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To investigate the effects of finite arithmetic precision on large-scale direct numerical
simulations (DNS) of three-dimensional turbulence using a spectral method, we performed
a comparative analysis between two sets of DNS: one using single arithmetic precision
(AP) and the other using double AP. Each set simulated the turbulent flows of an in-
compressible fluid under periodic boundary conditions at Reynolds numbers (R;) of 170
and 268, with a resolution defined by ky.x) = 4, where k,x denotes the maximum wave
number in the DNS and 1 represents the Kolmogorov length scale. Special focus was given
to the temporal evolution of the maximum values of local enstrophy (£2) and local energy
dissipation rate (€), as well as the moments (2”) and (e”). The comparison shows that
at R, = 268, the differences in the time-dependent maximum values between double AP
and single AP DNSs are negligible for short duration (+ < 1.67"), where T' denotes the
eddy turnover time. However, these differences become significant for longer duration
(t > 1.6T). For moments with p < 4, no notable differences were observed, but significant
discrepancies emerged for p > 4 and t > 1.67. In DNSs at R; = 170, the differences in
both maximum values and moments were insignificant throughout the entire simulated
time range. The results in the present paper suggest that the difference becomes more
significant in DNSs of turbulence at higher Reynolds numbers.
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I. INTRODUCTION

In studies of turbulence, it is commonly assumed that there is a certain universality in the
statistics of sufficiently small scales in turbulence at sufficiently high Reynolds numbers (Re). This
universality is thought to be insensitive to the details of the flow conditions such as the initial and
boundary conditions. The idea of universality is underlying the seminal work of Kolmogorov [1]
and is at the heart of modern developments in turbulence theories and modeling.

Direct numerical simulation (DNS) of the Navier—Stokes (NS) equations is a powerful tool for
investigating turbulence. However, once one accepts the idea of universality of turbulence and wants
to understand it better by DNS, the DNS should be performed at Re as high as possible. Considering
the computational constraints, achieving high Re in DNS often involves using simple boundary
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conditions such as periodic boundary conditions. The turbulence studied under periodic boundary
conditions is referred to as “box turbulence.”

In this study, we consider box turbulence of an incompressible fluid governed by the three-
dimensional Navier—Stokes equations. For DNS of box turbulence, it is convenient to use Fourier
transform (FT) such as

1
ak) = e Zu(x) exp(ik - x), (D)

where k is the wavevector, u(x) = (u;(x), up(x), u3(x)) denotes the fluid velocity at position
x = (x,y,2) = (x1,X2,x3), and x, y, and z are Cartesian coordinates. The velocity is assumed to
be periodic in the x, y, and z directions. The symbol ) denotes summation over L x M x N grid
points in the fundamental periodic box in physical space x, where L, M, and N represent the number
of grid points in the x, y, and z directions, respectively. For simplicity, we assume the fundamental
periodic box is a regular cube, and L =M = N.

In DNS of turbulence of an incompressible fluid, it is important to accurately operate V2, which
is necessary for solving the pressure field. Here V=2 is the inverse Laplace operator. The so-called
Fourier spectral method, which uses the FT such as in Eq. (1), has the advantage that it enables one
to perform the operation efficiently and accurately, although it is limited by machine accuracy.

In DNS of high-Re turbulence using Fourier spectral method, we need to take into account of the
following inequalities (i), (ii), and (iii):

(i) k. < ky, where k, denotes the representative wave number of the wave vector modes in the
energy containing range, and k, represents that of the energy dissipation range where most of the
energy dissipates.

(ii) V(k,) < V(k.), where V (k) indicates the representative magnitude of & (k) at |k| = k.

(iii) T > 1,, where T denotes the characteristic time of energy containing eddies at |k| ~ k.,
and 1, represents the one at |k| ~ k,,.

These facts imply the following for the DNS:

(D-i) The cube of the number N, denoted as N, must be sufficiently large to encompass at least
the wave-number range k such that k, < k < k,,.

(D-ii) The ratio y(k) = V (k)/V (k.) becomes very small when k approaches kp.x, where kpax
represents the maximum wave number retained in the DNS.

(D-iii) The simulation time, denoted as Ts, should not be significantly smaller than T (>>1,) to
ensure that the DNS is minimally affected by the time-dependence of the energy-containing eddies,
the statistics of which are not universally consistent with Kolmogorov’s 1941 theory (K41).

With the progress of parallel computing, the feasibility of performing large-scale DNS to study
high-Reynolds-number turbulence has improved. For instance, Yeung et al. [2,3] performed DNS
with N3 = 327683 ~ 3.5 x 10'3, which, to our knowledge, is the largest in DNSs so far executed
globally. In these simulations, the ratio E (k)/E(k,) at k & kyax ~ 10%k, is approximately 10710,
where E (k) represents the energy spectrum. Given that E (k) o k2a(k)|? at large wave numbers, this
suggests that the ratio y (k) defined in (D-ii) is approximately (10719)!/2/10* = 102 at k ~ kpax.

It is to be recalled here that in any DNS, the arithmetic precision (AP) must be finite, so that
strictly speaking any DNS may be affected by the round-off errors due to the finiteness of the AP.
Provided that the AP is not so poor in a certain appropriate sense and the number N is not so large,
it looks reasonable to assume the effects of the finite AP on the statistics obtained by the DNS are
not much larger than those of the other errors, such as those of finite resolutions in space and time
as studied by Yeung et al. [4]. However, in view of (D-i) and (D-ii), one may wonder if it remains
true when N is huge, e.g., as large as 10'® or larger, and the ratio y (k) at k near kpx is very small,
e.g., as small as 1072 or less.

