a single inviscid droplet. In the following, we will make a more accurate comparison by taking
into account liquid viscoelasticity. Assume that the disturbance is small. In the spherical coordinate
system (r,�,ϕ), where r , �, ϕ are the radius, azimuth angle, and polar angle, respectively, the
perturbed surface of a single viscoelastic liquid droplet is

r = Rdrop[1 + εP2(cos θ) exp(−α2t)], (20)

where Rdrop is the radius of the droplet normalized by the radius of the jet R, ε is a small value
measuring the initial amplitude of the oscillation, P2(cos θ) is the Legendre polynomial of mode
m = 2, and α2 is the complex frequency being the real part αr the decay rate and the imaginary part αi

the angular frequency. The governing equations and boundary conditions are (1)–(5), too. Introducing
the small perturbation (20) and linearizing the equations leads to the following characteristic equation
[26,27]: (

α2,0

α2

)2

= 6

q2 − 2qW (q)
− 1 + 4

q2

[
1 + 3W (q)

W (q) − q/2

]
, (21)

where

α2,0 = 2
√

2R
−3/2
drop , q = Rdrop

√
α2

Oh

1 − α2De

1 − α2βDe
, W (q) = j3(q)

j2(q)
,

jn(q), n = 2,3, is the nth-order spherical Bessel function of the first kind with respect to the argument
q, and α2,0 is the angular frequency for an inviscid droplet [22]. The transcendental equation (21) is
solved numerically. The validity of the code is checked by comparing with the result in Ref. [27].

The solution of (21) is shown in Fig. 3, for different values of k and Oh. It can be seen from the
figure that the decay rate αr is always positive, indicating that the perturbation is always damped.
When the angular frequency αi is nonzero, the droplet undergoes periodic oscillation. For example,
for k = 0.7 and Oh = 0.1, αi is nonzero, so the droplet oscillates periodically, in agreement with
the result in Fig. 2.

The comparison between the one-dimensional numerical results and the predictions of linear
theory is illustrated in Table I, where we show that the numerical results and the linear predictions
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FIG. 3. The solution of the characteristic equation (21) on the complex α plane for different values of k and
Oh. De = 0.8, β = 0.27.

are close to each other. The discrepancies between them may be caused by the fact that the radius
of the satellite droplet Rdrop, which is estimated from the one-dimensional simulation and is used
to calculate the inviscid angular frequency α2,0 in Eq. (21), cannot be very accurate, because the
volume of a satellite droplet changes all the time during the evolution of a beads-on-a-string structure
[11,12]. In addition, the existence of the filament may have some influence on the oscillation of the
satellite droplet.

As shown in Table I, both the axial wave number and the Ohnesorge number influence the
oscillation of the satellite droplet. For a fixed Ohnesorge number, as k increases, the size of the
satellite droplet Rdrop decreases, the period of oscillation tp decreases, and the decay rate αr

increases, indicating that increasing the axial wave number suppresses the oscillation of the satellite
droplet. As Oh increases, the most unstable wave number kmax decreases, and Rdrop increases
together with tp and αr , indicating that viscosity suppresses the oscillation of the satellite droplet.

The suppression effect of viscosity on the oscillation of the satellite droplet can be observed by
studying the time evolution of the radius of the jet; see Fig. 4. For a larger Oh, the initial amplitude of
oscillation is smaller and the oscillation is damped more rapidly. When Oh is as large as 0.8, the os-
cillation becomes aperiodic. It is predicted that the oscillation will disappear as Oh increases further.

At a fixed axial wave number and a fixed Ohnesorge number, the period of oscillation of the
satellite droplet is actually not a constant. The period of oscillation tp,1D collected in Table I comes
from the first period of oscillation. The variation of the period of oscillation for a sequence of
oscillation periods is shown in Fig. 5, where kmax = 0.643 and Oh = 0.1. As seen in the figure,
the period of oscillation is comparable to the capillary time, and it obviously decreases with time

TABLE I. Comparison between the oscillation period tp and the decay rate αr from the one-dimensional
simulation (denoted by the subscript 1D) and the predictions of linear theory (denoted by the subscript linear).
The period of oscillation tp,1D comes from the first oscillation. De = 0.8, β = 0.27. The asterisk denotes the
most unstable wave numbers predicted by linear theory.

k Oh Rdrop tp,1D
tp,linear αr,1D αr ,linear

0.6 0.04 0.72 1.21 1.34 0.095 0.122
0.673∗ 0.04 0.57 0.91 0.947 0.13 0.177
0.8 0.04 0.31 0.35 0.382 0.50 0.539
0.643∗ 0.1 0.58 1.15 0.96 0.34 0.419
0.7 0.1 0.45 0.60 0.662 0.77 0.648
0.561∗ 0.3 0.62 1.12 1.04 1.29 1.0
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FIG. 4. The time evolution of the radius of the jet at z = λ/2 for the most unstable wave numbers at different
values of Oh. De = 0.8, β = 0.27.

