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We present an extended thermodynamics (ET) theory of dissipative dense gases. In
particular, we study the ET theory with six fields, where we neglect shear viscosity
and heat conductivity. We postulate a simple principle of duality between rarefied and
dense gases. This principle is based on the microscopic analysis of the energy exchange
between different modes of the molecular motion. The basic system of equations satisfies
all principles of ET, that is, Galilean invariance, entropy principle, and thermodynamic
stability (entropy convexity), and, as in the ET theory of rarefied gases, the constitutive
equations are completely determined by the thermal and caloric equations of state. The
system is simplest after the Euler system, but, in contrast to the Euler system, we may have
a global smooth solution due to the fact that the system is dissipative symmetric hyperbolic
and satisfies the so-called K condition. There emerge two nonequilibrium temperatures;
one is due to the translational modes, and the other is due to the internal modes such as
rotation and vibration of a molecule. This viewpoint allows us to understand the origin
of the dynamic pressure in a more clear way. Furthermore we evaluate the characteristic
velocities associated with the hyperbolic system and address the fluctuation-dissipation
relation of the bulk viscosity. As a typical example, we analyze van der Waals fluids based
on the present theory.
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I. INTRODUCTION

The main objective of extended thermodynamics (ET) [1,2] is to study highly nonequilibrium
phenomena that are out of range of thermodynamics of irreversible processes (TIPs) based on
the local equilibrium assumption [3]. The ET theory of gases adopts dissipative fluxes such as
viscous stress and heat flux as independent variables in addition to the usual hydrodynamic ones.
Then a closed system of balance equations with local-type constitutive equations is established
so as to satisfy strictly the universal physical principles: (1) the Galilean invariance and the
objectivity principle, (2) the entropy principle, and (3) the causality and thermodynamic stability
(i.e., convexity of the entropy). In particular, the classical Navier-Stokes-Fourier (NSF) theory,
which is a typical theory of TIP, is deduced from the ET theory as a limiting case of small relaxation
times.

For rarefied monatomic gases, in the ET theory [1], the same hierarchy structure of the balance
equations is adopted as in the moment theory based on the Boltzmann equation such as Grad’s
moment theory [4] although the phenomenological independent variables are not the moments of
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the distribution function. The features of the system of balance equations are that (1) the tensorial
rank of the equations increases one by one starting from the mass balance equation and (2) the flux
in one equation becomes the density in the next equation. The prototype of the phenomenological
ET theory is the 13-field theory that adopts the mass density, velocity, internal energy, shear stress,
and heat flux as independent fields [5]. The ET theory in the relativistic framework also has been
proposed in Ref. [6]. Moreover, in order to describe highly nonequilibrium phenomena such as
ultrasonic waves and shock waves with large Mach numbers, the so-called molecular ET theory,
which describes a state of a gas by the moments of a distribution function, has been proposed [7].
The closure of molecular ET is achieved by using the maximum entropy principle [7,8], which was
proved to be equivalent to the entropy principle [9].

A recent complementary approach of molecular ET is Ref. [10] in which it is proved that the
infinite hierarchy of moments possesses a Hamiltonian structure.

Recently, the ET theory of rarefied polyatomic gases and moderately dense gases has been
proposed [2,11–13]. This theory adopts the balance equations with a binary hierarchy structure where
the existence of the dynamic pressure (nonequilibrium pressure) is properly taken into account. The
number of independent fields is now 14: the mass density, velocity, internal energy, dynamic pressure,
shear stress, and heat flux. One of the hierarchies consists of the balance equations for mass density,
momentum density, and momentum flux, and the other one consists of the balance equations for
energy density and energy flux. Each hierarchy of the balance equations has also the features (1) and
(2) above.

This binary hierarchy was introduced in previous simple model [14], in kinetic approach [15],
and, for the first time, in the phenomenological 14-field theory [11]. This hierarchy has a mesoscopic
motivation [16] in the generalized kinetic theory where the distribution function depends on an extra
variable that takes into account the internal degrees of freedom of a molecule such as rotation and
vibration [17,18]. The molecular ET theory of rarefied polyatomic gases with any number of fields
has been established in Refs. [19,20], and the convergence to the singular limit of monatomic gas
when the degrees of freedom D → 3 was proved [21].

The validity of the 14-field theory of rarefied polyatomic gases has been successfully confirmed
by comparing the theoretical predictions to the experimental data of linear waves [22], shock waves
[23], and light scattering [24] in the region where the NSF theory fails.

For dense gases, however, the present status of the ET theory is not quite satisfactory because
the theory is valid only for moderately dense gases. It was shown that the convexity region of the
entropy density in the ET theory of dense gases covers only the limited stable region in the state
space. For example, the theory cannot be applied to the hard-sphere system with large mass density
[2,11–13]. It was discovered that this difficulty comes from the convexity condition relating to the
dynamic pressure. Therefore one of the big challenges in the study of ET is to construct an ET theory
of dense gases that is valid in a wider region in the state space.

The role of the dynamic pressure has been studied by the ET theory with six fields (ET6):
mass density, velocity, specific internal energy, and dynamic pressure [25–27]. This theory is
the simplest extension of the Euler theory and is compatible with the Meixner theory with one
internal variable [28,29]. The correspondence relation between ET6 and the Meixner theory was
shown explicitly in Ref. [25]. Recently the ET6 theory with a nonlinear constitutive equation was
proposed and developed [30–33]. It is also noteworthy that the ET6 theory of rarefied gases is
perfectly consistent with the kinetic theory [34,35]. By using the ET6 theory, it has been shown
that the effect of the dynamic pressure becomes enormously large in some gases, e.g., hydrogen
gases. This fact is remarkable because the dynamic pressure is usually related to the bulk viscosity
under the assumption of the Newtonian fluid, and sometimes it is assumed to be zero (Stokes’
assumption).

A first tentative move to go beyond the previous ET6 theory was made in Ref. [36], where the
binary hierarchy of balance equations no longer has feature (2). The authors adopted the following
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type of binary hierarchy:

∂F

∂t
+ ∂Fk

∂xk

= 0,

∂Fi

∂t
+ ∂Fik

∂xk

= 0, (1)

∂F̄ii

∂t
+ ∂Fiik

∂xk

= Pii,
∂Gii

∂t
+ ∂Giik

∂xk

= 0.

