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Spectra and one-point statistics of velocity and thermodynamic variables in isotropic
turbulence of compressible fluid are examined by using numerical simulations with
solenoidal forcing at the turbulent Mach number Mt from 0.05 to 1.0 and at the Taylor
Reynolds number Reλ from 40 to 350. The velocity field is decomposed into a solenoidal
component and a compressible component in terms of the Helmholtz decomposition,
and the compressible velocity component is further decomposed into a pseudosound
component, namely, the hydrodynamic component associated with the incompressible
field and an acoustic component associated with sound waves. It is found that the acoustic
mode dominates over the pseudosound mode at turbulent Mach numbers Mt � 0.4 in
our numerical simulations. At turbulent Mach numbers Mt � 0.4, there exists a critical
wave number kc beyond which the pseudosound mode dominates while the acoustic mode
dominates at small wave numbers k < kc. In the pseudosound-mode-dominated region, the
compressible velocity is fully enslaved to the solenoidal velocity, and its spectrum scales
as M4

t k
−3 in the inertial range. It is also found that in the inertial range, the spectra of

pressure, density, and temperature exhibit a k−7/3 scaling for Mt � 0.3 and a k−5/3 scaling
for Mt � 0.5.

DOI: 10.1103/PhysRevFluids.2.013403

I. INTRODUCTION

Compressible turbulence is of great significance in a number of areas of scientific and industrial
interest, including acoustic phenomena, designs of subsonic and supersonic aircrafts, solar wind,
and star-forming clouds in astrophysics. A deeper understanding of the statistics and structures of
compressible turbulence is also crucial to the development of suitable subgrid-scale models for large
eddy simulation of complex compressible turbulent flows. The velocity dynamics in compressible
turbulence includes compression and expansion in addition to multiscale shear and eddy motions
and thus is more complex than that of incompressible turbulence [1–10]. Moreover, in compressible
turbulence, there are nonlinear couplings between the velocity and thermodynamic variables such
as density, pressure, and temperature.

Unlike incompressible turbulence, there is an extra nondimensional parameter, the turbulent Mach
number, other than the Reynolds numbers in compressible turbulence. In this paper, we focus on
the statistical properties of compressible isotropic turbulence at low Mach numbers. Kovasznay [11]
proposed a small parameter expansion for small turbulent fluctuations with respect to a uniform
mean flow and decomposed the turbulent flow of the compressible fluid into three components,
namely, the vorticity, acoustic, and entropy modes, under the assumption of weak compressibility.
However, the Kovasznay decomposition is limited to linear problems. For nonlinear problems
such as fully developed turbulence, the Helmholtz decomposition is useful to separate the velocity
field into solenoidal and compressible modes [1,3,9]. Correspondingly, the pressure can also be
decomposed into two parts, the incompressible and compressible parts, the former being defined as
the one through the Poisson equation in the incompressible turbulence [1,9] and the latter owing to the
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compressible velocity. For turbulent Mach numbers Mt up to 1.0, the spectrum and one-point statistics
of the solenoidal component of the flow have been found to be similar to those of incompressible
turbulence [12–15].

For low turbulent Mach numbers, two scenarios for the Mach number scaling of the compressible
component have been suggested: an acoustic scenario suggested by Sarkar et al. [16] and
a pseudosound scenario suggested by Ristorcelli [17]. Sarkar et al. [16] pointed out that in
weakly compressible homogeneous turbulence, the compressible component quickly attains a
quasiequilibrium state, because the compressible mode has a short time scale relative to that of
the incompressible mode. They derived an equipartition relation between the kinetic energy and the
potential energy of the compressible components and verified it by direct numerical simulation (DNS)
of the compressible isotropic decaying turbulence. Ristorcelli [17] pointed out that by applying
the pseudosound theory (at the inner scale that is much smaller than the typical wave length of
sound waves), the fluid behaves as if it were incompressible. The compressible component of the
velocity field can be fully determined through the solenoidal components of velocity and pressure.
Moreover, he derived the representations for the pressure dilatation and dilatational dissipation in
one-point moment closures for compressible turbulence, from the pseudosound relationship. Our
understanding, however, is still limited as to which scenario is realized and what conditions should
be satisfied for their realization.

The aim of this paper is to examine the above two scenarios and to explore the condition in
which one or both of the two scenarios is realized, by using the spectrum and the one-point statistics
of the compressible component of velocity. For this purpose, it is necessary to introduce a method
that explicitly decomposes the compressible field into a pseudosound component and an acoustic
component, because the Helmholtz decomposition alone cannot distinguish between the acoustic
waves [18] and other compressible phenomena [1]. As we will see in the case of the latter, it is found
from a set of large-scale DNSs and theoretical analysis that for fully developed weakly compressible
turbulence both scenarios can coexist but in different ranges of wave numbers.

In the early phase of studies of the compressible turbulence by DNS, there are many interesting
works in addition to those mentioned in previous paragraphs: the growth of the root mean square (rms)
values of the compressible components of velocity [19], the Mach number effects on the velocity
spectrum [20], the mechanism for the exchange of kinetic energy and internal energy [21], temporal
correlations of both solenoidal and compressible components of velocity [22], etc. Large-scale
DNSs of the compressible isotropic turbulence have recently been performed at grid resolutions as
high as 10243 [14,15,23] and 20483 [9,24], which allowed us to explore the asymptotic power-law
scaling of the kinetic energy spectrum. It was reported that the spectrum of velocity exhibits a
k−5/3 scaling in the inertial range at a turbulent Mach number up to 1.0 [14,23,24]. Donzis and
Jagannathan [24] computed the spectrum of the compressible velocity component at Mt ≈ 0.1,
0.3, and 0.6 for the Taylor Reynolds numbers Reλ ≈ 170, 430, and 170 respectively. Although the
width of the inertial range observed in the DNS was very short, they reported that the spectra of
density, pressure, and temperature were consistent with a k−5/3 inertial range scaling at relatively low
Taylor Reynolds numbers. They also pointed out that the pressure spectrum may also be consistent
with k−7/3 at sufficiently low turbulent Mach numbers. Higher Reynolds numbers are necessary
to unambiguously determine the inertial range scaling of the pressure spectrum in compressible
turbulence [24].

Besides numerical studies, theoretical efforts using the spectral theory of turbulence have also
been devoted to find the spectra of velocity and pressure in compressible turbulence. Bataille
et al. [25] reported that the spectrum of the compressible velocity component obeys a k−11/3

scaling in the inertial range at low to moderate turbulent Mach numbers by numerically solving an
eddy-damped-quasinormal-Markovian (EDQNM) model. They also found that the kinetic energy
transfer of the compressible component is much smaller than that of the solenoidal component.
Bertoglio et al. [26] extended both the direct interaction approximation (DIA) and EDQNM model
to weakly compressible turbulence. Their EDQNM model showed that at low Mach numbers the
spectra of the compressible components of the velocity and pressure have a k−11/3 scaling in the
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inertial range. Fauchet and Bertoglio [27] developed an improved EDQNM model and found that
the spectrum of the compressible velocity component exhibits a M4

t k−3 scaling in the inertial range.
There seems less consensus on the wave-number scaling of the various spectra in the inertial ranges

that may vary with the Mach number. In this paper, we examine the wave-number scaling of spectra
for both the velocity and thermodynamic quantities in terms of the large-scale DNS. The rest of the
paper is organized as follows. Section II briefly describes the governing equations of compressible
turbulence. Section III introduces a decomposition: The compressible components of velocity and
pressure can be decomposed into pseudosound and acoustic components. Section IV describes the
numerical methods and parameters. Sections V and VI investigate the spectra and one-point statistics
of velocity and thermodynamic variables by numerical simulations. The summary and the conclusion
will be presented in Sec. VII.

II. GOVERNING EQUATIONS OF COMPRESSIBLE TURBULENCE

We consider compressible turbulence governed by the following dimensionless Navier-Stokes
equations [3,14]:

∂ρ

∂t
+ ∂(ρuj )

∂xj

= 0, (1)

∂(ρui)

∂t
+ ∂[ρuiuj + pδij ]

∂xj

= 1

Re

∂σij

∂xj

+ Fi , (2)

∂E
∂t

+ ∂[(E + p)uj ]

∂xj

= 1

α

∂

∂xj

(
κ

∂T

∂xj

)
+ 1

Re

∂(σijui)

∂xj

− 	 + Fjuj , (3)

p = ρT/(γM2), (4)

where ρ is the density, ui is the velocity component, p is the pressure, and T is the temperature. The
viscous stress σij is given by

σij = μ

(
∂ui

∂xj

+ ∂uj

∂xi

)
− 2

3
μθδij , (5)

and the total energy per unit volume E is given by

E = p

γ − 1
+ 1

2
ρ(ujuj ). (6)

Here, we denoteFi as the dimensionless, large-scale force per unit volume to the fluid momentum and
	 as the dimensionless large-scale cooling function per unit volume. θ ≡ ∂uk/∂xk is the normalized
velocity divergence.