To clarify this issue, let us consider the sums such as

Citky =1 ity (k — q)qait;(q). )
q
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which are derived from the FT of the convection term C(x) = (u - V)u in the NS equation. Here, ) a

indicates the summation over N° grid points in the wave vector space q = (¢, 2, g3), employing
the summation convention for repeated Greek indices but not for italic indices. In DNS based on
FT, such sums must be computed at each grid point in the wave vector space k = (ky, k», k3) and at
every time step.

The sum in Eq. (2) can be computed efficiently through the following steps:

(C-i) First, compute u(x) and Vu(x) using an inverse FT, such that

u(x) = ak)exp(—ik - x), (3)

k

(C-ii) Compute (u - V)u in physical space, and then

(C-iii) Apply the FT to (u - V)u.

Note that steps (C-i) and (C-iii) as well as Eq. (2) involve summations over the N3 grid points
in the wave vector or physical space. In practice, to efficiently eliminate aliasing errors, one may
employ a method known as phase shifting; however, this still requires summations similar to Eq. (2).

Assume that at a specific time step, the exact value of @ (k) is known for any k and is represented
or approximated by #°° (k) and @’ (k) in DNSs with infinitely accurate AP and a specified finite AP,
respectively.

The relationship can be expressed as follows:

i (k) = a7° (k) + 5> (k)& (k), “4)

where i°(k)é;(k) represents the round-off error and typically depends on AP. For example, if one
uses single-AP, |&;(k)| is typically of the order 1078.

Let u”(x) denotes the value of u(x) obtained by substituting #”(k) into @ (k) in Eq. (3), and
performing the inverse FT with the given AP, and let C” (k) denote the estimate of € (k) obtained by
repeating (C-i) to (C-iii) with replacing u(x) by u”(x). Then, similar to Eq. (4), we may write

CP (k) = C° (k) + C2 (k) AS (k), (5)

where C’f’o (k) represents the value obtained using infinitely accurate AP.

Considering first the implication of (D-i), namely, the largeness of N, note that the summations
in Egs. (1), (2), and (3) span N grid points. If N3 is large, the cumulative effect of finite AP on each
summed term, although individually small, may become significant. Therefore, one may question
whether A¢ (k) can be safely ignored when N 3 reaches as high as 10'3, even if the round-off errors
¢€;(k) are minute, as is the case in DNSs using single AP.

Consider next the implications of (D-ii), namely, the smallness of y (k). If y (k) at very large k
is exceedingly small, then the error |#7°(k)é;(k)| at k ~ k, is not necessarily much smaller than
|2*° (k)| at extremely large k even if |¢;(k)| is very small. This gives rise the concern that the
contributions to u”(x) computed by using FT such as (3) and the true “@i(k)” at large k may be
masked or contaminated by noise or errors induced by #{°(k)é;(k) at k ~ k.. One may then ask if
the errors A¢ (k) remain insignificant for large k ~ kmax. For instance, suppose that y (k) at a large
k ~ kmax is as small as 1072 or less, and &;(k) can be as small as 10~3. One may then wonder
whether A€ (k) is still negligible at large k, for example, at k ~ kpyy.

The main objective of this study is to get some idea on the effects of the finite AP in DNS of
high Re turbulence. To this end, we compared DNS statistics obtained using single AP, referred to
as DNSgp, with those derived from DNS using double AP, referred to as DNSpp.

The comparison is made from the viewpoints of the questions noted above. In this regard, this
study differs from previous studies on the effects of AP in Fourier spectral method, including the one
by Homann et al. [5] who examined the impact of the floating-point precision on the results of DNS
of turbulence by eliminating digits in pseudospectral DNS computations at 256 grid resolutions
systematically, and the one by Wang and Rosa [6] who examined the effects of pile up of rounding-
off errors in very long DNS (over 50 to 100 eddy turnover times). The grid points (N?) and Re in our
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DNS are significantly higher than those in the aforementioned studies. The present study differs also
from the study by Yeung et al. [4] in the sense that in view of (D-iii) we continued the simulation
time T5(>T) substantially longer than that of their study, where T is the eddy turnover time. Yeung
et al. [4] showed that the statistics of DNS with single AP are not much different from those of
DNS with double AP over a short time range 0 < ¢ < 10t,, where 1, is the Kolmogorov timescale.
However, as seen below, DNSs over a long-time range suggest that they may be sensitive to the AP
at a later stage.

To assess the effects of AP, this study focuses on the statistics of the local energy dissipation rate
€(x, t) and local enstrophy Q2(x, #), consistent with high-Reynolds-number turbulence DNS studies
[4,7-14]. These quantities are defined as follows:

Qx, 1) = Jwu (x, Ny (x, 1), (6)

€(x,1) =2v8,8(x, 1)Sap(x, 1), @)

where w, represents the arth component of the vorticity field, and Sp = (dgue + 94ug)/2, with v
denoting the kinematic viscosity.

The structure of this paper is as follows: Section II describes the numerical methods and
simulation settings. Section III presents a comparison of DNS results computed in both double
and single precision, discussing quantitively the effects of arithmetic precision across two cases of
Reynolds numbers. Section IV presents conclusions and discussion.

