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The relative role of convection and diffusion is characterized both numerically and
experimentally for porous media flows due to a Rayleigh-Taylor instability of a horizontal
interface between two miscible solutions in the gravity field. We show that, though globally
convection dominates over diffusion during the nonlinear regime, diffusion can locally be
as important as convection and even dominates over lateral convection far away from the
fingertips. Our experimental and numerical computations of the temporal evolution of the
mixing length, the width of the fingers, and their wavelength are in good agreement and
show that the lateral evolution of fingers is governed by diffusion.
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The search for scaling laws in hydrodynamics, aimed towards characterizing generic properties
of flow dynamics, is ubiquitous and flows in porous media are no exception [1–9]. Understanding
scalings for convective processes in porous media is important in applications such as carbon-dioxide
(CO2) sequestration [3,4,9,10], planetary dynamics and formation of stars [11], plasma fusion
reactors [12], etc. For these and various other geological and industrial settings, predicting scalings
in the evolution of buoyancy-driven patterns at the interface between two solutions plays a pivotal
role in predicting mass transport phenomena. Density-driven instabilities can arise, for instance,
thanks to a Rayleigh-Taylor (RT) instability developing when a denser solution is placed above a
less dense one in the gravity field, or because of double-diffusive effects when solutions of two
solutes diffusing at different rates are in contact. In the nonlinear regimes of these instabilities,
quantifying the relative importance of convection and diffusion is a prerequisite to analyzing local
mass fluxes and hence the efficiency of transport and local mixing.

For porous media, the various dynamical regimes appearing in buoyancy-driven fingering have
been studied extensively [2,3,13–18]. In the case of a RT instability of a miscible interface,
there is initially a diffusive regime in which the perturbations decay exponentially around the
initially flat contact line between the two solutions. Subsequently, perturbations grow in magnitude,
triggering convective fingers, and eventually the dynamics enter into a nonlinear regime. This phase
is characterized by interactions among the fingers, and an increase in time of the length of the mixing
zone that deviates from t1/2. During this nonlinear regime, the dynamics is usually considered to
be globally dominated by convection, with diffusion being negligible [2,4] even though the rate of
growth of the width of fingers has been observed numerically to scale as t1/2 [3,4].

Despite this globally satisfying picture, several questions remain unanswered. First, the argument
that the nonlinear dynamics is dominated by convection, with diffusion being negligible, has not
yet been formally verified. If the contribution of the convective and diffusive terms are monitored
globally, it is indeed true that during the initial stages diffusion is dominant and that convective
mixing takes over after the onset of instability. However, such an analysis provides an incomplete
picture, since both convective and diffusive mixing are significant even during the nonlinear regime,
albeit in different regions of the flow. As we highlight below, convection dominates locally at the
tip of the fingers but is balanced by diffusion in the rest of the mixing zone. Second, while the
dominant vertical length scale of the fingers is well characterized, less is known about horizontal
scalings.
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FIG. 1. Buoyancy-driven instabilities: (top) gradients of refractive index in experiments using a sucrose
solution (solutal expansion coefficient αA = 0.122 l/mol, diffusion coefficient DA = 0.52 × 10−5 cm2/s) with
At = 0.0057M, Ab = 0.00082M; (bottom) numerical density gradients. The fields of view in both images
correspond to 11 mm × 20 mm.

We show here by combined numerical simulations and experiments on the miscible RT instability
that in porous media diffusion can be locally as important as convection. In particular, a horizontal
mixing scale distinct from the vertical one emerges, with the width of the fingers evolving as t1/2,
similar to the case of convective dissolution [3,4], showing the importance of diffusion in quantifying
transverse mixing.

Experiments are carried out in vertical Hele-Shaw cells, two transparent glass plates separated
by a small gap here of thickness a = 0.25 mm [19]. In this gap, two miscible aqueous solutions of
the same solute in concentrations At (top) and Ab (bottom) are brought in contact along an initially
planar interface using a specific injection procedure [20]. The flow dynamics is visualized using a
Schlieren technique, tracking gradients of refractive index [21]. A typical experimental example of
RT dynamics deforming the interface in fingers growing in the vertical direction is shown in Fig. 1(a)
where a denser solution of sucrose is put on top of a less dense one in a Hele-Shaw cell.

