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The boundary layer structure of the velocity and temperature fields in turbulent
Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from
a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number
is large enough, the dynamics at the bottom and top plates can be separated into an impact
region of downwelling plumes, an ejection region of upwelling plumes, and an interior
region away from the side walls. The latter is dominated by the shear of the large-scale
circulation (LSC) roll, which fills the whole cell and continuously varies its orientation.
The working fluid is liquid mercury or gallium at a Prandtl number Pr = 0.021 for
Rayleigh numbers 3 × 105 � Ra � 4 × 108. The generated turbulent momentum transfer
corresponds to macroscopic flow Reynolds numbers with 1.8 × 103 � Re � 4.6 × 104. In
highly resolved spectral element direct numerical simulations, we present the mean profiles
of velocity, Reynolds stress, and temperature in inner viscous units and compare our findings
with convection experiments and channel flow data. The complex three-dimensional and
time-dependent structure of the LSC in the cell is compensated by a plane-by-plane
symmetry transformation which aligns the horizontal velocity components and all its
derivatives with the instantaneous orientation of the LSC. As a consequence, the torsion of
the LSC is removed, and a streamwise direction in the shear flow can be defined. It is shown
that the viscous boundary layers for the largest Rayleigh numbers are highly transitional
and obey properties that are directly comparable to transitional channel flows at friction
Reynolds numbers Reτ � 102. The transitional character of the viscous boundary layer is
also underlined by the strong enhancement of the fluctuations of the wall stress components
with increasing Rayleigh number. An extrapolation of our analysis data suggests that the
friction Reynolds number Reτ in the velocity boundary layer can reach values of 200 for
Ra � 1011. Thus the viscous boundary layer in a liquid metal flow would become turbulent
at a much lower Rayleigh number than for turbulent convection in gases and gas mixtures.

DOI: 10.1103/PhysRevFluids.1.084402

I. INTRODUCTION

A better understanding of the local and global mechanisms of turbulent transport of heat and
momentum across a fluid layer that is heated from below and cooled from above remains a central
subject of numerical, theoretical, and experimental studies in the field of turbulent convection [1–3].
This setup, which is known as the classical Rayleigh-Bénard convection (RBC) case, is one ingredient
of numerous astro- and geophysical turbulent flows as well as technological applications. A more
precise quantification of global turbulent transport would immediately improve predictions for
structure formation and dynamics. The key to deeper insights lies in the boundary layers of the
temperature and velocity fields at the top and bottom plates: understanding their transformations
with an increase of the temperature difference that is quantified by the Rayleigh number Ra.
These boundary layers form a bottleneck that limits the transport in fully turbulent convection. The
bottleneck is widened when the boundary layers start to fluctuate locally and to become eventually
fully turbulent.
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The range of such a transition to boundary layer turbulence would, however, depend strongly on
the Prandtl number Pr of the convecting fluid which relates viscous to thermal diffusion [4–6]. While
the thicknesses of both boundary layers are about the same for Pr ∼ 1, they differ significantly in the
limits of very small and very large Prandtl numbers. Their dynamics are then more loosely coupled
since one of the layers is well embedded in the dissipation-dominated and spatially smooth sublayer
of the other field. For liquid metal convection at Pr � 1 the thermal boundary layer is much thicker
than the viscous boundary layer, such that the latter is well embedded in the diffusive sublayer
where temperature decreases to a good approximation linearly with respect to wall distance [7,8].
This opens the possibility to disentangle their dynamics and to compare the statistics of the viscous
boundary layer to standard turbulent wall-bounded flows without temperature differences.

The limit of very low Prandtl number convection is interesting for a further reason. In Ref. [9]
it was shown recently that the highly diffusive temperature field and the resulting coarse plumes
drive the fluid turbulence more vigorously than the more filamented plumes at larger Prandtl and
comparable Rayleigh number. Additional studies in Ref. [10] found that the same holds for the
boundary layer of the velocity field. The level of the local fluctuations and the turbulent drag are
enhanced in line with a significantly increased global momentum transfer which is measured by
the Reynolds number Re. In this way, a low-Prandtl-number convection flow at a given Rayleigh
number will obey a much more vigorous fluid turbulence than a convection flow in air or water and
thus provide an appropriate setup to investigate the transitional character of the (velocity) boundary
layer in detail.

In the present work, we study the boundary layer dynamics by means of high-resolution direct
numerical simulations (DNSs) which can access all details of the fluctuating turbulent fields in the
RBC flow. The setup that is chosen agrees with one of the most common laboratory experiments:
a closed cylindrical cell with an aspect ratio of one. Compared to a cubical or rectangular cell, this
setup sustains one statistically homogeneous coordinate in the system, the azimuthal one and has
thus the highest symmetry.