II. NUMERICAL METHODS AND SIMULATION SETTINGS

In this study, we utilized data from the DNS of forced box turbulence in an incompressible fluid
governed by the NS equation. The numerical methods employed in these DNSs are the same as
those used in prior studies [15—17]. The computational domain was a cubic box with each side of
27 in the x, y, and z directions. Aliasing errors were eliminated using a phase-shift method and
spherically symmetric truncation, with the maximum wave number retained in the DNSs being
kmax = (+v/2/3)N. The time integration was performed using a fourth-order Runge—Kutta method.
The total kinetic energy E within the box was maintained at approximately 0.5 by applying a forcing
mechanism (via negative viscosity) in the low wave-number range. For additional details on the DN'S
method, see Refs. [15-17].

Systematic investigations by Yeung et al. [4] show that extreme events, evaluated by the spatial
peak values of the local energy dissipation rate or local enstrophy, are well preserved in DNS
with spatial and temporal resolutions satisfying kmax? < 3 and the Courant-Friedrichs-Lewy (CFL)
number defined by C = (Ju| + |v] + |w|)max At/ Ax < 0.3 over the time range 0 < ¢ < 107, where
the subscript “max” indicates the maximum value across all N grid points, and Ax = 2m /N
represents the grid spacing. Their DNSs were performed using a spectral method by Rogallo
[18] combined with a second-order Runge-Kutta method to reduce aliasing errors. In this study,
which uses a fully alias-free spectral method with a fourth-order Runge-Kutta method, the spatial
resolution was determined as k.7 & 4 and the time increment Ar was determined such that the C
was approximately 0.55 or 0.275.

We performed two types of DNS, DNSgp and DNSpp, which respectively use single AP and
double AP, for each of the four runs named RunL-C1, RunL-C2, RunH-C1, and RunH-C2. The
labels “L” and “H” denote lower Reynolds number (R; = 170) and higher Reynolds number (R, =
268), respectively, whereas “C1” and “C2” indicate runs with C of 0.55 and 0.275, respectively.
The main run conditions and representative turbulence characteristics are summarized in Table I.
The DNS results discussed in the subsequent section are from the runs with C = 0.275, unless
otherwise stated. Regarding the influence of C, readers may refer to the Appendix.

The run conditions including the initial conditions used in DNSgp were identical to those in
DNSpp for each of the four runs. All computations were integrated up to approximately 2.57 , where
T indicates the initial eddy turnover time given by T = L/u/, u’ = (2E/3)'/?, and L is defined by
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TABLE I. DNS parameters. The values of R;, n, T, and (€2) are those at time ¢t = 0.

Run N R, 10*v 10* At C Kmax kmax?) T (Q)

RunL-C1 1024 170 7 6.25 0.55 483 3.9 2.1 58.6
RunL-C2 1024 170 7 3.125 0.275 483 39 2.1 58.6
RunH-C1 2048 268 2.8 3.125 0.55 965 3.9 1.9 143.6
RunH-C2 2048 268 2.8 1.5625 0.275 965 3.9 1.9 143.6

L=mn/ Qu'*) f(f " E(k)/kdk, where E (k) represents the energy spectrum and is approximated here
by E(k) = Zk71/2<|p|<k+1/2 lt(p)|? /2. The Kolmogorov length scale, , Taylor microscale length
scale, A, and R;, are respectively defined as n = (v3/(€))/4, A = (15vu'*/ (€))%, and Ry, = u/A/v,
where (-) denotes spatial average of -. In the box turbulence, (¢) = 2v ().

We used a developed turbulent field at R, = 268, kpx =~ 2, N 3 = 10243 (Dev-F) computed in
Ref. [17] for setting the initial field for RunH-C1 and RunH-C2 at higher resolutions kp,xn = 4. The
Fourier coefficients of the initial fields of RunH-C1 and RunH-C2 are obtained by the zero padding
method using those of Dev-F. Before executing RunL-C1 and RunL-C2, we performed DNS at N3 =
10243 using Dev-F as the initial field, and continued the DNS until R; becomes quasi-stationary
and approximately 170. We used the DNS field thus obtained as the initial fields for RunL-C1 and
RunL-C2.

Statistics such as the moments of €2 and € are computed using the double AP in both DNSpp and
DNSgp. The visualization of the distribution of these quantities on a plane at high Reynolds numbers
(Re) reveals spatially localized spiky structures (see Ref. [19]), referred to as extreme events. The
spatial maxima of these structures are often several orders of magnitude greater than their spatial
means. The structures of such extreme events in high-Re turbulence are generally sensitive to the
accuracy of DNS, making them good indicators for evaluating the numerical accuracy of DNS for
fine-scales in high-Re turbulence. They also form a key factor in the study of intermittency at small
scales in high-Re turbulence. Therefore, these quantities are carefully evaluated.

III. NUMERICAL RESULTS

A. Maximum and high-order moments

Figure 1 shows the time dependence of €y, / (€);—0 and Qpax/{2);=0 in RunH-C2 (R; =~ 268) by
DNSpp and DNSgp as functions of /T, where T denotes the eddy turnover time that characterizes
the timescale of the energy-containing eddies. As shown in Fig. 1(a), the two curves of €nax/{€)r=0
for DNSgsp and DNSpp overlap well up to /T = 1.6. However, the agreement between the two
curves deteriorates at later time, specifically for #/T > 1.6. After t/T ~ 2.4, there are several
instances where €n,x/(€),—0 in DNSgp is smaller by a factor of 2 or more than that in DNSpp.
This suggests that DNSgp may underestimate €y,,x and Qp,.x compared with DNSpp.