For sufficiently small gap widths, the flow evolution in a Hele-Shaw cell is described, as for flows
in porous media [22], by Darcy’s equations which, in dimensionless variables, read:

∇p = −u + Aŷ, ∇ · u = 0, ∂tA + u · ∇A = ∇2A, (1)

where p is the pressure, u is the velocity, A denotes the concentration of the solute affecting density,
and ŷ is the unit vector in the direction of gravity. The equations are nondimensionalized using the
characteristic speed related to the strength of buoyancy forces, namely U = αAAtgK/ν, length
L = DAφ/U , and time T = L /U , where g is the magnitude of the acceleration due to gravity,
K = a2/12 is the permeability, ν is the kinematic viscosity, φ is the porosity (taken here as 1),
αA is the solutal expansion coefficient of species A (defined as 1

ρ0

∂ρ

∂A
where ρ0 is the density of

the pure solvent, water in our experiments), and DA its diffusion coefficient. The concentration was
nondimensionalised as (A − Ab)/(At − Ab). The initial conditions are A = 1,u = 0 in the upper half
and A = 0,u = 0 in the lower half (y = 0 is the initial contact line between both liquids). Periodic
boundary conditions are used in the horizontal x direction while we impose ∂A/∂y = 0,u = 0 on
y = ±Ra where the Rayleigh number Ra = αAAtgKH/νφDA only appears here as the location of
the upper and lower boundaries [3], where H is the dimensional height of the system.

The parameter-free nondimensional equations (1) explicitly show that, in a sufficiently long
numerical domain, i.e., if Ra → ∞, the dynamics is trivially independent of the Rayleigh number
since all the relevant processes arise near the interface and are not affected by walls [13,23,24].
This explains why quantities such as the dissipation rate, the dissolution flux, and other measures
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of flow dynamics are seen to converge to constant values in the limit of high Ra in some numerical
studies of buoyancy-driven instabilities [2,4]. All numerical results given here are in this limit
of parameter-free, large Ra regime. Note that experiments, on the other hand, show dimensional
variables that vary with concentrations and solutes chosen and thus with the Rayleigh number. Their
trends compare nevertheless favorably with the universal trend predicted by the theory as seen below.

Our numerical simulations have been done using the finite-volume code YALES2 [25]. The RT
instability is triggered by introducing a small perturbation on the concentration field throughout
the domain (similar to the noise present in the experiments). Validation tests give good agreement
between our growth rate and wavelength of the RT fingers computed in the onset regime with
theoretical linear stability analysis predictions [13].

Figure 1 shows that, both in experiments and numerical simulations, fingers emerge after a
while around the initial contact line. In the beginning, there is a diffusive regime in which the
perturbations decay, and the numerical density profile remains close to the diffusive error function.
Eventually, the perturbations amplify exponentially due to the unstable density stratification. At a
given time, a first rippling of the interface is observed when the instability kicks in. The fingers then
convect upwards and downwards in a symmetric way. Note that the gradients of density seen in the
numerical simulations are localized along the edges of these fingers, particularly at the upper and
lower tips, and that the vertical extent of the fingered zone is roughly constant along the horizontal
direction. The next stage is characterized by interactions between fingers with merging and creation
of complex shapes. In the experimental snapshots, mushroom-shaped caps are observed at the edges
of the fingers during the later stages (Fig. 1, top right). They are not clearly visible in the last
numerical panel of Fig. 1 (bottom right). This is due to the fact that numerical simulations show the
reconstructed density gradients while experiments visualize refractive index gradients. Even though
the two quantities are similar, they are not exactly the same. In particular the details around the zones
of sharp refractive index gradients are smoothed out, which explains why the diffusive edges seen in
the numerics are not captured in the high-contrast zones visualized experimentally that take hence
a mushroom form.

The temporal evolution of the finger mixing length L is shown in Fig. 2. In the numerical
simulations, L is defined as the distance between A = 0.01 and 0.99 along the transverse direction.
As expected, before the instability sets in, a diffusive behavior in which the mixing length grows as√

t is observed [referred to as D: diffusive in Fig. 2(a)]. Once the instability has set in, the growth
rate of the mixing length increases (see T: transition regime) and eventually, L ∼ t in the nonlinear
regime (referred to as NL). In numerics, these scalings are universal and independent of Ra, yet the
onset time of the convective regime varies with the amplitude of the noise as seen on Fig. 2(b).