In the governing equations, we have normalized each variable by a reference length Lf , velocity
Uf , density ρf , temperature Tf , energy per unit volume ρf U 2

f , viscosity μf , and thermal conductivity
κf . Pressure is normalized by ρf U 2

f . The three reference governing parameters are the reference
Reynolds number Re ≡ ρf Uf Lf /μf , the reference Mach number M = Uf /cf , and the reference
Prandtl number Pr ≡ μf Cp/κf . Here, the speed of sound is defined by cf ≡ √

γRTf . γ ≡ Cp/Cv

is the ratio of specific heat at constant pressure Cp to that at constant volume Cv and is assumed to
be equal to 1.4. R is the specific gas constant. The parameter α is given by α ≡ Pr Re(γ − 1)M2.
The parameter Pr is assumed to be equal to 0.7.

The temperature-dependent viscosity coefficient and thermal conductivity coefficient is specified
by Sutherland’s law [28]. The Taylor microscale Reynolds number Reλ and the turbulent Mach
number Mt are defined respectively by [13]

Reλ = Re
〈ρ〉u′λ√

3〈μ〉 , Mt = M
u′

〈√T 〉 , (7)
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where 〈〉 stands for ensemble average. Here, the root mean square value of the velocity magnitude
is defined by u′ =

√
〈u2

1 + u2
2 + u2

3〉 and the Taylor microscale is defined by

λ =
√ 〈

u2
1 + u2

2 + u2
3

〉
〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉 . (8)

III. DECOMPOSITION: PSEUDOSOUND MODE AND ACOUSTIC MODE

Each thermodynamic variable can be decomposed into a mean (ensemble averaging) value
and a fluctuating value, namely, ρ = ρ0 + ρ ′, p = p0 + p′, and T = T0 + T ′. Here, the prime
stands for the fluctuating value. The mean values of three thermodynamic variables are ρ0 = 1,
p0 = 1/(γM2), and T0 ≈ 1, respectively in our numerical simulations. We apply the Helmholtz
decomposition to the velocity field u [1,3,9,14]: u = us + uc, where the solenoidal component us

and compressible component uc satisfy conditions ∂us
i /∂xi = 0 and εijk∂uc

j /∂xk = 0, respectively.
The kinetic energy of each component of the velocity is defined by Ks = 〈[(us

1)2 + (us
2)2 + (us

3)2]/2〉
and Kc = 〈[(uc

1)2 + (uc
2)2 + (uc

3)2]/2〉, respectively. At a small turbulent Mach number (Mt � 1),
the ratio of the compressible kinetic energy to the solenoidal kinetic energy is much smaller
than 1: Kc/Ks � 1. The magnitudes of fluctuations of thermodynamic variables are also much
smaller than their mean values: ρ ′ � 1, p′ � 1/(γM2), and T ′ � 1. Thus, we have the following
approximations:

ρ ≈ ρ0, (9)

p ≈ p0, (10)

and

u ≈ us . (11)

According to the definition of velocity decomposition, we have the following relation:

∇ · u = ∇ · uc. (12)

In the case of a very small turbulent Mach number, we also have the following approximations:

1

ρ
− 1

ρ0
≈ − ρ ′

ρ2
0

, (13)

and

u · ∇u − us · ∇us ≈ uc · ∇us + us · ∇uc. (14)

The fluctuating pressure p′ can be decomposed into a solenoidal pressure ps and a compressible
pressure pc [1,9]: p′ = ps + pc, where the solenoidal pressure satisfies the Poisson equation,

∇2ps = −ρ0
∂us

i

∂xj

∂us
j

∂xi

. (15)

We consider the inviscid dynamical equations of density, velocity, and pressure as studied by
Ristorcelli [17]:

∂ρ

∂t
+ uj

∂ρ

∂xj

= −ρ
∂uj

∂xj

, (16)

∂ui

∂t
+ uj

∂ui

∂xj

= − 1

ρ

∂p

∂xi

+ fi, (17)

and
∂p

∂t
+ uj

∂p

∂xj

= −γp
∂uj

∂xj

, (18)
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where fi is assumed to be solenoidal. The effects of neglected dissipative terms are only significant
at relatively small scales [17,29].

We have the following exact relations for the solenoidal components of velocity and pressure:

∂us
j

∂xj

= 0 (19)

and




{
us

j

∂us
i

∂xj

}
= − 1

ρ0

∂ps

∂xi

, (20)

where 
 ≡ I − P . Here, I is the identity operator and P is the projection operator: P g ≡ g −
∇∇−2∇ · g. Thus, 
g = ∇∇−2∇ · g. After applying the projection operator P to the velocity
equation, we obtain

∂us
i

∂t
+ P

{
us

j

∂us
i

∂xj

}
= fi. (21)

After applying the relations (9)–(12), we obtain the equations for the fluctuations of density and
pressure:

∂ρ ′

∂t
+ us

j

∂ρ ′

∂xj

≈ −ρ0

∂uc
j

∂xj

(22)

and

∂p′

∂t
+ us

j

∂p′

∂xj

≈ −γp0

∂uc
j

∂xj

. (23)

The equation of the compressible velocity component can be obtained by applying the operator 


to the velocity equation as

∂uc
i

∂t
+ 


{
us

j

∂uc
i

∂xj

+ uc
j

∂us
i

∂xj

}
≈ − 1

ρ0

∂pc

∂xi

+ 


{
ρ ′

ρ2
0

∂p′

∂xi

}
. (24)

To obtain Eq. (24), we extracted both 
{us
j

∂us
i

∂xj
} and − 1

ρ0

∂ps

∂xi
terms according to Eq. (20). Here, we

also used the approximation relations (13) and (14).
We assume that the fluid is nearly isentropic so that the density and pressure are related as

ρ ′ ≈ ρ0p
′/γp0. Then we obtain




{
ρ ′

ρ2
0

∂p′

∂xi

}
≈ 1

2γp0ρ0

∂p′2

∂xi

. (25)

We show the updated equations for the compressible velocity and compressible pressure as
follows:

∂uc
i

∂t
+ 


{
us

j

∂uc
i

∂xj

+ uc
j

∂us
i

∂xj

}
≈ − 1

ρ0

∂pc

∂xi

+ 1

2γp0ρ0

∂p′2

∂xi

(26)

and

∂pc

∂t
+ us

j

∂pc

∂xj

≈ −γp0

∂uc
j

∂xj

−
(

∂ps

∂t
+ us

j

∂ps

∂xj

)
. (27)

It is worth noting that Eqs. (26) and (27) governing the compressible components of velocity
and pressure are valid under the assumption of a small turbulent Mach number, including both the
pseudosound scenario [17] and acoustic scenario [16] of weakly compressible turbulence. Here, we
propose the following scenario for solenoidally forced stationary weakly compressible turbulence
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in a cubic box: (1) At a given Taylor Reynolds number, as the turbulent Mach number becomes
infinitesimal, the flow is dominated by the pseudosound relationship; and (2) generally, for the fully
developed turbulence at a large enough Taylor Reynolds number, there exists a critical length scale
lc(Mt ) that depends on the turbulent Mach number. The pseudosound relationship is valid at small
scales l < lc and the acoustic relationship is valid at large scales l > lc. The idea that acoustic modes
usually dominate at large scales is not new and can be found in previous studies on the acoustic waves
generated by turbulence [30–32]. An improved EDQNM model by Fauchet and Bertoglio [27] also
indicates that acoustic modes dominate at large scales and pseudosound modes dominate at smaller
scales. Here, we will study the critical condition for the transition between two types of modes and
the effect of the transition on the statistics of isotropic turbulence.

Now, we remind the reader briefly of the pseudosound relationship [17]. The pseudosound
theory was originally developed for compressible flow in the near field of a compact acoustic
source [17]. The fluid behaves as if it were incompressible. The dynamics of the compressible
velocity and compressible pressure are fully determined by incompressible velocity. According to
the pseudosound relationship [17], we have

uc ∼ M2
t us � us , (28)

pc ∼ M2
t ps � ps. (29)

By noting that p0 = O[(γM2)−1], we obtain the following approximations for uc and pc from
Eqs. (26) and (27):

γp0

∂uc
j

∂xj

≈ −
(

∂ps

∂t
+ us

j

∂ps

∂xj

)
, (30)

1

ρ0

∂pc

∂xi

≈ −
(

∂uc
i

∂t
+ 


{
us

j

∂uc
i

∂xj

+ uc
j

∂us
i

∂xj

})
+ 1

2γp0ρ0

∂(ps)2

∂xi

. (31)

However, here we consider the stationary compressible turbulence in a cubic box, which is different
from the compressible flow in the near field of a compact acoustic source. We need to investigate
the validity of this relationship. Thus, we propose a type of decomposition for the compressible
velocity and compressible pressure: uc = ucs + ucc and pc = pcs + pcc. Here, ucs and pcs are the
pseudosound components of velocity and pressure. ucc and pcc are the acoustic components of
velocity and pressure, whose magnitudes signify the deviation of compressible turbulence from the
pseudosound relationship.