A similar result is also true for the curves of Qmax/(€2),—0 shown in Fig. 1(b). The two curves
overlap well in an early time range, say, t < 1.6T ~ 52t,, but not later (i.e.,t > 1.6T), where
1, is the Kolmogorov timescale defined by #, = (v/€)'/2. This overlap at the early time range is
consistent with studies by Yeung et al. [4,8], based on DNSs at k.xn & 2.8, where it was shown
that Qn,x of DNSgp was not significantly different from that of DNSpp. However, the DNSs are
only up tot/7, < 12. Figure 1 shows that even if the difference between the statistics of DNSgp and
DNSpp is negligible in a certain initial time range, it may not be negligible in later time ranges.

In each of Figs. 1(a) and 1(b), the change of the degree of the agreement between the two curves
by DNSgp and DNSpp appears suddenly. Such a sudden change reminds us of studies on chaotic
systems, such as the Lorenz model [20]. These studies show that nonlinear systems may, in general,
have a chaotic nature, for example the so-called butterfly effect, and may exhibit strong sensitivity
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FIG. 1. (a) Local energy dissipation and (b) local enstrophy vs the normalized time ¢ /7 by DNSgp and
DNSpp of RunH-C2 (R, = 268). They are normalized by their respective mean values at the initial instant. The
tags “DBLE” and “SNGL” denote the runs by DNSpp and DNSgp, respectively.

to small differences in run conditions. In view of the fact that turbulence is also a strongly nonlinear
phenomenon, such a sudden change may be not surprising. However, it should be noted that the
number of modes in our DNS is on the order N* ~ 10° or more. This is much larger than those of
systems commonly used in studies of chaotic systems with a small degree of freedom, such as the
Lorentz model.

Figure 2 shows the pth root of the pth-order moments of € and Q (i.e., (¢”)!/? and (Q”)'/?) for
RunH-C2. (Since the p-dependence of the moments is too strong, especially for large p, we take
the pth root of each moment so that all the lines can be plotted on the same graph.) For clarity,
a magnified version of Fig. 2 is shown in Fig. 3 for p = 1, 2, and 3. As observed in Fig. 1, in an
early time range (t/T < 1.6), the curves of (€”)!/?/(e),—y by DNSgp overlap well with those of
DNSpp for p=1,2,---7. Later, at (¢/T > 1.6), a different pattern emerges. For smaller p values,
such as p = 1, 2, 3, the difference between (€”)!/7/(€),—g using DNSgp and DNSpp appears to be
sufficiently small. However, as p increases, this difference becomes more pronounced. A similar
trend is also observed for (Q7)/7.

In Figs 1 and 2, it is seen that the curves by DNSgp and DNSpp cross each other several times in
the interval 1.6 < /T < 2.6. One might therefore wonder if there is any systematic and significant
difference in the statistics by DNSgp and DNSpp. To see this point more clearly, we consider here
the time-averages of the statistics. Let M[X] and o [X] be respectively the time average of X and the
standard deviation given by o [X] = \/ M[X?] — (M[X])?. Table II lists the time averaged pth-order
moments of normalized energy dissipation & and enstrophy Q as well as the time average of the
max values of € and Q, where € = ¢/{€),—o and Q = ©/(Q),—¢, and the time average was taken
using the data of € and Q at about 800 time steps t = f,,(n = 1,2, 3, - - - ) spaced equally in the time
interval 1.3 < ¢t/T < 2.6.

It is seen in Table II that (i) for p = 5 there are clear differences between the statistics by
DNSgp and those by DNSpp, although the differences are small for p < 4, (ii) as compared to
DNSpp, DNSsp underestimates both of the means and the standard deviations of € and  for p = 5,
(iii) the differences between DNSgp and DNSpp are larger for larger p, and (iv) the differences
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FIG. 2. (a) pth roots of the moments (e”(x, t)) v /{€);=0 vst/T by DNSgp and DNSpp of RunH-C2. (b) The
1
same as panel (a) but for (Q2”(x, 1)) ? /(€2),—0. Arrows indicate increasing values of p.

are larger for enstrophy than for energy dissipation. Regarding (ii), consider for example, the
statistics of Q7 for p = 7. The ratios of M[(Q7)] and o [(R7)] by DNSgp to those by DNSpp are
respectively 2.11/3.67 =~ 0.57 and 1.87/5.44 ~ 0.34, i.e., they differ by the factor of 1/0.57 ~ 1.75
and 1/0.34 =~ 2.94, respectively.

DNS is in general not error-free. Strictly speaking, it may be affected not only by round-off errors,
but also by many other effects such as those of finite resolution in space and time, sampling numbers,

=0

(€®) P/ (e}
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(QP) P/ (Q)e
O=NWhUIONWO

o ||||$
T T TR N N T R

0.5 1 1.5 2 25
t/T

FIG. 3. Enlargement of Fig. 2 but only for p = 1, 2, and 3. Arrows indicate increasing values of p.
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TABLE II. Time-averaged pth-order moments of the normalized energy dissipation & and enstrophy €2, as
well as the time averages of &y, and Qpax, Where € = €/(€),—o, Q = Q2/(Q2),—o. Here, &nax and Qpay represent

the spatial maximum values of & and Q. The corresponding standard deviations are also shown.