A similar transition from a diffusive to a convective regime is obtained in experiments [Fig. 2(b)]
where the mixing length L has been computed as the distance between the most upward and
downward points of the fingers and normalized by its initial value L0. Various sets of concentrations
and different solutes have been scanned corresponding to various Ra, which leads to different
onset times. As in our numerical simulations, the system switches from a diffusive

√
t regime to a

convective t nonlinear regime after a while. In all cases, a constant vertical velocity U can be defined
in the nonlinear regime based on the rate of growth of the mixing length as a function of time such
that L ∼ Ut .

Another useful diagnostic to understand the flow dynamics is the average widths of fingers and
plumes, WA = π/k [3], where k is defined as

k =
√

〈(∂A′/∂x)2〉/〈(A′)2〉, (2)

which is the root mean square of the wave numbers in a Fourier decomposition. Here A′ denotes the
fluctuations in concentrations defined as A′ = A − 〈A〉, with 〈A〉 being the horizontally averaged
concentration. In Fig. 3(a), the temporal evolution of WA is measured in our simulations at various
heights y in the domain. Initially, only a uniform distribution of perturbations is present such that
the initial evolution of WA varies as

√
t at each height as the dynamics is first purely diffusive. Once
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FIG. 2. Mixing length L as a function of time in (a) numerics, averaged over 50 numerical realizations
with different amplitudes of initial noise (black: 2%, yellow: 5%, brown: 10%, green: 20%) for Ra = 4096;
(b) experiments carried out at different Rayleigh numbers using different solutes or concentrations (© NaCl
At = 0.73M, Ab = 0.417M, αA = 0.04 l/mol, DA = 1.54 × 10−5 cm2/s; � NaCl At = 0.73M, Ab = 0.472M;
♦ sucrose At = 0.1M, Ab = 0.016M; � sucrose At = 0.04M, Ab = 0.016M; � sucrose At = 0.06M,
Ab = 0.0106M; and � KCl At = 0.772M, Ab = 0.324M, αA = 0.048 l/mol, DA = 1.91 × 10−5 cm2/s). The
experimental values of the mixing lengths are normalized by their initial value L0. The red and blue dotted lines
correspond to

√
t and t respectively.

fingers reach a particular height within the domain, the results show that the time dependence of WA

remains nevertheless
√

t .

(a)

(b) (c)

FIG. 3. Temporal evolution of (a) the width of the fingers WA computed numerically along various horizontal
lines at fixed y positions in a single numerical realization (Ra = 51200); (b) the numerical power averaged mean
wavelength λA; (c) the experimental normalized wavelength (♦ sucrose At = 0.1M, Ab = 0.016M; � sucrose
At = 0.04M, Ab = 0.016M; � KCl At = 0.772M, Ab = 0.324M; © KCl At = 0.154[M], Ab = 0.108[M];
and � KCl At = 0.404M, Ab = 0.05M). The red line corresponds to

√
t .
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FIG. 4. Spatial distribution of the contributions of diffusion and convection at t = 13 000 with the color
map fixed between [−0.0005,0.0005] as red and blue respectively: (a) ∇2A; (b) U · ∇A; (c) Ux∂A/∂x; and
(d) Uy∂A/∂y. The black box is chosen to isolate the contribution of convection and diffusion within a single
finger.

We also compute the mean wavelength λA defined as [26]

λA = 2π
	iPi

	ikiPi

, (3)

where ki are the Fourier modes of the Fourier transform Â(k,t) of the numerical transverse averaged
profile 〈A(x,t)〉 and P (k) = |Â(k)|2 is their amplitude in Fourier space. Its temporal evolution from
a single realization in numerics, representative of the general picture, is given in Fig. 3(b). This
can be compared to the experimental cases [Fig. 3(c)] where the wavelength is computed as the
averaged horizontal distance between the finger tips. In experimental data, the wavelength and time
have been rescaled by λ0 and time t0, the wavelength and time when a finger is first observed. Note
that λ denotes the interplume spacing rather than the width of the plumes and that these two are not
necessarily equal. Unfortunately, unlike the mixing length L, the width WA is a much more difficult
quantity to measure experimentally, especially for the case of RT instability due to its rapid evolution
accompanied by the merging of fingers.