The pseudosound components of velocity and pressure are governed by Eqs. (30) and (31):

γp0

∂ucs
j

∂xj

= −
(

∂ps

∂t
+ us

j

∂ps

∂xj

)
, (32)

1

ρ0

∂pcs

∂xi

= −
(

∂ucs
i

∂t
+ 


{
us

j

∂ucs
i

∂xj

+ ucs
j

∂us
i

∂xj

})
+ 1

2γp0ρ0

∂(ps)2

∂xi

. (33)

To be clearer, the pseudosound velocity and pressure are determined by incompressible velocity in
the following manner:

ucs = − 1

γp0
∇∇−2

(
∂ps

∂t
+ us · ∇ps

)
, (34)

pcs = (ps)2

2γp0
− ρ0∇−2∇ ·

(
∂ucs

∂t
+ us · ∇ucs + ucs · ∇us

)
. (35)

We define the energy Kcs of the pseudosound velocity and the variance Kcs
p of the pseudosound

pressure, respectively, by Kcs = 〈(ucs)2/2〉 and Kcs
p = 〈(pcs)2〉. It is easily found from the order

estimates (28) and (29) that Kcs/Ks ∼ O(M4
t ) and Kcs

p /Ks
p ∼ O(M4

t ).
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Let us consider the spectra of the pseudosound components of velocity and pressure: Ecs(k)
and Ecs

p (k), where
∫ ∞

0 Ecs(k)dk = 〈(ucs)2〉/2 and
∫ ∞

0 Ecs
p (k)dk = 〈(pcs)2〉. It is worth noting that

the dimension of ps/ρ0 is the same as the dimension of (us)2. Specifically, according to the
dimensional analysis method, we denote the characteristic time scale as τk at wave number k.
The normalized solenoidal pressure at wave number k satisfies the relation: ps

k/ρ0 ∼ 1/(k2τ 2
k ).

The normalized pseudosound component of velocity at wave number k satisfies the relation
ucs

k p0/ρ0 ∼ ps/(ρ0kτk) ∼ 1/(k3τ 3
k ). The spectrum of the pseudosound component of velocity

satisfies the relation Ecs(k) ∼ (ucs
k )2/k ∼ ρ2

0/p
2
0/(k7τ 6

k ). It is worth noting that the characteristic
time scale τk satisfies the relation τk ∼ ε−1/3k−2/3 [33–35], for wave number k in the inertial range,
where ε is the dissipation rate of velocity. Thus, we obtain Ecs(k) ∼ ρ2

0/p
2
0ε

2k−3 in the inertial
range. Similarly, we obtain Ecs

p (k) ∼ (pcs
k )2/k ∼ ρ4

0/p2
0/(k9τ 8

k ) and Ecs
p (k) ∼ ρ4

0/p2
0ε

8/3k−11/3 in
the inertial range.

We also notice the relation ρ2
0/p2

0 ∼ M4
t /(u′)4 ∼ M4

t /(LIε)4/3, where LI is the integral length
scale of velocity. Thus, we obtain new formulations for the inertial scaling behaviors of the spectra
Ecs(k) and Ecs

p (k) as

Ecs(k) = CPS
v M4

t L
−4/3
I ε2/3k−3, (36)

Ecs
p (k) = CPS

p ρ2
0M4

t L
−4/3
I ε4/3k−11/3. (37)

Thus, in the pseudosound-mode-dominated regime, the spectra of the compressible velocity and
compressible pressure are expected to obey the following scaling behaviors in the inertial range

Ec(k) ∼ M4
t k−3, (38)

Ec
p(k) ∼ M4

t k−11/3. (39)

Our theoretical relations (38) and (39) based on the pseudosound theory [17] are consistent with
those of an improved EDQNM closure model developed by Fauchet and Bertoglio [1,27].

IV. NUMERICAL METHOD AND SYSTEM PARAMETERS

The governing equations of compressible turbulence are solved in conservative form in a cubic
box with side lengths 2π , by using periodic boundary conditions in all three spatial directions.
For numerical method, we apply the eighth-order central compact finite difference scheme [36] for
weakly compressible turbulence, where Mt � 0.4, and apply a hybrid compact-weighted essentially
nonoscillatory (compact-WENO) scheme [28] for moderately and highly compressible turbulence,
where Mt � 0.5. The hybrid scheme combines the eighth-order central compact finite difference
scheme [36] for smooth regions and the seventh-order WENO scheme [37] for shock regions. Some
grid refinement studies of the hybrid scheme for a turbulent Mach number of approximately 1.0
were performed in previous works [13,14].

The velocity field is forced by fixing the energy spectrum within the two lowest wave-number
shells. The force is applied only to the solenoidal component of the velocity field. A spatially
uniform thermal cooling 	 is employed to sustain the internal energy in a statistically steady state.
The magnitude of thermal cooling is set according to the constraint that the internal energy equals a
constant [28].

We summarize the overall parameters of all the simulations in Tables I–III. The Kolmogorov
length scale is defined by η = [〈μ/(Reρ)〉3/ε]

1/4
, where the dissipation rate per unit mass is given

by ε = 〈σijSij /(Reρ)〉. The strain rate tensor Sij is defined by Sij = 1
2 ( ∂ui

∂xj
+ ∂uj

∂xi
). The magnitude

of Kolmogorov length scale η represents the dissipation-range resolution, which plays a significant
role in the grid convergence of velocity statistics in DNS [38]. We show that the resolution parameter
η/�x is in the range 0.58 < η/�x < 1.05 in our simulations, where �x denotes the gridding length
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TABLE I. Simulation parameters and resulting flow statistics for 643 and 1283 grid resolutions.

Resolution Reλ Mt η/�x LI/η λ/η S3 D = εLI /(u′/
√

3)3

643 38 0.049 0.91 20.8 12.6 −0.36 0.75
643 38 0.073 0.91 20.8 12.6 −0.36 0.74
643 38 0.098 0.91 20.8 12.6 −0.37 0.74
643 38 0.15 0.91 20.8 12.6 −0.37 0.74
643 38 0.20 0.91 20.8 12.6 −0.35 0.74
643 39 0.26 0.92 20.7 12.7 −0.35 0.73
643 39 0.34 0.92 20.7 12.7 −0.34 0.73
643 39 0.43 0.92 20.7 12.6 −0.34 0.73
643 39 0.52 0.92 20.7 12.7 −0.31 0.72
643 39 0.69 0.92 20.6 12.4 −0.35 0.72
643 37 0.88 0.91 20.7 11.8 −0.57 0.74
1283 78 0.055 0.72 45.1 17.5 −0.45 0.52
1283 79 0.081 0.72 45.0 17.7 −0.45 0.51
1283 77 0.11 0.71 45.2 17.5 −0.46 0.52
1283 78 0.16 0.71 45.2 17.5 −0.44 0.52
1283 78 0.22 0.72 45.1 17.5 −0.45 0.52
1283 78 0.29 0.72 45.1 17.6 −0.44 0.51
1283 79 0.38 0.72 45.1 17.7 −0.43 0.51
1283 79 0.48 0.73 44.8 17.6 −0.42 0.50
1283 81 0.58 0.73 44.7 17.7 −0.41 0.49
1283 81 0.76 0.75 44.3 17.3 −0.58 0.47
1283 81 0.96 0.76 44.1 16.7 −1.12 0.46

TABLE II. Simulation parameters and resulting flow statistics for 2563 and 5123 grid resolutions.

Resolution Reλ Mt η/�x LI/η λ/η S3 D = εLI /(u′/
√

3)3

2563 111 0.057 0.83 73.2 20.8 −0.48 0.49
2563 110 0.086 0.82 73.2 20.8 −0.48 0.49
2563 111 0.11 0.83 73.1 20.8 −0.49 0.49
2563 111 0.17 0.83 73.1 20.8 −0.49 0.49
2563 110 0.23 0.81 73.2 20.7 −0.49 0.49
2563 112 0.30 0.83 72.9 21.0 −0.48 0.48
2563 112 0.40 0.83 72.9 20.9 −0.47 0.48
2563 113 0.50 0.83 72.8 20.9 −0.46 0.47
2563 115 0.61 0.84 72.3 21.0 −0.46 0.46
2563 114 0.81 0.85 71.5 20.3 −0.80 0.45
2563 114 1.01 0.87 71.3 19.5 −1.54 0.43
5123 172 0.057 0.83 141 25.9 −0.53 0.46
5123 176 0.086 0.82 145 26.2 −0.54 0.45
5123 174 0.11 0.87 135 25.9 −0.52 0.44
5123 174 0.17 0.87 136 25.8 −0.52 0.46
5123 176 0.23 0.86 137 26.0 −0.52 0.46
5123 178 0.30 0.83 141 26.3 −0.52 0.46
5123 178 0.40 0.84 140 26.2 −0.51 0.45
5123 176 0.50 0.86 136 25.9 −0.50 0.44
5123 177 0.60 0.86 136 25.9 −0.50 0.44
5123 176 0.81 0.88 134 25.2 −0.82 0.43
5123 176 1.01 0.90 133 24.3 −1.69 0.41
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TABLE III. Simulation parameters and resulting flow statistics for 10243 grid resolution.