- NV I VI SR

DBLE SNGL DBLE SNGL
(M[(e")], o[(eN]) (M[(e")], o[(eN]) (M(£27)], o [{(2P)]) (MU(Q")], o [(27)])
(3.22, 0.27) (3.21, 0.27) (6.14, 0.58) (6.13, 0.58)

(33.3, 5.69) (32.8, 5.9) (167, 34) (166, 33)
(981, 278) (920, 290) (1.40, 0.48) x 10* (1.33, 0.43) x 10*

(6.84, 3.44) x 10*
(8.73, 7.89) x 10°
(1.64, 2.42) x 10°

(M[€max], o [Emax])
(275, 62.2)

(5.79, 3.04) x 10*
(6.54, 6.15) x 10°
(1.12, 1.89) x 10°

(M[€nax], o [€max])
(256, 61.5)

(2.63, 1.54) x 10°
(8.32, 8.21) x 10
(3.67, 5.44) x 10!
(M[Qumax], 0 [Qmax])
(611, 134)

(2.21, 1.02) x 10°
(5.89, 3.80) x 108
(2.11, 1.87) x 101!
(M[Qmax], 0 [2max])
(565, 105)

etc. It may therefore be of interest to compare the magnitudes of the effects of the round-off errors
discussed above with those of the other (if not all) effects.

Regarding the comparison with the effects of the space resolution, our previous DNSs [21] of box
turbulence give some idea. The DNSs use the same numerical methods and forcing scheme as in the
present study, and the Reynolds number is 217, which is a little smaller than 268 in the present study.
Table III shows the time-averaged pth-order moments M[(Q”)] as well as the maximum M [ ax]
by the DNSs. It is seen that the effects of the spatial resolution are not that large. For example, even
for p = 7, the ratio of M[(Q7)] of the DNS with ka1 2 6 to that of the DNS with kpaxn & 3 is
2.76/3.04 =~ 0.91. Such a week resolution dependence of the pth-order moments for km.x < 3 is
consistent with previous work [7]. However, it is seen in Table II that for the same p(=7), the ratio
of M[(2")] of DNSgp to that of DNSpp is 2.11/3.67 ~ 0.57, which is considerably smaller than
0.91. This implies that the effect of the round-off error on M[(7)] is more significant than that of
space resolution in the present case.

Regarding the comparison with sampling effects, Table II gives some idea. For example, it is seen
in Table II that the difference between M[(Q27)]s by DNSpp and DNSgp is (3.67 — 2.11) x 10'! =
1.56 x 10'!. This difference is comparable to o[(7)] = 1.87 x 10'! by DNSgp. Since standard
deviation o is a representative measure of sampling error, this comparison suggests that the
magnitudes of the effects of round-off error can be comparable to those of temporal sampling.

TABLE III. Time-averaged pth-order moments of the normalized enstrophy Q as well as the time av-
erage of its maximum values for (left) DNS at resolution k. = 6 and (right) DNS at k,.xn =~ 3, where
Q = Q/(Q),—o. The averaging is performed for ¢ > 1.3T using approximately 800 fields from DNS data in
Ref. [21]. The corresponding standard deviations are also shown.

DBLE, kuax) & 6 (M[(Q")], 0 [{27)]) DBLE kuaxt) & 3 (M[(Q")], 0 [{©27)])
(5.26, 0.193) (5.26, 0.193)
(111, 8.33) (111, 8.67)
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FIG. 4. PDFs of € and 2 in RunH-C2.

B. PDFs of local enstrophy and dissipation

Figure 4 shows the probability density functions (PDFs) P of € and 2 for RunH-C2. Since the
tails of the PDFs of ¢ and 2 are fluctuating in time, we plot PDFs of € and Q averaged over
a time range. Each PDF curve in Fig. 4 is obtained using the data of 17 snapshot-fields in the
time range 1.3 < ¢/T < 2.6. The PDF of €/(€),—o by DNSgp overlaps well with that of DNSpp
up to €/{€);—o ~ 120; however, the PDF of DNSgp appears smaller than that of DNSpp for 150 <
€/(€)r—0 < 200 and for 350 < €/(€);=0.

Qualitatively the same is true for the PDFs of 2. A close inspection suggests the following: the
PDF of Q2 by DNSgp is smaller than that by DNSpp in the range 350 < Q/(2),—0 < 600, and the
difference is larger than that for the PDF of the energy dissipation.
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FIG. 5. Normalized integrals Q[X, p] = fOX xPP(x)dx/a? vs X/o, where (X, ) is either (e, (€);—) or
(2, (2),=0) and P is the PDF correspondingtoc or 2. (a) X =€, p=3,0) X =€, p=5,c) X =Q, p =3,
X =Q,p=5.

Figure 5 shows the normalized integrals Q[X, p] = fOX xPP(x)dx/aP, where p =3 or 5, and
(X, o) is either (e, (€),—0) or (£2, (2);—0). The symbol P denotes the PDF corresponding to € or €2.
The integrals Q were computed by taking the time-average of P(x) of the 17 snapshot fields used
for producing Fig. 4. In the limit of X — oo, Q[X, p] yields the mean M[(X”)], where X = X/a. Tt
is seen in Figs. 5(b) and 5(d) that DNSgp (blue lines) underestimates the normalized integrals Q for
p =5 as compared to DNSpp (red lines), while it is seen in Figs. 5(a) and 5(c) that the differences
are small. This is consistent with the observations (i) and (ii) in Table II. Thus, in addition to Table II,
Figs. 5(b) and 5(d) provide another demonstration of the systematic difference between the statistics
by DNSSP and DNSDp.