Note that, in general in (1), F̄ii �= Fii . Here, since the balance equations of the densities F , Fi , and
Gii represent, respectively, the conservation laws of mass, momentum, and energy without shear
stress and heat flux [25–27], we have the following expressions of the densities and fluxes in terms
of the commonly used macroscopic variables:

F = ρ, Fi = ρvi, Fij = (p + �)δij + ρvivj ,

Gii = 2ρε + ρv2, Giik = 2(ρε + p + �)vk + ρv2vk,

where ρ,vi,p,ε, and � are the mass density, the velocity, the pressure, the specific internal energy
density, and the dynamic pressure, respectively. The problem remaining is the determination of the
quantities: density F̄ii , flux Fiik , and production Pii . According to the Galilean invariance, it was
proved [36] that the previous system can be rewritten in the following form:

∂ρ

∂t
+ ∂

∂xi

(ρvi) = 0,
∂ρvj

∂t
+ ∂

∂xi

{ρvivj + (p + �)δij } = 0,

∂

∂t
(2ρε + ρv2) + ∂

∂xi

{[2ρε + ρv2 + 2(p + �)]vi} = 0, (2)

∂

∂t
{3(p̄ + �̄) + ρv2} + ∂

∂xi

{[ρv2 + 3(p̄ + �̄) + 2(p + �)]vi} = P̂ll ,

where P̂ll is the velocity-independent production. We have now two undetermined quantities, p̄ and
�̄, which, in the case of rarefied-gas limit, approach p and �, respectively. Unfortunately it was
proved [36] that the entropy principle is not able to specify the new functions.

In the study of rarefied gases [21,37], it is shown that Gii − F̄ii is a characteristic variable
for polyatomic gases that vanishes in the monatomic limit. Therefore it is better to substitute the
difference between the third and fourth equations of (2) for the last equation of (2):

∂ρ

∂t
+ ∂

∂xi

(ρvi) = 0,
∂ρvj

∂t
+ ∂

∂xi

{ρvivj + (p + �)δij } = 0,

∂

∂t
(2ρε + ρv2) + ∂

∂xi

{[2ρε + ρv2 + 2(p + �)]vi} = 0,

∂

∂t
(2ρε − 3p̄ − 3�̄) + ∂

∂xi

{(2ρε − 3p̄ − 3�̄)vi} = −P̂ll . (3)

The purpose of the present paper is to construct an ET6 theory of dense gases that is free from the
difficulties mentioned above by adopting a simple principle that bridges the gap between rarefied
and dense gases. As a theory of dense gases, the Meixner theory [28,29] has been used to study
various phenomena such as shock waves. However, this theory introduces several quantities that are
quite difficult to be identified explicitly.

We will see that, in dense gases as well, the system can be closed if the caloric and thermal
equations of the state are given. We will clarify the convexity condition of the entropy. The system
of balance equations is symmetric hyperbolic with well-posedness of the Cauchy problem, and the
existence of global smooth solutions for small initial data is guaranteed. The characteristic velocities
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and dispersion relation of a ultrasonic wave will be analyzed. The nonequilibrium temperatures of
the translational modes and of internal modes of molecules will play an important role in the ET
theory of dense gases. We will also address the following points: the origin of the dynamic pressure,
the characteristic velocities associated with the hyperbolic system, the K condition for the existence
of global smooth solutions, and the fluctuation-dissipation relation of the bulk viscosity. As a typical
example, a van der Waals (vdW) fluid will be studied by using the present theory. We will find
that a nonequilibrium spinodal curve is similar to the one of Euler system but the temperature and
pressure are nonequilibrium ones. We will also prove that the so-called locus of the vanishing critical
derivative (locally exceptional region) is always in the unstable region in contrast with the Euler
fluid. Therefore no rarefaction shocks are admissible in the present model.

II. EQUATIONS OF STATE

In this section, as a preliminary step, we prescribe the equations of state of a gas explicitly.

A. Rarefied gas

From a microscopic point of view, the Hamiltonian of a rarefied polyatomic gas is given in the
form

H = HK + HI ,

where HK is the kinetic energy of molecular translational motion and HI is the energy of the internal
motion of molecules such as molecular rotation and vibration.

We study nonpolytropic gases within a temperature range where the classical (i.e., nondegenerate)
equations of state are valid. Therefore the pressure p and the specific internal energy density ε are
expressed by the mass density ρ and the temperature T as follows:

p = p(ρ,T ) ≡ kB

m
ρT , ε = ε(T ),

where kB and m are the Boltzmann constant and the mass of a molecule, respectively. Note that ε

has, in general, nonlinear dependence on T .
The pressure p can be divided into two parts [38]: the pressure pK due to HK and the pressure

pI due to HI . However, as pI = 0, we have

p = pK ; pK = kB

m
ρT .

Similarly we have

ε = εK + εI ; εK = 3

2

kB

m
T, εI = εI (T ).

The expression of εK comes from the equipartition law of energy for a classical gas. However, we
take into account the quantum effects of molecular rotation and vibration in the expression of εI

(nonpolytropic gas) [38].

B. Dense gas

The Hamiltonian of a dense polyatomic gas is given in the form

H = HK+U + HI ,

where HK+U is composed of the kinetic energy of molecular translational motion and the potential
energy among molecules, and HI is the energy of the internal motion of molecules. The thermal
and caloric equations of state in terms of ρ and T are expressed as

p = p(ρ,T ), ε = ε(ρ,T ).

Note that ε depends also on ρ due to the potential energy.
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As before, the pressure p can be divided into two parts: the pressure pK+U due to HK+U and the
pressure pI due to HI . However, as pI = 0 also in a dense gas, we have

p = pK+U ; pK+U = pK+U (ρ,T ).

Similarly we have

ε = εK+U + εI ; εK+U = εK+U (ρ,T ), εI = εI (T ).

Note that εI depends only on T [38].

III. NONEQUILIBRIUM TEMPERATURES AND DUALITY PRINCIPLE

In the following, we will study a polyatomic gas excluding the case of monatomic gas, and
therefore εI (T ) �= 0. Then we may define two positive parameters � and ϑ through the corresponding
quantities � and �̄:

� = p(ρ,ϑ) − p(ρ,T ), (4)

�̄ = 2
3ρ[εI (T ) − εI (�)]. (5)

As will be discussed below, � and ϑ have the physical meaning of nonequilibrium temperatures.