Resolution Reλ Mt η/�x LI/η λ/η S3 D = εLI /(u′/
√

3)3

10243 350 0.11 0.64 371 36.5 −0.55 0.41
10243 355 0.17 0.64 374 36.8 −0.55 0.43
10243 369 0.23 0.62 382 37.7 −0.56 0.41
10243 361 0.30 0.58 395 37.4 −0.55 0.44
10243 365 0.40 0.59 390 37.6 −0.54 0.43
10243 253 0.51 1.00 233 31.2 −0.53 0.44
10243 262 0.60 1.02 231 31.6 −0.53 0.42
10243 261 0.79 1.05 229 30.9 −0.83 0.41
10243 250 1.02 1.04 226 29.1 −1.95 0.42

in each direction. Consequently, the resolution parameter kmaxη is in the range 1.82 < kmaxη < 3.30,
where the largest wave number kmax is half of the number of grids N in each direction: kmax =
N/2 = π/�x. For a high turbulent Mach number Mt � 0.5, the resolution parameter η/�x > 0.7
and kmaxη > 2.2 in our numerical simulations. It was found that the resolutions of η/�x � 0.5 are
sufficient for the convergence of high-order moments of velocity gradients, for Mt � 0.6 [9]. We note
that the highest turbulent Mach number is about 1.0 in our numerical simulations. Most shocklets
are weak and have finite thickness at the scales typically comparable to the Kolmogorov length
scale for Mt ≈ 1.0 [14]. In order to resolve most of the shocklets, we choose higher resolution
parameters kmaxη > 2.2 in compressible turbulence as compared to kmaxη ≈ 1 in incompressible
isotropic turbulence [14]. Previous studies showed that convergent small-scale statistics can be
obtained at resolutions kmaxη ≈ 2.0 at the turbulent Mach number Mt = 1.0 [13,14]. Therefore, the
overall statistics should be well converged in our numerical simulations.

The integral length scale LI is defined by

LI = 3π

2(u′)2

∫ ∞

0

E(k)

k
dk, (40)

where E(k) is the spectrum of kinetic energy per unit mass, namely,
∫ ∞

0 E(k)dk = (u′)2/2. We also
calculate the velocity derivative skewness S3, which is defined by

S3 = [〈(∂u1/∂x1)3 + (∂u2/∂x2)3 + (∂u3/∂x3)3〉]/3

{〈(∂u1/∂x1)2 + (∂u2/∂x2)2 + (∂u3/∂x3)2〉/3}3/2
. (41)

We present that for relatively small turbulent Mach numbers Mt � 0.6, values of S3 are similar to
typical values of −0.6 to −0.4 in incompressible turbulence [39]. At higher turbulent Mach numbers
Mt � 0.8, the magnitude of S3 becomes larger, due to the formation of shocklets in compressible
turbulence [13]. We also calculate the normalized dissipation rate: D = εLI/(u′/

√
3)3. The factor√

3 is due to the fact that u′ is the root mean square value of the velocity magnitude in our study,
which is different from the definition of the root mean square value of the velocity component in
incompressible turbulence. We find that the normalized dissipation D decreases with the increase
of Taylor Reynolds number and approaches an asymptotic value at high Taylor Reynolds numbers.
The typical values of D are in the range of 0.4 < D < 0.5 at Taylor Reynolds numbers Reλ � 110.
These observations are consistent with previous studies in incompressible turbulence [40,41] and
compressible turbulence [9].

V. NUMERICAL RESULTS ON SPECTRA

A. Transition between the pseudosound mode and the acoustic mode

Now we begin to study the transition between the pseudosound mode and the acoustic mode
by numerical simulations. We plot Ecc(k)/Ec(k) as a function of the normalized wave number kη

013403-9



JIANCHUN WANG, TOSHIYUKI GOTOH, AND TAKESHI WATANABE

+

+

+

+

+
+

o o
o

o

o

o
o

o o

+

o

kη

E
cc

(k
) 

/E
c (k

) 

10-2 10-1 100
10-2

10-1

100

101
Mt=0.23
Mt=0.3
Mt=0.4

Reλ≈350:  Solid
Reλ≈180:  Dashed
Reλ≈110:  Dash-dotted

(a)

k/kc

E
cc

(k
) 

/E
c (k

) 

0 0.5 1 1.5 2
0

0.5

1

1.5
Mt=0.23, Reλ≈110
Mt=0.3,   Reλ≈110
Mt=0.4,   Reλ≈110
Mt=0.23, Reλ≈250
Mt=0.3,   Reλ≈250
Mt=0.4,   Reλ≈250
Mt=0.23, Reλ≈350
Mt=0.3,   Reλ≈350
Mt=0.4,   Reλ≈350

(b)

FIG. 1. The ratio of Ecc(k) to Ec(k) as a function of (a) kη, and (b) k/kc.

at three different turbulent Mach numbers Mt = 0.23, 0.30, and 0.40 and at three different Taylor
Reynolds numbers Reλ ≈ 110, 180, and 350 in Fig. 1(a). The curves for three Taylor Reynolds
numbers almost overlap at each turbulent Mach number Mt , indicating that Ecc(k)/Ec(k) is nearly
a universal function of the normalized wave number kη at turbulent Mach number Mt � 0.4,
for the case of purely solenoidal forcing. As Mt becomes smaller, the acoustic-mode-dominated
wave-number range becomes narrower. It is easier for acoustic waves to be generated at a larger
turbulent Mach number and at a smaller wave number. In particular, the acoustic mode always
dominates at kη = 0.01 for the three turbulent Mach numbers.

We define the critical wave number at small turbulent Mach numbers Mt � 0.4 as follows:

Ec(kc; Mt ) = 2Ecs(kc; Mt ), (42)

where the spectrum Ec(k) of the compressible velocity uc is twice the spectrum Ecs(k) of the
pseudosound velocity ucs at the critical wave number kc. Generally, for k < kc, the acoustic
mode dominates over the pseudosound mode: Ecc(k) > Ecs(k). For k > kc, the pseudosound mode
dominates over the acoustic mode: Ecs(k) > Ecc(k). Similarly, at a given wave number k, we can find
a critical turbulent Mach number Mtc(k) where the compressible velocity field satisfies following
condition:

Ec(k; Mtc) = 2Ecs(k; Mtc). (43)

The acoustic mode dominates over the pseudosound mode at larger turbulent Mach numbers Mt >

Mtc, while the pseudosound mode dominates over the acoustic mode at smaller turbulent Mach
numbers Mt < Mtc.

We plot Ecc(k)/Ec(k) as a function of k/kc in Fig. 1(b). We then show that values of Ecc(k)/Ec(k)
are well rescaled in terms of kc near the transitional point k ∼ kc: All values of Ecc(k)/Ec(k) almost
overlap for the wave number k close to the critical wave number kc. Moreover, the acoustic mode
dominates at small wave numbers, Ecc(k)/Ec(k) ≈ 1 as wave number k decreases from kc, and
becomes negligible at large wave numbers, Ecc(k)/Ec(k) ≈ 0 as wave number k increases from
kc. To sum up, we have demonstrated that in the case of purely solenoidal forcing, the transition
between the pseudosound mode and the acoustic mode in the inertial range is quite universal for
different Taylor Reynolds numbers Reλ and different turbulent Mach numbers Mt : (1) For a fixed
small turbulent Mach number Mt � 0.4, the normalized spectrum Ecc(k)/Ec(k) depends only on
the normalized wave number kη and (2) near the transitional point k/kc ∼ 1, the behavior of the
normalized spectrum Ecc(k)/Ec(k) can be described by a universal function of k/kc that is not
affected by Mt .
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FIG. 2. (a) The critical turbulent Mach number as a function of the normalized wave number. (b) The
normalized critical wave number as a function of the turbulent Mach number.

In Fig. 2(a), we plot the critical turbulent Mach number Mtc as a function of the normalized wave
number kη. The critical turbulent Mach number is calculated from the simulated flows by linear
interpolation. Specifically, we estimate Mtc as Mtc = (r1Mt2 + r2Mt1)/(r1 + r2), where Mt1 < Mt2,
r1 = 2 − Ec(k; Mt1)/Ecs(k; Mt1) > 0, and r2 = Ec(k; Mt2)/Ecs(k; Mt2) − 2 > 0. For example, the
critical Mach number Mtc in the range of 0.11 < Mtc < 0.17 is obtained from the simulated flows at
Mt1 = 0.11 and Mt2 = 0.17 by using linear interpolation. In Fig. 2(a), we show that the Mtc curves at
different Taylor Reynolds numbers almost collapse into a single universal function of kη: (1) For the
dissipation range of kη � 0.3, the critical turbulent Mach number is close to a constant 0.4, Mtc ≈
0.4, and (2) for the inertial range of kη � 0.3, the critical turbulent Mach number decreases with the
decrease of wave number. We also observe a scaling behavior: Mtc ∼ k1/3 in a short range of wave
number 0.02 � kη � 0.2. We find that the acoustic mode becomes dominant for Mt � Mtc. Partic-
ularly, we pointed out that in the developed acoustic region Mt � 0.4, the acoustic mode dominates
in both the inertial range and dissipation range. The viscosity effect becomes important at Mt � 0.4,
where the pseudosound mode dominates in the dissipation range. In the inertial range, Mtc decreases
with the decrease of kη, implying that it is easier to generate the acoustic mode at larger scales.