Note: A closer inspection shows that the means M[(X?)] shown in Table II differ slightly from
those estimated using the normalized integrals Q at large X in Fig. 5. However, it was confirmed
that the means agree well with those estimated from the normalized integrals Q when calculated
using the 17 snapshot fields used to produce Fig. 5. Therefore, the differences can be regarded as
due to the difference between the field sets used for taking the time averages; one consists of 17
fields, while the other consists of about 800 fields.

These results suggest that sufficiently high AP is necessary for accurate computation of the tails
of the PDFs of the energy dissipation and enstrophy in high Re turbulence, and one needs to be
careful in using single AP in DNS of turbulence at high Re. This finding would be useful for studying
extreme events represented by the far tails of the PDFs of enstrophy and energy dissipation in
high-Reynolds-number turbulence [8,14].
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FIG. 6. Energy spectra E (k, t) and difference spectra A(k, t) in RunH-C2. The spectrum is represented in
every 2000A¢, which corresponds to 0.1637". The black arrow indicates increasing values of ¢ /7.

C. Difference spectra

To obtain the scale-by-scale information, we consider the differences between the velocity field
by DNSgp, usp(x, t), and that by DNSpp, upp(x, ). Let Su(x,t) = upp(x,t) — usp(x, 1), and let
A(k, t) be the difference spectrum defined as

Ak, 1) = Z |su(k’, 1))

k—1/2<k' <k+1/2

Figure 6 presents A(k, t) alongside E(k, t) ~ Epp(k, t) ~ Esp(k, t) in RunH-C2 as a function of
kn at various time steps, where Epp(k, t) and Esp(k, t) are the energy spectra from upp(x, ) and
usp(x, t), respectively.

The error spectrum A(k, t) increases over time, while Epp(k, t) and Egp(k, t) remain relatively
constant. The error A(k, t) relative to E (k, t) escalates more rapidly at higher k values, indicating
that the relative contamination of the field arising from round-off error increases faster in the higher-
wave-number range. A detailed analysis shows that in the early time range (0.167 <t < 0.497),
there is a wave-number range (kn < 0.3) where the k-dependence of A(k, t) is weak.

D. Visualization

The relative contributions to the statistics of €”(£2”) from the regions of high €(£2) as compared
to those from low €(2) are in general larger for larger p, and the statistics for very large p are
dominated by the former contributions. This and the results presented in Sec. I A, in particular
Table II, suggest that the differences between the statistics by DNSgp and DNSpp are more
prominent in high €(£2)-regions than the low €(2)-regions.

To get some insight into how the effects of round-off errors appear in the physical space, we
plot in Fig. 7 intense enstrophy regions at a time instant; Fig. 7 shows the 512° subcube which
contains the point of the highest enstrophy in DNSpp. Figures 7(a) and 7(b), respectively, show the
intense enstrophy regions in RunH-C2 by DNSpp and DNSgp, while Fig. 7(c) is the superposition
of Figs. 7(a) and 7(b). Comparing Figs. 7(a) and 7(b) shows that the DNSgp and DNSpp fields are
similar to each other in the sense of coarse graining; both fields show similar clusters of tubelike
structures. However, Fig. 7(c) shows that the two fields do not exactly coincide. For example, a
long vortex structure and a clumped structure, marked by red and green arrows, respectively, are
observed in Fig. 7(b), while they are either absent or less visible in Fig. 7(a). Thus, Fig. 7 shows that
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FIG. 7. Intense vorticity regions of the flow field by (a) DNSpp, (b) DNSsp of RunH-C2 at t/T = 2.45,
and (c) superposition of panels (a) and (b). The isosurfaces of vorticity are displayed in |@| = Mpp + 6.50pp,
where Mpp and opp denote the mean value and standard deviation of the modulus of the vorticity field DNSpp
of RunH-C2. Only the 512* subcubes among 2048 grid points are displayed for the ease of comparison. Red
and green arrows respectively mark a long vortex structure and a clumped structure.

the intense enstrophy regions by DNSgp may differ from those by DNSpp in their relative positions
and structures(shapes) at small scales, but the differences are not so prominent at large scales. This is
consistent with the results discussed in Sec. I C, in the sense that the (relative) differences between
DNSgp and DNSpp are more prominent at small scales than at large scales.

E. Reynolds number dependence

To investigate the possible dependence of statistical sensitivity on Re with respect to AP, we
performed an additional simulation (RunL-C2) at a lower Reynolds number (R; = x170), compared
to RunH-C2 (R, = 268). Figures 8—12 present the statistics for RunL-C2, with comparative data
from RunH-C2.

Figures 8 and 9 show both low- and high-order statistics, including local dissipation rate and
local enstrophy, by DNSgp and DNSpp. For lower-order statistics ((€”), (27) for p = 1, 2, 3), the
differences between DNSgp and DNSpp are negligible throughout the time range examined (0 <
t < 2.6T), regardless of whether the Reynolds number is lower or higher.

However, for higher-order statistics ({(€”), (2”) for p > 4) and spatial maxima (€max, 2max),
notable differences in sensitivity to AP emerge between RunH-C2 and RunL-C2. In RunH-C2,
statistics from DNSgp differ significantly from those obtained with DNSpp in the time range
(t > 1.6T), whereas in RunL-C2, such differences are nearly imperceptible throughout the entire
time range (0 < t < 2.47).