(see the long dashed line with empty squares). Meanwhile, the radius of the satellite droplet Rdrop

slightly increases with time due to liquid drainage in the filament (see the short dashed line with
empty circles).

Consider the small-amplitude oscillation of an independent liquid droplet. If the liquid is inviscid,
the period of oscillation of the droplet is Tinviscid = π/

√
2R

3/2
drop [12,22], namely, the period of oscillation

increases with the size of the droplet. If the liquid is Newtonian viscous, the period of oscillation is
Tviscous = Tinviscid/

√
1 − ζ 2 with ζ = 2.5/

√
2OhR

−1/2
drop [29,30], indicating that the period of oscillation

increases with liquid viscosity, and when Oh � 2
√

2/5R
1/2
drop the droplet no longer oscillates. Moreover,

the increase in droplet size leads to the increase in the period of oscillation. If the liquid is Oldroyd-B
viscoelastic, according to (21), the trends are the same as those for a viscous droplet. That is, linear

1 2 3 4 5 6 7
0.8

0.9

1

1.1

1.2

0.54

0.56

0.58

the nth period

tp Rdrop

FIG. 5. The period of oscillation tp for a sequence of oscillation periods (long dashed line with squares)
for kmax = 0.643 at Oh = 0.1, estimated from the one-dimensional numerical simulation. The short dashed line
with circles denotes the radius of the satellite droplet Rdrop. The solid line with triangles denotes the period of
oscillation tp calculated from linear theory. De = 0.8, β = 0.27.
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FIG. 6. (a) The profiles of the axial velocity u at different instants of time. (b) The time evolution of the
radius of the jet at z = 3. (c) The time evolution of the first normal stress difference φ at z = 3. k = 0.7,
Oh = 0.1, De = 0.8, β = 0.27.

theory predicts that the period of oscillation of a viscoelastic droplet increases as its size increases,
as shown in Fig. 5 (see the solid line with empty triangles), in contrast with the one-dimensional
simulation result.

It is natural to attribute the decrease in the period of oscillation of the satellite droplet
to the existence of the filament. According to (12), the filament exerts an axial force
πh2(K + 3βOh ∂u

∂z
+ τzz − τrr ) on the satellite droplet at the two poles of it. Moreover, as the

thickness of the filament decreases with time, this extra force increases. It possibly acts as a restoring
force, suppressing the oscillation of the satellite droplet and inducing the decrease in its period.

The effect of the oscillation of the droplets on the thinning of the filament is shown in Fig. 6, where
the values of the parameters are the same as in Fig. 2. As can be seen in Fig. 6(a), the axial velocity u

in the filament varies with time, due to the oscillation of the main droplet (at z = 0) and the satellite
droplet (at z = 4.5). In the middle part of the filament, the velocity changes its sign, indicating an
oscillation of the liquid there. Differently, at the two ends of the filament, the axial velocity is always
negative or positive, indicating that the liquid always flows into the main or satellite droplet (drainage
phenomenon). Though the oscillation of the droplets causes the oscillation of the axial velocity in the
filament, the slope of the velocity, i.e., the extension rate, remains constant. The time evolution of the
radius of the jet and the first normal stress difference φ = τzz − τrr at a fixed position in the filament
z = 3 is shown in Figs. 6(b) and 6(c), respectively. Clearly, both follow a 1/3De exponential law,
not affected by the oscillation in the filament. Thus, we conclude that the oscillation of the droplets
has no influence on the thinning characteristic of the filament at large times.
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FIG. 7. (a) Typical profile of the beads-on-a-string structure with a non-oscillating satellite droplet between
two adjacent main droplets. (b) The time evolution of the radius of the jet at z = λ/2. k = 0.7, Oh = 0.8,
De = 0.8, β = 0.27.

C. Effects of the axial wave number and the Ohnesorge number on the oscillation of satellite droplets

As shown in Fig. 7, when Oh increases to 0.8 from the value of 0.1 in Fig. 2, the viscoelastic
jet evolves into a beads-on-a-string structure with a smaller satellite droplet between two adjacent
main droplets, and moreover, the satellite droplet is not oscillating. The size of the satellite droplet
increases gradually with time due to drainage, but the system is overdamped and no oscillation takes
place. The result reflects the suppression effect of viscosity on the oscillation of the satellite droplet,
in agreement with the linear result in Fig. 3 where, for k = 0.7 and Oh = 0.8, the angular frequency
αi is zero.

Figure 8 illustrates the influence of the axial wave number on the morphology of the jet. When
the wave number increases to 0.9 from the value of 0.7 in Fig. 7, a beads-on-a-string structure with
no satellite droplet is formed. At small times, the instability of the jet is dominated by the inertial
and capillary forces, and the thickness of the filament decreases rapidly. However, at large times, jet
breakup is arrested by continuously increasing the elastic force in the filament, and the thickness of
the filament decreases slowly following an exponential law, hλ/2 ∝ exp(−t/3De) [10,12]. Ardekani
et al. [12] also found that no satellite droplet is formed when the axial wave number is large enough
(k > 0.8).