To interpret the temporal evolution of the mixing length and the width of the fingers, we now
compute the relative contribution in the numerical flow dynamics of the diffusive term ∇2A, the
convective term u · ∇A, along with the x and y components, ux∂A/∂x, and uy∂A/∂y respectively.
Figure 4 shows each of these contributions at a given time in the nonlinear regime. Noticeably, we
see that the convective term is dominant only at the tips of the fingers. A separate inspection of its
horizontal and vertical contributions shows that the vertical component is strongest at the center of
the finger tips [Fig. 4(d)], while, as a result of incompressibility, the horizontal component dominates
at the outer edges of the fingers [Fig. 4(c)]. The elongation of the fingers in the nonlinear regime is
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(a)

(b)

FIG. 5. (a) Horizontally averaged values of diffusive and convective terms along the y axis within the black
box shown in Fig. 4. (b) Histograms for the convective term (black), the diffusive term (red), the convective
term in the x direction (ux∂A/∂x) (blue), and the convective term in the y direction (uy∂A/∂y) (green).

thus clearly due to vertical convection at their tips and, as a logical result, the mixing length grows
like L ∼ Ut as discussed above.

In the bulk of the mixing zone, away from the finger tips, the situation is different. Figure 4
shows that convection and diffusion have similar amplitudes in that region. To better quantify the
relative contribution of convection and diffusion within one single finger, we closely inspect the
region highlighted using a black box in Fig. 4 that encapsulates a finger in the upward and downward
directions. In Fig. 5(a), we plot the intensity in this box of the diffusive term and of the horizontal and
vertical components of the convective term, averaged along the horizontal direction. As discussed
above, the plot confirms the presence of strong vertical convection at the tips of the fingers. Within
the bulk of the domain, the diffusive term dominates the horizontal component of the convective
term and is of similar magnitude as the vertical one. Though Fig. 5(a) shows a specific case where
the observation has been based on a single finger, the same conclusions have been observed to hold
for all the fingers.

To further illustrate this, we have computed in Fig. 5(b) the probability distribution function
(PDF) of the diffusive and convective terms (both horizontal and vertical) in the whole domain in
Fig. 4. The PDF of the diffusive term corresponds to a Gaussian distribution. This is in contrast
with the histograms of the convective terms, which exhibit long tails. These long tails correspond to
events located in the fingertips (as confirmed by observing the locations of the corresponding values
in Fig. 4). However, in the bulk of the mixing zone (corresponding to low values on the x axis), all
transport terms have comparable histograms. Collecting the above observations, we conclude that,
away from the fingertips, diffusion is equally important as convection and that it even dominates
over lateral convection in this nonlinear regime. As a result, the lateral spreading of the fingers does
not depart much from a diffusion dominated process, consistently with the

√
t time dependence of

WA observed in Fig. 3(a) [3].
In conclusion, we have shown both numerically and experimentally that, in the course of a

miscible RT instability in porous media, diffusion contributes in the same way as convection within

012501-6



RAPID COMMUNICATIONS

RELATIVE ROLE OF CONVECTIVE AND DIFFUSIVE . . .

the fingered zone, and that the lateral spreading of the fingers remains a diffusion-dominated process.
The present work applies to both single species and two species Rayleigh-Taylor instability in porous
media. We have demonstrated that diffusion is of the same order of magnitude as convection during
the nonlinear regime within the fingered zone. Monitoring only the global contribution of convection
and diffusion could be misleading as convection is then indeed globally dominant over diffusion.
Instead, inspecting the relative role of convection and diffusion within one isolated finger shows
that both transport processes are there of the same order of magnitude within the fingered zone.
An excellent agreement between our numerical and experimental observations with respect to the
temporal evolution of the mixing length and finger wavelength was achieved. The mixing length
evolves as t , showing that in the nonlinear regime a constant vertical velocity U can be defined such
that L ∼ Ut . The width was observed to grow as

√
t . This diffusion-dominated growth has been

explained by analyzing the relative contribution of convective and diffusive terms within a finger
showing that, away from the fingertips, diffusion is as important as convection, and even dominates
over lateral convection.

This demonstrates the need to take diffusive phenomena into account when quantifying specific
transport scalings in convective instabilities in porous media. As an example, this might be of
importance when estimating the storage capacity of CO2 sequestration sites or pollution damages
in soils when evaluating respective lateral and vertical spreading and mixing scales of injected
CO2 or contaminant plumes. Our analysis has focused here on the Rayleigh-Taylor instability in
miscible systems. It will be interesting to verify if our observations remain robust for double-diffusive
instabilities [27] and for convective dissolution in partially miscible systems as observed in CO2

dissolution in aquifers. This will be the subject of further studies.
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