These findings indicate that lower-order statistics are robust against AP or rounding-off errors
across different Reynolds numbers. In contrast, higher-order statistics, which are sensitive to the
nature of extreme events, demonstrate increased sensitivity at higher Reynolds numbers. This sen-
sitivity underscores the significance of accounting for rounding-off errors when analyzing extreme
events in high-Re turbulence.

Figure 10 illustrates the PDFs of the local dissipation rate and local enstrophy. In RunL-C2, the
PDFs from DNSpp and DNSsp exhibit minor differences, whereas in RunH-C2, the PDF tails from
DNSgp are noticeably underestimated compared to those from DNSpp.

This underestimation aligns with findings from a previous study [5]. Since the tails of the PDFs
significantly influence higher-order statistics, the results in Fig. 10 is consistent with those observed
in Figs 8 and 9. These PDF results further emphasize the necessity of meticulous consideration of
rounding-off errors when studying extreme events in high-Reynolds-number turbulence.
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FIG. 8. Time dependence of the maximum value of (a) local dissipation and (b) local enstrophy. Scales on
the left and right are for RunH-C2 (R, = 268) and RunL-C2 (R, = 170), respectively.

Figure 11 illustrates the regions of intense vorticity in RunH-C2 and RunL-C2 at later times.
For clarity, only a 1/(4%) subregion of the entire computational domain is displayed. In RunH-C2,
a noticeable difference in the location of the vorticity structures is observed between the DNSpp
and DNSgp simulations, whereas in RunL-C2, this difference is nearly imperceptible. Therefore,
the intense vorticity structures are more sensitive to the AP at higher Re.

Figure 12 presents the energy and difference spectra at various times for RunH-C2 and RunL-C2.
The difference spectra increase more rapidly at higher Reynolds numbers when time is normalized
by the eddy turnover time 7.

IV. CONCLUSIONS AND DISCUSSION

To investigate the effects of finite arithmetic precision on large-scale DNS of three-dimensional
turbulence using the spectral method, we have compared the statistics of two sets of DNSs of
turbulent flows in a periodic box. One of the sets consists of DNSs at R, = 170 and 268 with double
AP, and the other consists of those with single AP. The comparison of the turbulence statistics shows
the following:

(1) AtR; = 268, the time dependence of the pth-order moments of € and €2, as well as the spatial
maximum values of € and €2, i.e., €max and Qpax, by the DNS with single AP (DNSgp) agree well
with those by the DNS with double AP DNSpp at? < 1.67'. But the agreement is poor for¢ > 1.6T.
Compared to DNSpp, DNSgp underestimates the time averages (over the time 1.37 < ¢ < 2.6T) of
the pth-order moments, €, and Qn,x, and also their standard deviations. The differences between
the statistics by DNSpp and DNSgp are larger for the enstrophy than energy dissipation, and for
larger p.

(2) AtR, = 170, the differences between the statistics by DNSgp and DNSpp are small for the
entire simulated time domain.
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FIG. 9. Time dependence of (a) (€”(x, t))%/(e),:o and (b) (Q7(x, t))%/(Q),:o forp=1,2,---,7. Scales
on the left and right are for RunH-C2 and RunL-C2, respectively.

These results suggest that some statistics under certain conditions, such as the time-averages
of the high-order moments of € or € under the conditions used in this study, i.e., at R; ~ 268,
N ~ 2000, and T;/T =~ 2.6, may be sensitive to the difference of AP.

It would then be natural to ask, “What are the guidelines for determining when DP or precision
higher than SP is necessary?” A naive consideration suggests that the required AP would be larger
for larger Ry, kmax7, N, and T, and also that one need be careful in using single AP for studying
statistics dominated by modes (eddies) whose amplitudes are smaller than by a factor of 1078 or
less as compared with those of energy containing modes (eddies), because SP computations may
not properly treat fields with magnitudes spanning over 8 orders or so.

0
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.| ® SNGL
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T
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10° L . H H . -12 . L . FESEiE . i B 1l |
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FIG. 10. (a) (€),=0P[€] vs €/(€);=¢ in RunH-C2 and RunL-C2. (b) (2),—oP[€2] vs ©/(2),=¢ in RunH-C2
and RunL-C2. The arrows indicate increasing values of R;.
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(c)

FIG. 11. Intense vorticity regions of the flow field by (a) DNSpp, (b) DNSsp of RunH-C2 at ¢t /T = 2.45,
and (c) superposition of panels (a) and (b). (d), (e), and (f) is similar to panels (a), (b), and (c), respectively, but
in RunL-C2 at t/T = 2.37. The isosurfaces of vorticity are plotted for |w| = Mpp + 6.50pp, Where Mpp and
opp respectively denote the mean value and standard deviation of the modulus of the vorticity field by DNSpp
of RunH-C2 (for the top row) or RunL-C2 (for the bottom row).
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FIG. 12. Energy spectra E(k,t) and difference spectra A(k,t) in (a) RunH-C2 and (b) RunL-C2. The
spectrum is presented in every 2000A¢, which corresponds to 0.1637 in the left panel and 0.2967 in the right
panel, respectively. For comparison, the curves of A(k,?) at similar time instants are shown in thick-black
lines.
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In this regard, recall that as mentioned in Sec. I, y (k) defined by (D-ii) near k = kp,x can be
very small, e.g., the span of |f(k)|(~k/y'/?) can be larger than 10% or so, in the present days large-
scale DNS. Although it would be too expensive to study the possible effects of the round-off error
accumulation on high wave-number modes in large-scale DNS, a one-dimensional model based on a
simplification of the convection term gives some quantitative idea on the effects of round-off errors
that are small at each time step. See Supplemental Material for the detail [22]. In contrast to DNS
of turbulent flows obeying the NS equation, the model can be easily integrated numerically for a
long time. The model shows that DP or precision higher than SP is required when the magnitudes
of the modes in the model span over eight orders, in agreement with the conjecture by the naive
consideration noted above.