In Fig. 2(b), we show the normalized critical wave number kcη as a function of turbulent Mach
number at different Taylor Reynolds numbers. We observe a scaling relation kc ∼ M3

t in a short
range of turbulent Mach number 0.17 � Mt � 0.4. We show that at a given turbulent Mach number
Mt � 0.4, the entire spectrum of the compressible velocity can be divided into two distinct parts:
(1) the acoustic mode dominates at large scales k � kc and (2) the pseudosound mode dominates at
small scales k � kc. As the turbulent Mach number becomes smaller, the wave-number range of the
pseudosound mode increases quickly. Thus, for fully developed compressible turbulence, at a given
Reynolds number, the pseudosound mode will eventually dominate over the entire wave-number
range as Mt decreases, giving rise to the following spectrum scaling for the compressible velocity,
Ec(k) ∼ M4

t k−3, as shown in Eq. (38). It is worth noting that to understand the transition between
the pseudosound mode and the acoustic mode in the case of purely solenoidal forcing, we only
need to study the weakly compressible turbulence at Mt � 0.4. For higher turbulent Mach numbers
Mt � 0.5, the pseudosound mode no longer dominates at any scale.

We plot some instantaneous snapshots of velocity divergence in a subdomain with 3843

grids, for the simulations with 10243 grid resolution at different turbulent Mach numbers
Mt = 0.23, 0.3, 0.4, 0.6, 0.8, and 1.0 in Fig. 3. We observe that as the turbulent Mach increases
from Mt = 0.23, the isosurfaces of θ = −2θ ′ become slightly flatter at Mt = 0.4, indicating that
some localized shocklets are generated at Mt = 0.4 [3]. The length scales of shocklets are quite
small at Mt = 0.4 [3]. We also show that as the turbulent Mach number increases from Mt = 0.4,
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FIG. 3. Isosurfaces of velocity divergence in a subdomain with 3843 grids, for the simulations with 10243

grid resolution at different turbulent Mach numbers Mt = 0.23, 0.3, 0.4, 0.6, 0.8, and 1.0 for Reλ ≈ 350 and
250.
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FIG. 4. Compensated spectrum of velocity at Reλ ≈ 180, 250, and 350. The solid line and dash-dotted line
represent the compensated spectrum of velocity in incompressible isotropic turbulence at Reλ ≈ 180 and 430
respectively [38,42].

the thickness of the isosurface becomes smaller, and the transverse length scale becomes larger at
Mt = 0.8, implying that the shocklets become stronger.

B. Spectra of velocity and its compressible component

In Fig. 4, we plot the compensated spectrum of velocity E(k)ε−2/3k5/3 at different turbulent
Mach numbers and at Reλ ≈ 180, 250, and 350. We can identify an inertial range with a
Kolmogorov constant of approximately 1.6, similar to the velocity spectrum of incompressible
turbulence. The compensated spectrum curves overlap in all scales for Mt � 0.8. At Mt = 1.0, the
compensated spectrum of velocity is slightly larger at small scales kη > 1.0, owing to the effect
of the compressibility. In addition, we plot the velocity spectrum of incompressible turbulence at
Reλ ≈ 180 and 430 [38,42]. We show that the solid and dashed-dotted lines overlap at high k. We
also find that the velocity spectrum of compressible turbulence at turbulent Mach numbers Mt � 0.8
almost overlap with the velocity spectrum of incompressible turbulence. The observations of the
velocity spectrum are consistent with previous studies [13,14,24].

According to previous analysis, for weakly compressible turbulence, the statistics of the
compressible velocity component can be well described by the pseudosound constitutive
relationship at relatively small scales, where the inertial spectrum Ec(k) is given by Eq. (36). We
plot the compensated spectrum Ec(k)M−4

t L
4/3
I ε−2/3k3 of the compressible velocity at Reλ ≈ 180

and 350 in Figs. 5(a) and 6(a). The solid line and dash-dotted line represent the compensated
spectrum Ecs(k)M−4

t L
4/3
I ε−2/3k3 for the pseudosound velocity ucs . We do not observe a clear

and definite plateau of the compensated spectrum Ecs(k)M−4
t L

4/3
I ε−2/3k3 at Reλ ≈ 180. At

Reλ ≈ 350, we can see a very narrow plateau: Ecs(k)M−4
t L

4/3
I ε−2/3k3 ≈ CPS

v in the range of
0.015 � kη � 0.03, where the constant CPS

v ≈ 0.55. A similar observation has been reported for
the pressure spectrum of incompressible turbulence [43,44]. A misleading k−5/3 scaling of the
pressure spectrum can be observed for low and moderate Taylor Reynolds numbers, mainly due
to the spectral bump at the end of the inertial range. The appearance of a k−7/3 scaling is apparent
only at Reλ � 400 as shown by Gotoh and Fukayama [43] and Tsuji and Ishihara [44]. Since the
pseudosound velocity component is closely related to the solenoidal pressure, it is reasonable that
we cannot observe a wide scaling range at Reλ � 350.

We plot the compensated spectrum of the compressible velocity component at Mt = 0.11 and
Reλ ≈ 110, 250, and 350 in Fig. 7. We find that the compensated spectrum does not overlap
at small scales for different Taylor Reynolds numbers. This is due to the low Reynolds number
effect. We expect that the compensated spectrum will overlap at small scales for large enough
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FIG. 5. Compensated spectrum of the compressible velocity at Reλ ≈ 180. (a) Ec(k)M−4
t L

4/3
I ε−2/3k3.

The solid line and dash-dotted line represent the compensated spectrum of the pseudosound velocity
Ecs(k)M−4

t L
4/3
I ε−2/3k3 at Mt = 0.057 and 0.11 respectively. (b) Ec(k)M−2

t ε−2/3k5/3.

Taylor Reynolds numbers. The behavior of the compensated spectrum of the compressible velocity
component at small scales is similar to the behavior of the compensated spectrum of the pressure in
incompressible turbulence [43]. The compensated spectrum of the pressure overlap at small scales
only for Reλ > 400 in incompressible turbulence. Gotoh and Fukayama [43] reported a small plateau
between 0.007 � kη � 0.04 for the compensated pressure spectrum at Reλ > 300. Here, we report
a k−5/3 scaling of velocity spectrum, and a k−3 scaling of the spectrum of the compressible velocity
component in the range of 0.007 � kη � 0.04 at Mt = 0.11 and Reλ ≈ 350. The compensated
spectrum of the pseudo-sound velocity component at Mt = 0.11 and Reλ ≈ 110, 250, and 350 is
also plotted in Fig. 7, which exhibits a very narrow plateau between 0.015 � kη � 0.03 at Mt = 0.11
and Reλ ≈ 350.

From Figs. 5(a) and 6(a), we observe that the compensated spectrum of the compressible velocity
has an overlapped region with the compensated spectrum of the pseudosound velocity, at low
turbulent Mach numbers and at high wave numbers. In particular, the two spectra overlap only for
a narrow range kη � 0.4 at Mt = 0.4. As the turbulent Mach number decreases, the overlapping
region of the two spectra gradually extends into the inertial range. For the turbulent Mach number
of 0.057, the compressible velocity spectrum satisfies the pseudosound constitutive relationship
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FIG. 6. Compensated spectrum of the compressible velocity at Reλ ≈ 250 and 350.
(a) Ec(k)M−4

t L
4/3
I ε−2/3k3. The solid line and dash-dotted line represent the compensated spectrum of

the pseudosound velocity Ecs(k)M−4
t L

4/3
I ε−2/3k3 at Mt = 0.11 and 0.23 respectively. (b) Ec(k)M−2

t ε−2/3k5/3.
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Ec(k) = Ecs(k) over the entire range of wave numbers. Thus, for any given Taylor Reynolds number,
we infer that as turbulent Mach number becomes much smaller, the pseudosound mode will dominate
over acoustic mode at all scales. It is important to note that if the Taylor Reynolds number is large
enough, there will be a M4

t k−3 scaling for the spectrum Ec(k) of the compressible velocity when
turbulent Mach number is very small. The same M4

t k−3 scaling for the spectrum Ec(k) has been
obtained by an EDQNM model [1,27].

Generally, for weakly compressible turbulence, the spectrum of the compressible velocity may
not obey a single scaling in the inertial range. Considering an ideal situation of a large enough
Taylor Reynolds number, we can identify a critical wave number kc for the transition between
the pseudosound mode and acoustic mode. For k � kc in the inertial range, we already showed that
Ec(k) ∼ M4

t k−3 according to the pseudosound relationship and the classical Kolmogorov turbulence
theory. Until now, little knowledge has been obtained on the behavior of Ec(k) at k � kc in the inertial
range. The mixed scaling relations in the inertial range of the compressible velocity spectrum have
also been revealed by an EDQNM model [1,27]. The analysis on the EDQNM model provided three
different spectral zones: an acoustic region, a transition region, and a pseudosound region.