A. Rarefied gas

In the case of rarefied gases, we know that p̄ = p and �̄ = � [36]. Therefore, from (4) and (5),
we have the following relation between the two parameters:

εI (T ) − εI (�) = εK (ϑ) − εK (T ) (6)

and

p = pK (ρ,T ), p̄ = 2
3ρεK (T ). (7)

Moreover we know that the nonequilibrium specific entropy density k is given by [31,35]

k = η − s =
∫ ϑ

T

cK
v (T ′)
T ′ dT ′ +

∫ �

T

cI
v (T ′)
T ′ dT ′ = 3

2

kB

m
log

(
ϑ

T

)
+

∫ �

T

cI
v (T ′)
T ′ dT ′,

where η is the nonequilibrium specific entropy density, s is the equilibrium specific entropy density
that satisfies the Gibbs relation T ds = dε − p

ρ2 dρ, and cK
v ≡ dεK

dT
= 3

2
kB

m
and cI

v ≡ dεI

dT
are the

specific heats due to, respectively, HK and HI . It is easily proved that η is expressed as

η = sK (ρ,ϑ) + sI (�), (8)

where

s = sK (ρ,T ) + sI (T ), sK (ρ,T ) = kB

m

(
log

T 3/2

ρ

)
+ sK

0 , sI (T ) =
∫ T

T0

cI
v (T ′)
T ′ dT ′ + sI

0

with constants sK
0 , sI

0 , and T0 at a reference state.
Remark 1. From (6), we can interpret the dynamical pressure as the one caused by the energy

exchange:


 = εI (�) − εI (T ),

which put the internal modes into the nonequilibrium state with a nonequilibrium temperature �

from the state with the local equilibrium temperature T . For this reason we may say that � is
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the temperature of the internal modes of a molecule, while ϑ is the nonequilibrium temperature
of the translational modes of molecules induced by −
. In the following, we will see that such
nonequilibrium temperatures play important roles to describe the elementary process in a concise
and clear way. Last it is worth noting that, in the context of the kinetic theory for rarefied gases
[15,39,40], the dynamic pressure is related to the nonequilibrium energy exchange among several
kinds of motions of a molecule.

Remark 2: We observe that p̄ and �̄ appear in the last equation of (3). Therefore we can regard
this equation as the equation that describes the time evolution of the energy exchange 
. Then p̄ and
�̄ are regarded as the quantities that are closely related to energy more than pressure, while p and �

appear in the momentum flux, and therefore these are necessarily related to pressure. This justifies
the expressions (4), (5), and (7), where we have introduced, respectively, pressure, and energy in
accordance with this rule.

B. Dense gas

In order to construct an ET6 model of dense gases, we need to find out a suitable bridge between
rarefied and dense gases. For this purpose, it seems natural to adopt the following duality principle
(see also Remark 3 below for its physical implications):

Duality Principle: The differential system of a dense gas can be obtained from the system of a
rarefied gas by the following substitution:

(pK,εK ) → (pK+U ,εK+U ).

According to this principle we have, from (7),

p = pK+U (ρ,T ), p̄ = 2
3ρεK+U (ρ,T ),

while ϑ and � are now related through, instead of (6), the following relation due to the duality
principle:

εI (�) − εI (T ) = εK+U (ρ,T ) − εK+U (ρ,ϑ). (9)

Then the expressions (4) and (5) are explicitly expressed, also for dense gases, in terms of the
nonequilibrium temperatures. The remarkable point is that �̄ �= � and p̄ �= p as we expect for
dense gases.

Remark 3: What we have done in the above based on the duality principle is, physically speaking,
that we have assumed that the dynamic pressure � is caused by the energy exchange 
 between
HK+U and HI . In polyatomic gases, it seems that this nonequilibrium process is the most dominant
mechanism for the emergence of the dynamic pressure �. In reality, however, there exist several
mechanisms. As we may conceive of different kinds of energy exchange, the above one is probably
one of them. In fact, in the monatomic-gas limit, the present mechanism predicts that the dynamic
pressure � disappears not only in a rarefied gas case but also in a dense gas case, and then the
bulk viscosity is always zero. It is evident that we need to introduce other mechanisms in order to
explain the dynamic pressure in a dense monatomic gas. For example, in Ref. [41], Hirai and Eyring
pointed out the two possible mechanisms. The first one is essentially the same as the present one.
The second one is due to the so-called structural relaxation mechanism: the change from a structure
to other one takes time, and the lag is the cause of the dynamic pressure. The hierarchy structure of
the system of field equations, therefore, will be changed. The monatomic gas case is not the simplest
case despite its first impression. Also in the rarefied limit the monatomic gas that seems apparently
the most simple case of polyatomic gas is in reality a singular limit of polyatomic gas. In fact, the
number of differential equations is different in the limit between polyatomic to monatomic gas, and
it is not so simple to prove the convergence of the solution of polyatomic gas to the monatomic one
when the degrees of freedom D → 3 (see Refs. [21,37]).

Therefore, although the applicability range of the present model seems to be rather wide, it
is fair to say that the model is appropriate only for a gas where the mechanism adopted here is
overwhelming and other mechanisms can be safely neglected.
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IV. ET6 OF DENSE POLYATOMIC GASES

The main results of the present paper are shown in this section.

A. System of field equations

If we choose (ρ,v,T ,�) as independent variables, according to the above discussions, we may
propose the differential system for dense gases as follows:

∂ρ

∂t
+ ∂

∂xi

(ρvi) = 0,
∂ρvj

∂t
+ ∂

∂xi

{ρvivj + (p + �)δij } = 0,

∂

∂t
(2ρε + ρv2) + ∂

∂xi

{[2ρε + ρv2 + 2(p + �)]vi} = 0, (10)

∂

∂t
[2ρεI (�)] + ∂

∂xi

[2ρεI (�)vi] = −P̂ll ,

where � is expressed in terms of � in the parametric form with the parameter ϑ [see (4) and (9)]
and p and ε are specified by the thermal and caloric equations of state as functions of (ρ,T ).

If we prefer to use the material derivative, the system can be rewritten as follows:

ρ̇ + ρ
∂vk

∂xk

= 0, ρv̇i + ∂

∂xi

(p + �) = 0,

(11)

ρcv(T )Ṫ + (p − ρ2ερ + �)
∂vk

∂xk

= 0, ε̇I (�) = −Pll

2ρ
,

where cv ≡ ∂ε
∂T

is the specific heat.

B. Galilean invariance and the entropy principle

The system (10) is a particular case of the following balance law system of N equations:

∂F
∂t

+ ∂Fi

∂xi
= f, (12)

where F, Fi , and f are, respectively, the density, the flux, and the production. It is convenient to split
the flux vector into the convective and nonconvective ones:

Fi = Fvi + �i .