To further understand the effects of the axial wave number and viscosity, the situation in the
k-Oh plane is shown in Fig. 9, where the solid triangles denote the formation of a beads-on-a-string
structure with oscillating satellite droplets, the hollow triangles denote a beads-on-a-string structure
with nonoscillating satellite droplets, and the solid squares denote a beads-on-a-string structure with
no satellite droplet formed. Clearly, in the k-Oh plane, the region for oscillating satellite droplets is
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FIG. 8. (a) Typical profile of the beads-on-a-string structure with no satellite droplet generated. (b) The
time evolution of the radius of the jet at z = λ/2. k = 0.9, Oh = 0.8, De = 0.8, β = 0.27.
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droplet, illustrated in the k-Oh plane. The dashed line is the fitted result of the most unstable wave numbers
according to linear theory. De = 0.8, β = 0.27.

located at relatively small axial wave numbers and relatively small Ohnesorge numbers, the region for
nonoscillating satellite droplets at relatively large axial wave numbers and relatively large Ohnesorge
numbers, and the region for no satellite droplets at sufficiently large axial wave numbers (k > 0.8)
or sufficiently large Ohnesorge numbers (Oh > 4). At a fixed wave number, as viscosity increases,
the oscillation of satellite droplets is damped, the size of satellite droplets is reduced, and eventually
the formation of satellite droplets is inhibited. At a fixed Ohnesorge number, oscillating satellite
droplets are more easily formed for smaller wave numbers. As the wave number increases, satellite
droplets grow smaller, and their oscillation is damped more rapidly, then the oscillation disappears,
and finally satellite droplets disappear. For the most unstable wave numbers predicted by linear
theory, a beads-on-a-string structure with oscillating satellite droplets develops when Oh < 1.0 and
the oscillation of satellite droplets disappears when Oh > 1.0.

D. Effects of the Deborah number on the oscillation of satellite droplets

The effect of the Deborah number on the oscillation of satellite droplets is shown in Fig. 10. For
a relatively small axial wave number and Ohnesorge number, as shown in Fig. 10(a), oscillating
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FIG. 10. The time evolution of the radius of the jet at z = λ/2 for different values of De. (a) k = 0.6,
Oh = 0.04, and (b) k = 0.8, Oh = 0.4. β = 0.27.
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satellite droplets are formed at a relatively small Deborah number De = 0.8. However, when De
increases to 3.0, no permanent satellite droplet is formed (hλ/2 → 0 at large times), indicating that
elasticity suppresses the formation of satellite droplets. In the nonoscillating case shown in Fig. 10(b)
where the axial wave number and the Ohnesorge number are relatively large, the formation of satellite
droplets is arrested at the larger Deborah number De = 3.

The effect of elasticity is further explored in the k-Oh plane. As can be seen from Fig. 11, when
De increases to 40 from the value of 0.8 in Fig. 9, the region in which no satellite droplet is formed is
greatly expanded. For the most unstable wave numbers predicted by linear theory, a beads-on-a-string
structure with no satellite droplet is formed, different from the case as shown in Fig. 9.

It is another scenario at small wave numbers. As shown in Fig. 12(a) where k = 0.4, the size
of the satellite droplet slightly increases as De increases, indicating that elasticity cannot suppress
the formation of satellite droplets for small wave numbers. Elasticity cannot stop the oscillation of
satellite droplets, either. As shown in Fig. 12(b), even when the Deborah number is as large as 300,
the satellite droplet is still oscillating. The influence of elasticity on the decay rate of oscillation is
also limited.

IV. CONCLUDING REMARKS

The oscillation of satellite droplets in beads-on-a-string structures of Oldroyd-B viscoelastic
liquid jets is investigated numerically by using a one-dimensional model. The periods and the decay
rates of oscillation estimated from the one-dimensional simulation are compared with the predictions
of linear theory. Due to the existence of the filament, the period of oscillation decreases with time,
in contrast to linear theory. The axial wave number and viscosity influence greatly the oscillation of
satellite droplets. Increasing the axial wave number may lead to the decrease in the period and the
increase in the decay rate of oscillation, and increasing viscosity may result in the increase in both
the period and the decay rate of oscillation. Elasticity may inhibit the formation of satellite droplets
for large wave numbers. For small wave numbers its influence on the oscillation is limited.

In some rheological experiments, it was found that the extensional relaxation time is different
from and usually larger than the shear relaxation time [31–33]. That is, the relaxation time is
conformation dependent, influenced by the changes in hydrodynamic interactions within and between
macromolecular chains. The Oldroyd-B viscoelastic constitutive equation used in this study does
not take into account the influence of the conformation on the relaxation time. The other limitation
of the present model is that the finite extensibility of polymer chains is ignored and the final stages
of the filament thinning cannot be investigated. The effect of finite extensibility and conformation-
dependent relaxation times on the oscillation of droplets in a beads-on-a-string structure needs to be
explored in the future.
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