For the fully developed acoustic region at high turbulent Mach numbers, we assume that the
ratio of the compressible velocity to the solenoidal velocity fluctuations is proportional to the
turbulent Mach number Mt [29]. We also assume that the inertial scaling behavior of the spectrum
of the compressible velocity is similar to the spectrum of the solenoidal velocity. Based on these
assumptions, we show that the spectrum of the compressible velocity satisfies Ec(k) ∼ M2

t ε2/3k−5/3

at high turbulent Mach numbers. We plot the compensated spectrum Ec(k)M−2
t ε−2/3k5/3 at different

turbulent Mach numbers in Figs. 5(b) and 6(b). We observe that there is an excellent collapse
of Ec(k)M−2

t ε−2/3k5/3 at small wave numbers for different turbulent Mach numbers Mt � 0.3,
which demonstrates that the acoustic mode amplitude gives rise to a Mt scaling of the compressible
velocity. We also show a narrow plateau of the spectrum for large turbulent Mach numbers Mt � 0.5:
Ec(k)M−2

t ε−2/3k5/3 ≈ 0.15. A similar narrow plateau of the spectrum of the compressible velocity
was observed in previous works for Mt of approximately 1.0 [13,14]. In a previous DNS study, Donzis
and Jagannathan [24] plotted the normalized energy spectrum Ec(k)ε−2/3k5/3 of the compressible
velocity at Mt = 0.1, 0.3, 0.6. They did not give any definite scaling exponent of the compressible
spectrum Ec(k) in the inertial range. Their figure showed a narrow plateau of the normalized spectrum
of the compressible velocity at Mt = 0.6. Our numerical result is similar at Mt = 0.6. It is not easy
to observe a clear scaling behavior of Ec(k) at Mt = 0.3 from numerical simulations, even for the
situation of large scale direct numerical simulation using the grid resolution of 20483 performed by
Donzis and Jagannathan [24].

013403-15



JIANCHUN WANG, TOSHIYUKI GOTOH, AND TAKESHI WATANABE

+
+ +

++ ++++++++++++++++++++++++++++

kη

E
p(

k)
ε−4

/3
k7/

3 ρ 0−2

10-3 10-2 10-1 10010-3

10-2

10-1

100

101

102

103

Mt=0.11
Mt=0.17
Mt=0.23
Mt=0.3
Mt=0.4+

k2/3

Reλ≈350

8.0

(a)

kη

E
p(

k)
M

t− 2
ε− 2

/3
k5/

3 (2
γρ

0p
0)−1

10-2 10-1 10010-5

10-4

10-3

10-2

10-1

100

101

Mt=0.5
Mt=0.6
Mt=0.8
Mt=1.0

Reλ≈250

0.2

(b)

FIG. 8. Compensated spectrum of pressure at different turbulent Mach numbers for Reλ ≈ 350 and 250.

C. Spectra of pressure, density, and temperature

We consider the spectrum of pressure Ep(k) at different Mach numbers in compressible
turbulence, where the pressure spectrum obeys the relation

∫ ∞
0 Ep(k)dk = 〈(p − p0)2〉. A previous

study revealed that at low turbulent Mach numbers Mt < 0.3, the fluctuation of the compressible
pressure component is much smaller than its solenoidal counterpart, while at high turbulent Mach
numbers Mt > 0.3, the fluctuation of the compressible pressure component has the same order of
the magnitude as the solenoidal component [9]. Thus, we need to normalize the pressure spectrum
in different manners for different turbulent Mach numbers.

For the case of a low turbulent Mach number, we consider the following normalization of
the pressure spectrum: Ep(k)ε−4/3k7/3ρ−2

0 , which is the same as the case of incompressible
turbulence [43]. In incompressible turbulence, the density is constant and does not appear in
the normalization. We plot the compensated spectrum of pressure at Reλ ≈ 350 and at turbulent
Mach number ranging from 0.11 to 0.4 in Fig. 8(a). At Mt � 0.3, the compensated pressure
spectrum overlaps with one another and exhibits a small plateau between 0.015 � kη � 0.04:
Ep(k)ε−4/3k7/3ρ−2

0 ≈ 8.0. We also observe a bump with the slope close to 2/3 in the range of
0.04 � kη � 0.2, indicating that the pressure spectrum exhibit a k−5/3 scaling at the end of the
inertial range. The observations are consistent with the case of incompressible turbulence [43]. A
previous DNS study showed a scaling of Ep(k) ∼ k−5/3 at relatively low Taylor Reynolds numbers
in weakly compressible isotropic turbulence [24].

From Fig. 8(a), we observe that at Mt = 0.4, the compensated pressure spectrum is larger than
those at low turbulent Mach numbers and does not exhibit any plateau. We note that the compensated
spectrum of the solenoidal pressure component at Mt = 0.4 is similar to that of the incompressible
turbulence. The difference of the compensated pressure spectrum between Mt = 0.4 and Mt � 0.3
can be attributed to the effect of the compressible pressure component. As turbulence Mach number
increases from Mt = 0.4, the impact of the compressible component on the pressure spectrum
becomes larger. According to the equipartition relation between the compressible velocity and
compressible pressure in the acoustic scenario [16], we assume that Ec

p(k) ∼ 2ρ2
0c2

0E
c(k), where c0

is the average speed of sound, Ec
p(k) is the spectrum of compressible pressure component, and Ec(k)

is the spectrum of compressible velocity component. The relation Ec
p(k) ∼ 2ρ2

0c2
0E

c(k) was verified
at the turbulent Mach numbers Mt = 0.3 and 0.6 by Jagannathan and Donzis [9]. Moreover, we
assume that the pressure spectrum Ep(k) has the same scaling as the spectrum of the compressible
pressure component Ec

p(k) at high turbulent Mach numbers. Thus, we have the relation Ep(k) ∼
2ρ2

0c2
0E

c(k). Provided the scaling of Ec(k) ∼ M2
t ε2/3k−5/3, we obtain Ep(k) ∼ 2γρ0p0M

2
t ε2/3k−5/3

at high turbulent Mach numbers.
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FIG. 9. Compensated spectra of density and temperature at different turbulent Mach numbers for Reλ ≈ 350
and 250.

In Fig. 8(b), we depict the compensated spectrum of pressure Ep(k)M−2
t ε−2/3k5/3(2γρ0p0)−1

at Reλ ≈ 250 and at a turbulent Mach number ranging from 0.5 up to 1.0. We observe a plateau
between 0.02 � kη � 0.1: Ep(k)M−2

t ε−2/3k5/3(2γρ0p0)−1 ≈ 0.2. The constant 0.2 is slightly larger
than the constant 0.15 for the case of the compensated spectrum of the compressible velocity. At
small scales kη � 0.2, the compensated spectrum of pressure increases with the increase in turbulent
Mach number, which is similar to the behavior of the compensated spectrum of the compressible
velocity. The k−5/3 scaling of the pressure spectrum at high turbulent Mach numbers Mt � 0.5 is
consistent with a previous study by Donzis and Jagannathan [24]. They reported the k−5/3 scaling
of the pressure spectrum at the turbulent Mach number Mt = 0.6.

We consider the spectra of density and temperature: Eρ(k) and ET (k), where
∫ ∞

0 Eρ(k)dk =
〈(ρ − ρ0)2〉 and

∫ ∞
0 ET (k)dk = 〈(T − T0)2〉. In previous analysis, we have assumed the isentropic

relation γρ ′/ρ0 = p′/p0 for the fluctuations of density and pressure: ρ ′ = ρ − ρ0 and p′ =
p − p0 at a low turbulent Mach number. Similarly, there is the isentropic relation [γ /(γ −
1)]T ′/T0 = p′/p0 for the fluctuations of temperature and pressure, where T ′ = T − T0. We
model the spectra of density and temperature based on the isentropic relations as Eρ(k) =
Ep(k)ρ2

0p
−2
0 γ −2 and ET (k) = Ep(k)T 2

0 p−2
0 [γ /(γ − 1)]−2. Consequently, we have the following

scaling relations: (1) Eρ(k) ∼ (γp0)−2ρ4
0ε

4/3k−7/3 and ET (k) ∼ [γp0/(γ − 1)]−2(T0ρ0)2ε4/3k−7/3

for low turbulent Mach numbers Mt � 0.3 and (2) Eρ(k) ∼ 2ρ3
0 (γp0)−1M2

t ε2/3k−5/3 and ET (k) ∼
2(γ − 1)2ρ0T

2
0 (γp0)−1M2

t ε2/3k−5/3 for high turbulent Mach numbers Mt � 0.5.
In Figs. 9(a) and 9(c), we plot the compensated spectra of density and temperature:

Eρ(k)ε−4/3k7/3(γp0)2ρ−4
0 and ET (k)ε−4/3k7/3[γp0/(γ − 1)]2(T0ρ0)−2 at Reλ ≈ 350 and at a
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FIG. 10. Normalized spectra of the residual density and residual temperature at different turbulent Mach
numbers for Reλ ≈ 350 and 250.

turbulent Mach number ranging from 0.11 to 0.4. Similar to the compensated spectrum of
pressure, we observe a small plateau for the compensated spectra of density and temperature:
Eρ(k)ε−4/3k7/3(γp0)2ρ−4

0 ≈ 8.0 and ET (k)ε−4/3k7/3[γp0/(γ − 1)]2(T0ρ0)−2 ≈ 8.0 in the range of
0.015 � kη � 0.04, at a low turbulent Mach number Mt � 0.3. We observe a bump with a slope
close to 2/3 in the range of 0.04 � kη � 0.2 for the spectra of density and temperature. To sum up,
we have clarified that at a low turbulent Mach number Mt � 0.3, the spectra of pressure, density,
and temperature exhibit a k−7/3 scaling in the inertial range in solenoidally forced compressible
isotropic turbulence, similar to the spectrum of pressure in incompressible turbulence.