The Galilean invariance of the balance equations requires the following velocity dependences of
the densities, nonconvective flux, and production. There exists an exponential (N × N ) matrix X(v),

X(v) = exp(Arvr ), (13)

with constant (N × N ) matrices Ar (r = 1,2,3) that satisfy the commutativity conditions ArAs =
AsAr . Then we have the relations [42]

F = X(v)F̂, �i = X(v)�̂
i
, f = X(v)f̂, (14)

where the symbol hat indicates the velocity-independent part of a quantity. When, as in ET, there
exists a natural order in the equations, X(v) is a triangular matrix and Ar are nilpotent matrices of
order n. This implies that the matrix X(v) is a polynomial matrix of degree n, which is the maximum
tensorial order of the densities.

The entropy principle requires the following inequality [1,2] with h (= ρη) being the entropy
density, hi the entropy flux, and � the entropy production:

∂h

∂t
+ ∂hi

∂xi

= � � 0 (15)

for any solution u(xi,t) of the system, which we call the thermodynamic process.
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In the case of local constitutive equations typical of ET,

F0 ≡ F0(u), Fi ≡ Fi(u), f ≡ f(u), (16)

the entropy principle dictates the existence of a privileged field (main field) u′ such that

u′·dF = dh, u′· dFi = dhi, u′ · f(u) = �(u) � 0. (17)

The Galilean invariance of the entropy inequality (15) implies the velocity dependence of the main
field u′ as follows:

u′ = û′X−1(v) = û′X(−v). (18)

From (14) and (18), the conditions (17) are equivalent to

û′ · dF̂ = dĥ, û′ · d�̂
i = dĥi, û′ · f̂ = � � 0, (19)

û′ · Ar F̂ = 0, (h − û′ · F̂)δrj = û′ · Ar�̂
j
. (20)

In the present case, N = 6 and

F ≡ (ρ,ρvj ,2ρε + ρv2,2ρεI (�))T ,

�i ≡ (0,(p + �)δij ,2(p + �)vi,0)T , (21)

f ≡ (0,0j ,0, − Pll)
T ,

where 0i denotes the zero raw R3 vector. Taking into account (21) we have

X(v) =

⎛
⎜⎜⎜⎝

1 0k 0 0

vk δ
j

k 0 0

v2 2vk 1 0

0 0k 0 1

⎞
⎟⎟⎟⎠,

while from (13) the matrices Ar are given by

Ar = ∂X
∂vr

∣∣∣∣
v=0

=

⎛
⎜⎜⎜⎝

0 0k 0 0

δkr 0j

k 0 0

0 2δr
k 0 0

0 0k 0 0

⎞
⎟⎟⎟⎠,

where 0j

k denotes the null 3 × 3 matrix.
Let us express u′ in the component form:

u′ ≡ (λ,λi,μ,ζ ), (22)

then we have, from the first equation of (20), λ̂i = 0, and, from the first equation of (19), we have

λ̂ = η + ρηρ − 1

cv(ρ,T )
(ε + ρερ)ηT − εI (�)

cI
v (�)

η�, μ̂ = 1

2cv(ρ,T )
ηT , ζ̂ = 1

2cI
v (�)

η�, (23)

where a subscript attached to η or ε indicates a partial derivative. The second equation of (19) is
automatically satisfied and gives

ĥi = 0, → hi = hvi. (24)
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While, inserting (23) into the second equation of (20), we obtain the following partial differential
equation for η:

ηρ + 1

cv

(
p + �

ρ2
− ερ

)
ηT = 0. (25)

The solution η is expressed compactly by using the nonequilibrium temperatures ϑ and �, if we
divide the equilibrium-specific entropy density s into two parts: sK+U due to HK+U and sI due to
HI . Then we can prove, according with the duality principle [see (8)], that a solution of (25) is given
by

η = sK+U (ρ,ϑ) + sI (�) (26)

for a given temperature T . We now prove that (26) satisfies (25). From the Gibbs relation due to
HK+U (the (K + U ) part) [43] we have

ϑdsK+U = dεK+U − pK+U

ρ2
dρ, (27)

then

ϑdsK+U = cK+U
v (ρ,ϑ) dϑ +

[
∂εK+U (ρ,ϑ)

∂ρ
− pK+U (ρ,ϑ)

ρ2

]
dρ

= cK+U
v (ρ,ϑ)ϑρ dρ + cK+U

v (ρ,ϑ)ϑT dT + cK+U
v (ρ,ϑ)ϑ� d�

+
[
∂εK+U (ρ,ϑ)

∂ρ
− pK+U (ρ,ϑ)

ρ2

]
dρ, (28)

where cK+U
v (ρ,ϑ) ≡ ∂εK+U (ρ,ϑ)

∂ϑ
is the specific heat of the (K+U) part. By using the following relations

derived from (9):

cK+U
v (ρ,ϑ)ϑρ = ∂

∂ρ
[εK+U (ρ,T ) − εK+U (ρ,ϑ)],

cK+U
v (ρ,ϑ)ϑT = cv(ρ,T ), cK+U

v (ρ,ϑ)ϑ� = −cI
v (�),

the relation (28) is rewritten as

ϑ dsK+U =
[
∂εK+U (ρ,T )

∂ρ
− pK+U (ρ,ϑ)

ρ2

]
dρ + cv(ρ,T ) dT − cI

v (�) d�.

On the other hand, the Gibbs equation due to HI (I part) is given by

�dsI = dεI (�) = cI
v (�) d�. (29)

From (26), (28), and (29), we have the nonequilibrium Gibbs relation:

dη = 1

ϑ

{[
∂ε(ρ,T )

∂ρ
− p(ρ,ϑ)

ρ2

]
dρ + cv(ρ,T )dT

}
+

(
1

�
− 1

ϑ

)
cI
v (�) d�. (30)

Therefore we have the following expressions of the derivatives of η:

ηρ = 1

ϑ

[
∂ε(ρ,T )

∂ρ
− p(ρ,ϑ)

ρ2

]
, ηT = 1

ϑ
cv(ρ,T ), η� =

(
1

�
− 1

ϑ

)
cI
v (�). (31)

Inserting these derivatives into (25) and noting the relation (4), we can easily check that η given
by (26) certainly satisfies (25). Finally, we check on the fact that the solution (26) has evidently an
equilibrium entropy at an equilibrium state with � = ϑ = T :

η|E = sK+U (ρ,T ) + sI (T ) = s(ρ,T ).
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By using (31), we can rewrite the components of û′ in (23) as follows:

λ̂ = −gK+U (ρ,ϑ)

ϑ
− gI (�)

�
, μ̂ = 1

2ϑ
, ζ̂ = 1

2

(
1

�
− 1

ϑ

)
, (32)

where we have defined the chemical potentials of the (K + U ) part and I part:

gK+U (ρ,ϑ) = εK+U (ρ,ϑ) + pK+U (ρ,ϑ)

ρ
− ϑsK+U (ρ,ϑ), gI (�) = εI (�) − �sI (�).