For providing a guideline on “When DP is needed,” one needs to take into account that the
required precision depends not only on the desired accuracy of the quantities of interest but also
on factors such as the grid number N, the ratio y, and the simulation time 7;/7, which have
been discussed in detail in (D-i), (D-ii), and (D-iii) of the Introduction. Unfortunately, our current
understanding seems too limited to provide more specific guidelines than those based on the naive
considerations mentioned earlier and the present study, which is restricted to R; ~ 268, N ~ 2000,
and T, /T ~ 2.6.

In this respect, it would be interesting to study the influence of finite AP on the statistics of high
Reynolds number turbulence in DNS of turbulent flows obeying the NS equations at higher Re,
larger N, and longer T;.
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APPENDIX: CFL-NUMBER DEPENDENCE

In this Appendix, we examine the influence of the CFL condition on the effects of AP on DNS.
The effects of the CFL number on the turbulence statistics were studied by Yeung et al. [4] and
the effects of round-off errors were also discussed. However, their numerical schemes (second-
order Runge-Kutta method, Rogallo’s method to reduce aliasing errors) are different from ours, and
their DNS durations are relatively short, say 107,. Therefore, we here check the CFL dependence
in our DNS.

We use here, as in Sec. III, a fourth-order Runge-Kutta method for the time marching.

Figure 13(a) compares the ratios €max/(€);=¢ for RunH-C2 (C = 0.275) and RunH-C1 (C =
0.55) using DNSpp. Figure 13(b) presents a similar comparison for DNSgp. It is observed in
Fig. 13(a) that the curves for C = 0.55 and C = 0.275 align closely until # &~ 2.45T. However,
as shown in Fig. 13(b), the agreement extends only up to ¢ < 1.67. These observations suggest that
the duration over which the spatial maximum values remain unaffected by C varies depending on
the AP.

In Ref. [4], C ,§ 0.3 was necessary to obtain reliable results for 107,, which is in contrast to
the present results that the results of DNSpp at C = 0.55 well preserve those at C = 0.275 up to
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FIG. 13. (a) Comparison of €max/(€);_ys vs t/T in RunH-C1(C = 0.275) and RunH-C1(C = 0.55) by
DNSpp. (b) The same as panel (a) but by DNSgp.

t ~2.5T ~ 81.257,. It is speculated that this is due to the difference between their work and ours
in terms of the schemes and Reynolds number values.

To systematically explore this behavior, we plot (e”(x, 1)) ’ /{€)1=o using DNSpp and DNSgp, as
shown in Fig. 14. Figure 14(a) indicates that for lower orders (p < 4), the curves for C = 0.55 and
C = 0.275 by DNSpp align well throughout the entire time range examined (t < 2.6T). However,
for higher values of p (4 < p), the difference between the two curves becomes larger with increasing
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FIG. 14. Similar to Fig. 13, but for (e”(x, z))%/(e),=0.
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FIG. 15. Similar to Fig. 13, but for Qp.x/{€2);=0-

p after t = 2.45T . Figure 14(b) demonstrates that for lower-order statistics (p < 4) obtained by
DNSgp, the curves for C = 0.55 and C = 0.275 align well throughout the entire time range, similar
to the observations in Fig. 14(a). In contrast, the agreement for higher-order statistics (4 < p)
deteriorates after r = 1.67.

Figures 15 and 16 show similar statistics for local enstrophy, showing that the influence of C on
the effects of AP on enstrophy statistics mirrors that on the statistics of €.
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FIG. 16. Similar to Fig. 14, but for (2°(x, 1))7 /()=
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(a) DBLE, C=0.55 (b) DBLE, C=0.275 (c) DBLE, €=0.55 and 0.275

FIG. 17. Intense vorticity regions of the flow field by DNSpp of (a) RunH-C1, (b) RunH-C2 at¢/T = 2.45,
and (c) superposition of panels (a) and (b). Panels (d), (e), and (f) are the same as panels (a), (b), and (c),
respectively, but by DNSgp. Isosurfaces of vorticity are shown for |@| = Mpp + 6.50pp, where Mpp and opp
denote the mean value and standard deviation of the modulus of the vorticity field DNSpp of RunH-C2.

Figure 17 illustrates intense vorticity regions at ¢t = 2.457 for RunH-C2 and RunH-CI. In
DNSpp, tubelike structures are observed at both C = 0.55 and C = 0.275, with consistent posi-
tioning. Conversely, in DNSgp, tubelike structures are observed for both C = 0.55 and C = 0.275,
but sheetlike structures appear at C = 0.55, as indicated by arrows. This suggests that artificial
structures due to insufficient AP may emerge in DNSgp, depending on the C value and the
visualization threshold.
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