In Figs. 9(b) and 9(d), we plot the compensated spectra of density and temperature,
Eρ(k)M−2

t ε−2/3k5/3γp0(2ρ3
0 )−1 and ET (k)M−2

t ε−2/3k5/3γp0[2ρ0(γ − 1)2T 2
0 ]−1, at Reλ ≈ 250 and

at a turbulent Mach number ranging from 0.5 to 1.0. Similar to the compensated spectrum
of pressure, we observe a plateau for the compensated spectra of density and temperature,
Eρ(k)M−2

t ε−2/3k5/3γp0(2ρ3
0 )−1 ≈ 0.2 and ET (k)M−2

t ε−2/3k5/3γp0[2ρ0(γ − 1)2T 2
0 ]−1 ≈ 0.2, in the

range of 0.02 � kη � 0.1 at high turbulent Mach numbers Mt � 0.5. At small scales kη � 0.2, the
compensated spectra of density and temperature increase with the increase in turbulent Mach number.
The k−5/3 scaling of the spectra of density and temperature at high turbulent Mach numbers Mt � 0.5
is consistent with a previous study by Donzis and Jagannathan [24]. They reported the k−5/3 scaling
of the spectra of density and temperature at the turbulent Mach number Mt = 0.6.

To verify the isentropic relations among the fluctuations of pressure, density, and temper-
ature, we define the residual density and residual temperature as ρR = ρ ′ − ρ0p

′/(γp0) and
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FIG. 11. Normalized energy of the compressible velocity component Kc/Ks . Normalized energy of the
pseudosound velocity component Kcs/Ks at Reλ ≈ 180 is also plotted.

T R = T ′ − (γ − 1)T0p
′/(γp0). We consider the normalized spectra of the residual density

and residual temperature, ER
ρ (k)/Eρ(k) and ER

ρ (k)/Eρ(k), where
∫ ∞

0 ER
ρ (k)dk = 〈(ρR)2〉 and∫ ∞

0 ER
T (k)dk = 〈(T R)2〉. In Fig. 10, we plot the normalized spectra of the residual density and

residual temperature at Reλ ≈ 350 and 250 for different turbulent Mach numbers. We show that
the normalized spectra of the residual density and residual temperature are much smaller than 1.0
in the range of kη � 0.1, indicating that the spectra of density and temperature exhibit the same
inertial scaling as the spectrum of pressure in compressible turbulence. The normalized spectra of
the residual density and residual temperature are close to 1.0 at small scales kη ≈ 1, indicating that
the isentropic relations are no longer valid at small scales kη ≈ 1. The violation of the isentropic
relations at small scales can be attributed to the effect of the thermal diffusion terms and viscous
dissipation terms in the governing equations of pressure and temperature.

VI. NUMERICAL RESULTS ON ONE POINT STATISTICS

A. Mach number scaling of the energy and dissipation rate of the compressible velocity component

The previous arguments about the spectra help us to interpret the dependency of the various
one-point statistics on the turbulent Mach number. In Fig. 11, we depict the ratio Kc/Ks for
different Taylor Reynolds numbers and different turbulent Mach numbers. At a fixed turbulent Mach
number, the ratio is higher for a larger Taylor Reynolds number. A more interesting point is the effect
of turbulent Mach number: There is no single scaling relation between the normalized energy of
the compressible velocity component and turbulent Mach number. For a very small turbulent Mach
number, typically Mt < 0.1, we observe that Kc/Ks has a M4

t scaling. In the same figure, we also
show the normalized energy Kcs/Ks for the pseudosound velocity component ucs at Reλ ≈ 180.
Based on the definition of the pseudosound velocity, there is a single scaling of M4

t for Kcs/Ks . At a
fixed Taylor Reynolds number, as the turbulent Mach number decreases to zero, the curve for Kc/Ks

approaches the curve of Kcs/Ks . We infer that as the turbulent Mach number becomes infinitesimal,
the compressible velocity component satisfies the pseudosound relationship [17].

As the turbulent Mach number increases, the ratio Kc/Ks deviates from the pseudosound
constitutive relationship and the compressible fields are dominated by the acoustic modes for
Mt > 0.1. The normalized energy Kc/Ks of the compressible velocity shows a very steep increase
with the increase in turbulent Mach number in the range of 0.1 � Mt � 0.4. Another transition
occurs at Mt = 0.4, after which, Kc/Ks increases more slowly with turbulent Mach number, at
approximately the rate of M2

t . Our observations are consistent with a previous study by Jagannathan
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FIG. 12. Normalized spectrum of the compressible velocity component Ec(k)/Es(k) at Reλ ≈ 180.

and Donzis [9]. In their work, they suggested two different scaling ranges: a M4
t scaling for

small turbulent Mach numbers and a M2
t scaling for larger turbulent Mach numbers. For the small

turbulent Mach number Mt � 0.1, an improved version of EDQNM model proposed by Fauchet
and Bertoglio [27] suggested the M4

t scaling of Kc/Ks . Additionally, the M4
t scaling of Kc/Ks is a

result of the pseudosound relationship suggested by Ristorcelli [17].
Moreover, we study the turbulent Mach number dependence of the normalized spectrum of the

compressible velocity component Ec(k)/Es(k) as shown in Fig. 12. In this figure, we plot the ratio
of the spectrum Ec(k)/Es(k) at a grid resolution of 5123 where the Taylor Reynolds number Reλ is
approximately 180. For small wave numbers, the Mt dependence behavior of Ec(k)/Es(k) is similar
to that of Kc/Ks . There are more interesting observations for larger wave numbers. As wave number
k increases, the M4

t scaling occurs in a wider range of Mt . Particularly, there is a M4
t scaling in the

range of Mt � 0.3 for k = 32. The transition to the region of M2
t scaling delays when k increases.

The observations suggest that acoustic waves are harder to generate at smaller scales. Between two
regions of M4

t and M2
t scaling, approximately, there is a transitional M8

t scaling region for the inertial
range of wave numbers 8 � k � 32.

Similar to the decomposition of velocity field, the decomposition of the dissipation rate of
the kinetic energy per unit mass is given by ε = εs + εc, where the solenoidal component
is εs = 〈μ/(Reρ)〉〈ωiωi〉 and the compressible component is εc = 〈4μ/(3Reρ)〉〈θ2〉 [9]. Here,
ωi = εijk∂uj/∂xk is the vorticity. We present the normalized compressible dissipation rate εc/εs

of velocity in Fig. 13. It is shown that for a small turbulent Mach number Mt � 0.2, there is a
M4

t scaling relation. For higher turbulent Mach numbers in the range of 0.4 � Mt � 1.0, εc/εs

has a M5
t scaling. Recent direct numerical simulations by Jagannathan and Donzis [9] suggested a

power law scaling of M4.1
t for εc/εs at Mt � 0.3. For a low turbulent Mach number, the scaling M4

t

has been proposed by Ristorcelli [17] using pseudosound constitutive analysis and by Fauchet and
Bertoglio [1,27] using an improved version of the EDQNM model. For moderate to high turbulent
Mach numbers, an EDQNM model reveals a M5

t scaling dependence of εc/εs [1]. Our numerical
simulations are in agreement with the theoretical prediction.

It is remarkable that at a low turbulent Mach number, the normalized dissipation rate εc/εs depends
on the Reynolds number. For a given low turbulent Mach number, εc/εs will decreases with an in-
crease in the Taylor Reynolds number. By the pseudosound constitutive relation [17] and Kolmogorov
turbulence theory, the spectrum of the compressible dissipation in the inertial range (1/LI < k <

1/η) can be determined by the spectrum of the pseudosound component of the velocity [Eq. (36)]:

Ecs
dissipation(k) = 8

3νk2Ecs(k) = 8
3νCPS

v M4
t L

−4/3
I ε2/3k−1. (44)
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FIG. 13. Normalized dissipation of the compressible velocity component εc/εs .