From (22), (32), and (18), we deduce the main field components:

λ = −gK+U (ρ,ϑ)

ϑ
− gI (�)

�
+ v2

2ϑ
, λi = vi

ϑ
, μ = 1

2ϑ
, ζ = 1

2

(
1

�
− 1

ϑ

)
. (33)

The residual inequality of the entropy principle [the third equation of (17)] is expressed as

� = 1

3
η�P̂ll � 0. (34)

From this inequality, we have

P̂ll = αη�, α � 0.

In the simplest case, we can assume that α is an equilibrium quantity, i.e., it is independent of �:
α ≡ α(ρ,T ).

C. Convexity principle

The thermodynamic stability condition requires that the entropy must be convex with respect to
the densities:

∂2h

∂F∂F
is negative definite.

From the first equation of (17), this condition corresponds to the following negative quadratic form:

Q = δu′ · δF < 0.

Taking into account the first equation of (14) and (18), we have [42]

Q = Q̄ − 2û′Ar δFδvr − grsδvrδvs, (35)

where

Q̄ = δû′ · δF̂, grs = û′ArAs F̂.

In the present case, as the second term in the right-hand side of (35) vanishes and grs = (ρ/ϑ)δrs ,
we have

Q = Q̄ − ρ

ϑ
||δv||2 with Q̄ = δρδλ̂ + 2δ(ρε)δμ̂ + 2δ[ρεI (�)]δζ̂

= −pρ(ρ,ϑ)

ρϑ
(δρ)2 − ρcK+U

v (ρ,ϑ)

ϑ2
(δϑ)2 − ρcI

v (�)

�2
(δ�)2 < 0.

Then the state (ρ,T ,�) is stable if and only if the following inequalities are satisfied:(
∂p

∂ρ

)
ϑ

(ρ,ϑ(ρ,T ,�)) > 0,

(
∂εK+U

∂ϑ

)
ρ

(ρ,ϑ(ρ,T ,�)) > 0,
dεI

d�
(�) > 0. (36)

Therefore under these conditions, the system of the present theory can be put in a symmetric form
[44,45] by choosing the main field given in (33) as independent fields.
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In particular, an equilibrium state (ρ,T ,T ) is stable if(
∂p

∂ρ

)
T

(ρ,T ) > 0,

(
∂εK+U

∂T

)
ρ

(ρ,T ) > 0,
dεI

dT
(T ) > 0.

We remark that the usual thermodynamic stability implies a weaker condition requiring only that
the total specific heat must positive:(

∂p

∂ρ

)
T

(ρ,T ) > 0,

(
∂ε

∂T

)
ρ

(ρ,T ) > 0. (37)

It is worth noticing that the symmetrization of the Euler system requires the usual thermodynamic
stability (37).

D. Upper and lower bounds for the nonequilibrium temperatures

Differentiating (9) with respect to ϑ keeping ρ and T fixed, we easily obtain the relation

d�

dϑ
= −cK+U

v (ρ,ϑ)

cI
v (�)

< 0. (38)

If ϑ increases (decreases), then � decreases (increases), and, as both � and ϑ are equal to T in
equilibrium, if ϑ ≷ T then � ≶ T .

Moreover, in the definition of the nonequilibrium temperatures, we have assumed that these are
positive quantities. This is also consistent with the fact that the entropy must be an increasing function
of the energy [see (27) and (29)]. Therefore all solutions must satisfy the condition ϑ > 0,� > 0.
Taking into account (38) and (9), we obtain immediately the upper bound for these quantities:

0 < � < �max with εI (�max) = ε(ρ,T ) − εK+U (ρ,0),

0 < ϑ < ϑmax with εK+U (ϑmax) = ε(ρ,T ) − εI (0). (39)

E. Characteristic velocity, subcharacteristic conditions, and local exceptionality

It is well known that the characteristic velocities V associated with a hyperbolic system of type
(12) and (16) can be obtained from the system by the operator chain rule (see Ref. [2]):

∂

∂t
→ −V δ,

∂

∂xi

→ niδ, f → 0,

where ni denotes the i component of the unit normal to the wave front, and δ is a differential operator
[2]. In the present case, if we choose {ρ,η,�} as independent variables instead of {ρ,T ,�}, and
adopt the entropy law (15) and (24):

ρη̇ = �

instead of the energy equation in the third equation of (11), we obtain the following linear algebraic
system:

−Uδρ + ρδvn = 0, − ρUδvi + niδp(ρ,ϑ) = 0, − ρcI
v (�)Uδ� = 0, − ρUδη = 0, (40)

where U = V − vn and vn = vjnj . The solution of (40) gives

Contact waves: V = vn = 0, (41)

(multiplicity 4)

Sound waves: V = vn ±
√[

∂p(ρ,ϑ(ρ,η,�))
∂ρ

]
η,�

(each of multiplicity 1). (42)
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Taking into account the Gibbs equations (29), we can rewrite the velocity of the sound wave as
follows:

U 2 = pρ(ρ,ϑ) + pϑ (ρ,ϑ)

cK+U
v (ρ,ϑ)

{
pK+U (ρ,ϑ)

ρ2
− εK+U

ρ (ρ,ϑ)

}

= pρ(ρ,ϑ) + ϑp2
ϑ (ρ,ϑ)

ρ2cK+U
v (ρ,ϑ)

. (43)

In particular, in an equilibrium case, we have

U 2
E = pρ(ρ,T ) + Tp2

T (ρ,T )

ρ2cK+U
v (ρ,T )

, (44)

while, for Eulerian fluids, we have

U 2
Euler = pρ(ρ,T ) + Tp2

T (ρ,T )

ρ2cv(ρ,T )
. (45)

As the system of ET6 includes the Euler system as the subsystem [46], we have the following
subcharacteristic condition:

UE
2 − U 2

Euler = Tp2
T (ρ,T )

ρ2

cI
v (T )

cv(ρ,T )cK+U
v (ρ,T )

> 0. (46)

It is well known that a characteristic velocity associated with a wave is classified as (see, e.g.,
Ref. [2]):

(1) Genuinely nonlinear if

δV = ∇uV · δu ∝ ∇uV · r �= 0, ∀u.