Therefore, by integration of the dissipation spectrum εc = εcs ≈ ∫ 1/η

1/LI
Ecs

dissipation(k) dk, we obtain
the following scaling relation:

εc/εs ∼ M4
t Re−1

L log(ReL), (45)

where ReL = urmsLI/ν is the Reynolds number based on the integral scale. The theoretical
scaling (45) is consistent with an EDQNM model [1,27]. In numerical simulations of isotropic
turbulence, we usually consider Reλ instead of ReL. The relation between Reλ and ReL is [35]
Reλ ∼ Re1/2

L , which has been verified in weakly compressible isotropic turbulence [9]. Thus, we
obtain the scaling relation

εc/εs ∼ M4
t Re−2

λ log(Reλ). (46)

From Fig. 14, we show that in numerical simulations Reλ ≈ 350 is not high enough for the
appearance of the M4

t Re−2
λ log(Reλ) scaling.

B. Mach number scaling of pressure, density, and temperature

Now we begin to consider the rms values of pressure, density, and temperature in simulated
compressible turbulent flows. We plot the normalized rms values of pressure and its two components,

Reλ

εc / (
 ε

s  lo
g(

R
e λ)

 M
t4  )

101 102 10310-4

10-3

10-2

Reλ
−2Reλ

−1

FIG. 14. Normalized dissipation of the compressible velocity component εc/(εs log(Reλ)M4
t ) as function

of Reλ, at Mt � 0.2.
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FIG. 15. Normalized rms values of pressure, solenoidal pressure component and compressible pressure
component at different turbulent Mach numbers Mt and different Taylor Reynolds numbers Reλ. The solid lines
in (a) and (b) represent AγM2

t /3 where A = 0.92. The ratio pcs
rms/p

s
rms at Reλ ≈ 180 is also plotted in (d).

prms/p0, ps
rms/p0, and pc

rms/p0, in Fig. 15. It is well known that in incompressible turbulence,
the rms value of pressure has the following relation: prms =

√
〈(p − p0)2〉 ≈ Aρ0u

′2/3, where
u′ =

√
〈u2

1 + u2
2 + u2

3〉 and A = 0.92 [45]. We note that u′2 ≈ M2
t γp0/ρ0. Thus, we can obtain the

following relation for the normalized rms value of pressure in compressible turbulence:

prms/p0 ≈ Aγ

3
M2

t . (47)

We show that the solid lines in Figs. 15(a) and 15(b) almost overlap with the numerical data at different
Taylor Reynolds numbers and turbulent Mach numbers, indicating that the numerical results are in
good agreement with the M2

t scaling relation (47). The rms value of the solenoidal pressure ps
rms/p0 is

almost identical to the rms value of pressure prms/p0 at relatively small turbulent Mach numbers Mt �
0.4. Thus, we have verified the relation (47) in the numerical simulations of compressible turbulence,
which is consistent with the situation of incompressible turbulence. In a previous study, Donzis and
Jagannathan reported a slightly larger coefficient A = 1.2 in compressible turbulence [24].

From Fig. 15(c), we find that the compressible component pc
rms/p0 is dependent on both turbulent

Mach number Mt and Taylor Reynolds number Reλ. At small turbulent Mach numbers Mt � 0.4,
the value pc

rms/p0 increases with the increase in the Taylor Reynolds number Reλ, similar to the
behavior of the normalized energy of the compressible velocity Kc/Ks . At relatively high turbulent
Mach numbers Mt � 0.5, we identify a M2

t scaling behavior of pc
rms/p0, which is similar to ps

rms/p0.
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FIG. 16. Normalized rms values of pressure, density, and temperature at different turbulent Mach numbers
Mt and different Taylor Reynolds numbers Reλ.

Previously, Jagannathan and Donzis reported a M2
t scaling behavior of pc

rms/p0 at 0.3 � Mt � 0.6
and a M2

t scaling behavior of ps
rms/p0 at 0.1 � Mt � 0.6 [24].

At Reλ ≈ 40, we also observe the purely pseudosound scaling relation pc
rms/p0 ∼ M4

t for Mt �
0.1. The purely pseudosound regime of the compressible pressure is further confirmed in Fig. 15(d).
At Reλ ≈ 40 and Mt � 0.1, the ratio pc

rms/p
s
rms is identical to the ratio pcs

rms/p
s
rms, which exhibits

the following scaling behavior: pc
rms/p

s
rms ∼ M2

t . Due to the limitation of computational resource,
we cannot perform numerical simulation at very small turbulent Mach numbers and cannot observe
the pseudosound scaling of the compressible pressure at relatively high Taylor Reynolds numbers
Reλ � 80. We infer that for a fixed Taylor Reynolds number Reλ, the pseudosound scaling relation
will appear as the turbulent Mach number Mt becomes very small.

In Fig. 15(d), we show that the ratio pc
rms/p

s
rms is quite small at small turbulent Mach numbers

Mt � 0.4, indicating that the solenoidal pressure component is predominant over the compressible
component. At relatively high turbulent Mach numbers Mt � 0.4 and high Taylor Reynolds numbers
Reλ � 80, the values of pc

rms/p
s
rms are close to 1.0, indicating that the solenoidal and compressible

components are of the same order of magnitude. Our numerical results of pc
rms/p

s
rms are consistent

with the previous results given by Jagannathan and Donzis. They showed that the values pc
rms/p

s
rms

are between 0.1 and 2.0 at 0.1 � Mt � 0.6 and increases with the increase in the turbulent Mach
number [24].

We plot the normalized rms values of pressure, density, and temperature, prms/p0, γρrms/ρ0, and
γ Trms/[(γ − 1)T0], at different turbulent Mach numbers Mt and different Taylor Reynolds numbers
Reλ in Fig. 16. Here, ρrms =

√
〈(ρ − ρ0)2〉 and Trms =

√
〈(T − T0)2〉. The factors γ and γ /(γ − 1)

are determined based on the isentropic relations: γρ ′/ρ0 = p′/p0 and [γ /(γ − 1)]T ′/T0 = p′/p0.
We show that the normalized rms values of pressure, density, and temperature overlap with one
another, and they exhibit a M2

t scaling behavior. Therefore, from Eq. (47) we obtain the following
relations for the normalized rms values of density and temperature:

ρrms/ρ0 ≈ A

3
M2

t , (48)

Trms/T0 ≈ A(γ − 1)

3
M2

t , (49)

where A = 0.92.
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VII. SUMMARY AND CONCLUSIONS

In this paper, we investigated the spectra and statistics of velocity and thermodynamic variables
by numerical simulations of solenoidally forced stationary compressible isotropic turbulence. We
introduced a decomposition of the compressible velocity component and compressible pressure
component. The compressible field has been decomposed into a pseudosound component and
an acoustic component. At a given Taylor Reynolds number, the pseudosound mode will finally
dominate in compressible turbulence as the turbulent Mach number becomes infinitesimal. We
also proposed some theoretical arguments to address the inertial statistics of the compressible field
in the fully developed weakly compressible turbulence: The spectrum of the compressible velocity
component Ec(k) exhibits a M4

t k−3 scaling and the spectrum of the compressible pressure component
Ec

p(k) exhibits a M4
t k−11/3 scaling, in the inertial range, at the zero turbulent Mach number limit.

In our numerical simulations, for the simulated stationary weakly compressible turbulence at
turbulent Mach numbers Mt � 0.4, there is not a single scaling relation of the spectrum of the
compressible velocity component in the convective inertial range of incompressible velocity. We
observed a transition between the pseudosound-mode-dominated region and the acoustic-mode-
dominated region. We identified a critical wave number kc: The pseudosound mode dominates at
k � kc and the acoustic mode dominates at k � kc.

We showed that the spectra of pressure, density, and temperature exhibit a k−7/3 scaling in the
inertial range at low turbulent Mach numbers Mt � 0.3, which is similar to the pressure spectrum in
incompressible turbulence. We also presented that the spectra of pressure, density, and temperature
exhibit a k−5/3 scaling in the inertial range at high turbulent Mach numbers Mt � 0.5.

We also found a number of turbulent Mach number scaling behaviors of the compressible velocity
component in our numerical simulations. The energy Kc of the compressible velocity component
has a M4

t scaling at low turbulent Mach numbers Mt � 0.1. Kc exhibits approximately a M2
t scaling

at high turbulent Mach numbers Mt � 0.4 and at moderate Taylor Reynolds numbers Reλ � 80. We
showed that the dissipation rate of the compressible velocity component has a εc ∼ M4

t Re−1
L log(ReL)

scaling at the zero turbulent Mach number limit. Moreover, we reported that the normalized rms
values of pressure, density, and temperature exhibit a M2

t scaling behavior at turbulent Mach numbers
0.05 � Mt � 1.0 in numerical simulations.

Finally, we emphasize that numerical simulations at higher grid resolutions are required to
eliminate the low Reynolds number effect on the spectrum of compressible velocity. The one-point
statistics and spectra of compressible isotropic turbulence have been studied for purely solenoidal
forcing in this paper. The effect of large-scale compressible forcing on the one-point statistics and
spectra remains to be further investigated.
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