(2) Linearly degenerate or exceptional if

δV ≡ 0, ∀u.

(3) Locally linearly degenerate or locally exceptional if

δV = 0, for some u, (47)

where r is the corresponding right eigenvector associated to the system (12) and (16). The contact
waves (41) are exceptional, while the sound waves (42) can be locally exceptional if (47) is satisfied.
Simple algebra similar to the one in Ref. [47] gives that, if the hyper-surface of local exceptionality
exists, the following relation is satisfied on it:

∂

∂ρ

{
ρ2

[
∂p(ρ,ϑ)

∂ρ

]
η,�

}
η,�

= ∂

∂ρ
{ρ2U 2}η,� = 0. (48)

F. K condition

As is well known, the Euler fluid cannot have global smooth solutions for all time because there
appears shock formation or blowup. However, our system with the dynamical pressure belongs to
the group of dissipative hyperbolic systems due to the presence of the production term in the last
equation in (10). In this case, global smooth solutions can exist due to the interrelationship between
the conservation laws and the remaining dissipative one. In fact, for generic hyperbolic systems
composed of conservation laws and balance laws, endowed with a convex entropy law, the so-called
Kawashima-Shizuta condition (K condition) [48] becomes a sufficient condition for the existence of
global smooth solutions, provided that the initial data are sufficiently small [49–52]. It was proved
in Ref. [53] (see also Ref. [2]) that the K condition corresponds to

δf|E �= 0.
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In the present case, from (10), the above condition is expressed as

δP̂ll |E �= 0. (49)

Taking into account that P̂ll |E = 0 and that only the linear part of the nonequilibrium quantities
enters into the expression (49), we have from (34)

P̂ll = αη� = α[η��|E(� − T ) + O(2)],

where O(2) indicates terms of second order or more with respect to the nonequilibrium quantity
� − T . Therefore we have

δP̂ll |E = α[η��(δ� − δT )]|E. (50)

But, for sonic waves, from (40), we have δ� = δη = 0, and from (30) we obtain

δT |E = 1

cv(ρ,T )

[
∂ε(ρ,T )

∂ρ
− p(ρ,T )

ρ2

]
δρ = TpT

ρ2cv

δρ.

Inserting the last expression into (50) we obtain

δP̂ll |E = −α

(
η��|E TpT

ρ2cv

)
δρ.

If pT �= 0 as usual, the term in the right-hand side is always different from zero due to the convexity
argument of η. Also, for contact waves, we can prove that the K condition holds. Therefore, in
contrast with the Euler system, our system that expresses the simplest dissipative system after the
Euler system has a global smooth solution for sufficiently small initial data. This is an interesting
result that reinforces the physical meaning of the present model.

G. Comparison with the Meixner theory

Since the balance equations (10) have the same mathematical structure as those of rarefied
polyatomic gases, the correspondence relations between the present theory and the Meixner theory
with one internal variable are the same as those in the case of rarefied polyatomic gases [25,30].
Therefore εI (�) plays the role of the internal variable, and the temperature ϑ is identified as the
Meixner temperature.

H. Alternative representation of the system of balance equations

When the initial and boundary conditions are given in terms of the nonequilibrium temperatures
� and ϑ and/or when we want to explicitly trace the evolution of these temperatures, it is
more convenient to adopt the independent fields {ρ,vi,�,ϑ} instead of {ρ,vi,T ,�}. Therefore,
for completeness, we write the system of balance equations of the fields {ρ,vi,�,ϑ}:

∂ρ

∂t
+ ∂

∂xi

(ρvi) = 0,
∂ρvj

∂t
+ ∂

∂xi

{pK+U (ρ,ϑ)δij + ρvivj } = 0,

∂

∂t
[2ρεI (�)]+ ∂

∂xi

[2ρεI (�)vi] = −P̂ll ,

∂

∂t
(2ρεK+U (ρ,ϑ) + ρv2) + ∂

∂xi

{[2pK+U (ρ,ϑ) + 2ρεK+U (ρ,ϑ) + ρv2]vi} = P̂ll .

V. NEAR-EQUILIBRIUM CASE AND THE BULK VISCOSITY

The simplest way to obtain the linear approximation of the system around an equilibrium state
(ρ,T ) is to expand the system with respect to the energy exchange 
 up to the first order. The other
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quantities are expressed in terms of 
. In fact, we have, from (9),

� − T = 


cI
v (T )

, ϑ − T = − 


cK+U
v (ρ,T )

,

and, from (4),

� = pT (ρ,T )(ϑ − T ) = − pT (ρ,T )

cK+U
v (ρ,T )


. (51)

The production term is given by

P̂ll = 2ρ

τ



,

where τ
(ρ,T ) is the relaxation time for 
, which is positive by the entropy principle. In particular,
from (10), the linear equation of 
 is obtained as


̇ − pT cI
v

ρcv

(
T − 


cK+U
v

)
∂vk

∂xk

= − 1

τ



. (52)

A. Maxwellian iteration

Let us derive the relationship between the relaxation time τ
 and the bulk viscosity. When the
relaxation time is small, we can apply the Maxwellian iteration [54] to (52). The first iterate of 
 is
obtained by putting 
 = 0 in the left-hand side of (52):


(1) = pT cI
v

ρcv

T τ


∂vk

∂xk

. (53)

Inserting (53) into (51), we have the relation between � and ∂vk/∂xk . Then taking into account the
definition of the bulk viscosity ν:

� = −ν
∂vk

∂xk

,

we obtain the relationship between τ
 and ν:

ν = Tp2
T cI

v

ρcvcK+U
v

τ
. (54)

In the rarefied-gas limit, this expression is consistent with the previous results obtained by different
approaches [39,40]. If the experimental data on the bulk viscosity are available, the relaxation time
τ
 can be estimated by using this relationship.

B. Dispersion relation

Let us study a linear plane harmonic wave that is expressed, without loss of generality, in the
following form:

u = u0 + ū,

where u = (ρ,v,T ,
) is a state vector with v being the x component of the velocity vi , u0 =
(ρ0,0,T0,0) is a state vector at a reference equilibrium state, and the index 0 indicates the values at
the reference state. The deviation ū = (ρ̄,v̄,T̄ ,
̄) from u0 is expressed as

ū = wei(ωt−kx),

where w is the amplitude, ω is the frequency, and k is the complex wave number. From the
linearized system of field equations with respect to ū, we can easily obtain the dispersion relation
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FIG. 1. Dependence of attenuation per wavelength on dimensionless frequency with ÛE = 1.1, 1.2, 1.3.

ω = ω(k) [1] as the function of the dimensionless frequency � = τ
ω and the dimensionless
characteristic velocity ÛE = UE/UEuler(> 1) as follows:

k

ω
= 1

UEuler

√
1 + i�

1 + iÛ 2
E�

= 1

UEuler

√
w2 + i

�
(w1 − w2), (55)

where

w1 = 1 + �2

1 + Û 4
E�2

, w2 = 1 + Û 2
E�2

1 + Û 4
E�2

.

It is interesting that the dispersion relation (55) is essentially determined by the ratio of the
characteristic velocity of ET6 to the one of Euler system.

From the dispersion relation, the phase velocity vph and the attenuation factor α are obtained as
follows:

vph = ω

	(k)
= ±UEuler

√
2√√

w1 + w2
, α = −�(k) = ± �√

2UEulerτ


√√
w1 − w2. (56)

In the high-frequency limit � → ∞, we have

lim
�→∞

vph = ±UE,

lim
�→∞

α = ± 1

2UEulerτ


Û 2
E − 1

Û 3
E

.

In the literature of the experimental studies of sound waves, the attenuation per wavelength αλ

defined by

αλ = 2πvphα

ω
,

and the peak value of αλ are measured. The dependence of αλ on � is shown in Fig. 1 in the cases
of ÛE = 1.1,1.2,1.3. From (56) we notice that αλ has the maximum value:

αmax
λ = 2π

ÛE − 1

ÛE + 1
at � = 1

ÛE

.

From the experimental data on αmax
λ , we can estimate the bulk viscosity as was done by the previous

theory of ultrasonic waves [55]. Usually, αmax
λ has been measured in a fluid in which the internal
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rotational and/or vibrational modes of a molecule play dominant role. As ET6 is a simplified model,
it is expected that the theory based on this model can predict the experimental data on the sound
absorption caused by the relaxation of the internal rotational mode, which was clearly observed, for
example, in hydrogen gases. The description of the simultaneous relaxations of the internal rotational
and vibrational modes may be out of the applicable range of the theory. Because of the lack of
suitable experimental data with which the present ET theory can be compared, we have summarized
only theoretical predictions above. Moreover, one point worthy of careful consideration is that the
measured value of αmax

λ includes the contribution from the shear viscosity and heat conductivity.
Although such an effect is usually eliminated by the classical theory [56,57], the accurate estimation
should be done by the ET theory with 14 fields with the shear stress and heat flux.

C. Fluctuation-dissipation relation

The entropy density η is also expanded with respect to 
 around an equilibrium state up to the
second order:

η = s(ρ,T ) − 1

2�

2, � =

[
1

T 2

(
1

cK+U
v

+ 1

cI
v

)]−1

= T 2 cK+U
v cI

v

cv

. (57)

Since cK+U
v > 0 and cI

v > 0, the convexity condition is always satisfied. Moreover, in the case of
rarefied gases, the result (57) is equivalent to the one obtained in the previous works [25,26].

We can estimate the fluctuation of the energy exchange 
, which obeys the Gaussian distribution
functional f (
(x)). Except for the normalization factor, the distribution functional is given by

f [
(x)] ∼ exp

(∫
V

ρη

kB

dx
)

with η being given by (57). Here the integration is taken over the whole system V . Therefore we
have the estimation given as a simultaneous spatial correlation:

〈
(x)
(x′)〉 = kBT 2

ρ

cK+U
v cI

v

cv

δ(x − x′),

where 〈 〉 indicates the thermal average at an equilibrium state. From (51), the fluctuation of the
dynamic pressure � is also estimated as

〈�(x)�(x′)〉 = kBT 2p2
T cI

v

ρcvcK+U
v

δ(x − x′).

Then the bulk viscosity (54) is rewritten as follows:

ν = τ


kBT |V|
∫∫

V
〈�(x)�(x′)〉dx dx′,

where |V| is the volume of the system. This is a fluctuation-dissipation relation. From (46), it is also
interesting to notice the following relation:

ν = ρτ


(
U 2

E − U 2
Euler

)
.

VI. AN EXAMPLE: THE ET6 THEORY OF VAN DER WAALS FLUIDS

A. Equations of state, nonequilibrium temperatures, and dynamic pressure

Let us study, as a typical example, a polytropic vdW fluid of which thermal and caloric equations
of state are given by

p = kB

m

Tρ

1 − bρ
− aρ2, ε = D

2

kB

m
T − aρ, (58)
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where D is related to the degrees of freedom of a molecule and the material-dependent constants
a and b represent, respectively, a measure of the strength of the attraction between constituent
molecules and the effective volume (or exclusion volume) of a molecule. In this case, we have

εK+U (ρ,T ) = 3

2

kB

m
T − aρ, εI (T ) = D − 3

2

kB

m
T,

and, from (4), (5), and (9), we have

� = kB

m

ρ

1 − bρ
(ϑ − T ), �̄ = kB

m
ρ(ϑ − T ),

� − T

ϑ − T
= − 3

D − 3
.

Moreover the relation between the bulk viscosity and the relaxation time (54) is explicitly obtained
as follows:

ν = kB

m

2(D − 3)

3D

Tρ

(1 − bρ)
τ
.

B. Nonequilibrium entropy and bounded domain of � in a vdW fluid

From equilibrium thermodynamics, the equilibrium entropy density s is given by

s = sK+U + sI , sK+U = kB

m
log

(
T

3
2

1 − bρ

ρ

)
+ sK+U

0 , sI = kB

m
log T

D−3
2 + sI

0 ,

where sK+U
0 and sI

0 are constants at a reference state. From (26) the nonequilibrium entropy density
η is obtained as follows:

η = sK+U (ρ,ϑ) + sI (�)

= kB

m

{
log

(
ϑ

3
2

1 − bρ

ρ

)
+ log �

D−3
2

}
+ s0, (59)

where s0 = sK+U
0 + sI

0 .
From (39), we have the condition for the nonequilibrium temperature ϑ :

0 < ϑ <
D

3
T . (60)

This condition corresponds to the condition of �:

0 < � <
D

D − 3
T .

C. Convexity for a vdW fluid

As the conditions in the second and third equations of (36) are identically satisfied, the convexity
condition of h = ρη with η given by (59) comes only from the first equation of (36) and is expressed
as

p̂(ρ̂,ϑ̂) > (3 − 2ρ̂)ρ̂2, (61)

where we have introduced the following dimensionless variables:

p̂ = p

pcr

, ρ̂ = ρ

ρcr

, T̂ = T

Tcr

, ϑ̂ = ϑ

Tcr

, (62)

with pcr = a/(27b2), ρcr = 1/(3b), and Tcr = 8a/(27 kB

m
b), which are the quantities at the critical

point. We notice that the boundary (spinodal curve) is independent of ϑ̂ , similarly to the case of the
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Euler system in which the spinodal curve for equilibrium pressure is independent of the temperature.
From (60), ϑ̂ is bounded as follows:

0 < ϑ̂ <
D

3
T̂ .

The critical point is the point on the spinodal curve with the condition that the second derivative
also vanishes: [

∂2p(ρ,ϑ)

∂ρ2

]
ϑ

= 0.

With (61), we have, as the Euler system,

ρ̂ = 1, ϑ̂ = 1, p̂(ρ̂,ϑ̂) = 1.

It should be noted that, in the space (ρ,p,�), we can observe now a spinodal surface instead of
the spinodal curve and a critical line instead of the critical point. Using the present ET model, we
can develop critical dynamics [58,59], which is the subject for subsequent works.

D. Characteristic velocity in a vdW fluid

From (43), (44), and (45) and the equations of state (58), the velocities U , UE , and UEuler are
obtained as follows:

U 2 = 5

3

kB

m

ϑ

(1 − bρ)2
− 2aρ

= 5

3

kB

m

T

(1 − bρ)2
− 2aρ + 5(D − 3)

9

kB

m

T − �

(1 − bρ)2
. (63)

In an equilibrium case with � = T , we have

U 2
E = 5

3

kB

m

T

(1 − bρ)2
− 2aρ.

It is remarkable that if � ≶ T then U ≷ UE . For Eulerian fluids, we have

U 2
Euler = D + 2

D

kB

m

T

(1 − bρ)2
− 2aρ < U 2

E

for any D > 3. This inequality is the subcharacteristic condition. Last, the dimensionless
characteristic velocity which determines the dispersion relation is obtained as follows:

ÛE =
√√√√ 20

3 T̂ − (ρ̂ − 3)2ρ̂

4D+2
D

T̂ − (ρ̂ − 3)2ρ̂
. (64)

From (64) with (61), we can prove ÛE > Û rarefied
E where Û rarefied

E = limρ̂→0 ÛE =
√

5
3

D
D+2 is the

dimensionless characteristic velocity in rarefied gases. Moreover, we notice that ÛE has an extremum
at ρ̂ = 1,3 and limρ̂→3 ÛE = Û rarefied

E . The dependence of ÛE on ρ̂ is shown in Fig. 2 for T̂ =
1.0, 1.5, 2.0 with D = 5.

E. Critical derivative in a vdW fluid

Solving p = p(ρ,ϑ) given by (58) with respect to ϑ and substituting it into (63), we obtain
immediately the result that, from (48), the locus of the local exceptionality is expressed as, in the
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FIG. 2. Dependence of ÛE on dimensionless mass density for T̂ = 1.0, 1.5, 2.0 with D = 5.

dimensionless form with (62),

p̂(ρ̂,ϑ̂) = ρ̂2

{
9

20
(3 − ρ̂)2 − 3

}
. (65)

It is interesting to observe that the locus is independent of the nonequilibrium variables and coincides
with the curve for a monatomic Euler fluid. As is well known among fluid dynamics researchers,
this curve has been called the critical derivative curve (for details and references see Ref. [47]).
Comparing this curve with the spinodal curve (61), we notice that the curve of local exceptionality
always resides in the unstable region. Therefore, as far as the van der Waals equation of state is
concerned, the rarefaction shock does not appear in the present ET theory in contrast to the Euler
system [47]. It is needed to clarify the admissibility of the rarefaction shock by the more realistic ET
theory with shear viscosity and heat conductivity. On the other hand, from an experimental point of
view, it is well known that the existence of the rarefaction shock is still controversial. We hope that

FIG. 3. Spinodal curve, that is, the boundary of (61) (solid line) and locus of the local exceptionality (65)
(dashed line) in the (ρ̂,p̂(ρ̂,θ̂)) plane.
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our theoretical prediction may give an insight into this longstanding problem. In Fig. 3, the locus of
the local exceptionality is depicted with the spinodal curve in the (ρ̂,p̂(ρ̂,θ̂ )) plane.

VII. CONCLUDING REMARKS

An ET theory of dense polyatomic gases has been proposed, and some of its characteristic features
are elucidated. As this theory is applicable also to liquid phase, we may say that we have established
an ET theory of fluids including both gas and liquid. As an example, a van der Waals fluid is studied
on the basis of the present theory.

Our concluding remarks are given as follows:
(1) We have shown that we can extract interesting information about nonequilibrium processes

and fluctuations in molecules from the equations of state by dividing them into a (K + U ) part and I

part. Specifically, we successfully accomplished the theoretical extension from rarefied polyatomic
gases to dense polyatomic gases by using the duality principle. We obtained the nonequilibrium
and nonlinear entropy density explicitly. Then we derived a new thermodynamic inequality and
the distribution function near equilibrium from which the fluctuation-dissipation relation for the
bulk viscosity comes out. If necessary, we may divide the equations of state into several parts and
analyze the nonequilibrium phenomena in fluids in a similar but finer way. In particular, in higher
temperatures, internal rotational modes and internal vibrational modes in a molecule should be
treated separately to obtain more reliable model. We can adopt the same method presented in this
paper to obtain such a model.

(2) Fluctuating hydrodynamics based on the ET theory was studied in Refs. [60,61]. It seems to
be a promising next step to study this subject by using the present model. Such a study will give
us, for example, a more detailed and sophisticated analytical result of the fluctuation-dissipation
relation than that presented above.

(3) The ET6 theory is an essential but a simplified model. In order to study the nonequilibrium
phenomena for viscous heat-conducting dense fluids beyond the applicability range of the Navier-
Stokes Fourier theory, an ET theory with 14 fields (ET14) that takes into account heat flux and shear
stress is necessary. It can also be developed in a similar way by adopting the duality principle, and
its details will soon be reported. Various applications of the ET14 theory are expected, for example,
applications to shock waves, dynamics of gas-liquid phase transition, in particular dynamics near
the critical point, nonequilibrium hydrodynamic fluctuation, and so on.

(4) In the present paper, the construction of an ET theory of dense monatomic gases remains as
future work. In its construction it will be necessary for us to identify the most appropriate elementary
process that is responsible for the emergence of the dynamic pressure.
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