The perspective that is taken here is to analyze our simulation data as for a viscous boundary layer
in a pressure-driven channel flow with a unidirectional mean flow [11]. The high-Rayleigh-number
convection in the closed cylindrical cell builds up a large-scale circulation (LSC) which changes its
orientation in the course of the dynamical evolution [2,12]. For a better comparison to a channel
flow, streamwise and spanwise directions will be obtained in the convection case by a plane-by-plane
rotation of the velocity field into the horizontal direction of the LSC. This symmetry transformation
removes the torsion in the large-scale circulation. In low-Prandtl-number convection the circulation
roll turns out to perform a very coherent motion since it is driven by coarse thermal plumes.
Mean profiles of the streamwise velocity, the temperature, and the Reynolds stresses are analyzed
in inner wall units. Therefore, we have to adapt definitions of the friction velocity and the friction
temperature to the present setup. Furthermore, the statistics of the wall-normal derivatives of the
horizontal velocity components is compared to those of the channel flow. The main motivation of
the present work is to better quantify the transitional character of the boundary layers in the RBC
flow.

The outline of the paper is as follows. In the next section, the equations of motion and some
details on the numerics are given. Section III analyzes the large-scale flow and presents the symmetry
transformations. Section IV lists our results for the mean profiles of temperature, Reynolds shear
stress, and streamwise velocity. Additionally, we derive skin friction Reynolds numbers for the
individual runs of our data record. Section V summarizes our findings for the derivatives at the wall.
Finally all results are summarized.

II. SIMULATION MODEL AND PARAMETERS

We solve the three-dimensional equations of motion in the Boussinesq approximation. The
equations are made dimensionless by using the height of the cell H̃ , the free-fall velocity Ũf =
(g̃α̃�T̃ H̃ )1/2, and the imposed temperature difference �T̃ . Times are measured in free-fall time
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units T̃f = H̃ /Ũf . (Quantities with a physical dimension are given with a tilde.) The equations
contain the three control parameters: the Rayleigh number Ra, the Prandtl number Pr, and the aspect
ratio � = 2r̃o/H̃ with the cell radius r̃o (see Fig. 2). The set of dimensionless equations is given by

∇ · u = 0, (1)

∂u
∂t

+ (u · ∇)u = −∇p +
√

Pr

Ra
∇2u + T ez, (2)

∂T

∂t
+ (u · ∇)T = 1√

Ra Pr
∇2T , (3)

where

Ra = g̃α̃�T̃ H̃ 3

ν̃κ̃
, Pr = ν̃

κ̃
. (4)

The variable g̃ stands for the acceleration due to gravity, α̃ is the thermal expansion coefficient,
ν̃ is the kinematic viscosity, and κ̃ is the thermal diffusivity. We use an aspect ratio of � = 1
here. No-slip boundary conditions for the fluid (u = 0) are applied at the walls. The side walls are
thermally insulated (∂T /∂n = 0), and the top and bottom plates are held at constant dimensionless
temperatures T = 0 and 1, respectively. In response to the input parameters Ra, Pr, and �, turbulent
heat and momentum fluxes are established. The turbulent heat transport is determined by the Nusselt
number, which is defined as

Nu = Q̃H̃

κ̃�T̃
with Q̃ = 〈ũzT̃ 〉A,t − κ̃

〈
∂T̃

∂z̃

〉
A,t

, (5)

with an area-time average 〈·〉A,t . Note that Q is a constant in each horizontal cross section A.
Equation (5) can be rewritten as

Nu = 1 +
√

Ra Pr〈uzT 〉V,t , (6)

with a volume-time average 〈·〉V,t . The turbulent momentum transport is expressed by the (large-
scale) Reynolds number, which is defined as

Re = urms,V

√
Ra

Pr
with urms,V =

√〈
u2

i

〉
V,t

. (7)

The equations are numerically solved by the Nek5000 spectral element method package, which
has been adapted to our problem. The code employs second-order time-stepping, using a backward
difference formula. The whole set of equations is transformed into a weak formulation and discretized
with a particular choice of spectral basis functions [13,14]. For further numerical details and
comprehensive tests of the sufficient spectral resolution, we refer to detailed investigations in
Ref. [15].

The cylindrical cell is resolved by up to 6.27 million spectral elements, and the spectral expansion
of all turbulent fields is done with Lagrangian interpolation polynomials up to order 13 in each spatial
direction, which results in a 143 collocation grid on each spectral element. The simulation run at
the largest Rayleigh number was conducted on 524,288 MPI tasks of the Blue Gene/Q system Mira
at Argonne National Laboratory. The time advancement of six free-fall times took about 50 million
core hours.

We focus on five data sets (see Table I) for Rayleigh-Bénard convection in liquid mercury at
Pr = 0.021, which are denoted by RBC1 to RBC5 and cover more than three orders of magnitude
in terms of the Rayleigh number, 3 × 105 � Ra � 4 × 108. For a large fraction of the paper we
study in detail a sequence of snapshots for RBC4 over a time span of 6.7Tf , which are separated by
approximately 0.12Tf from each other.
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TABLE I. Parameters of the five different spectral element simulations RBC1 to RBC5 and the channel flow
simulation CF. The root mean square velocity is obtained as a space-time average over the whole cell volume.
The large-scale Reynolds number is defined by (7) and friction Reynolds number by (14). The ratio 2ri/zτ is
given to list the maximum extension of the boundary layer section for ri = 0.3. Note that the Reynolds number
Re for CF is 1145 and that the friction Reynolds number is based on the channel half width, Reτ = uτLz/(2ν).

Run Ra Pr urms Re Reτ 2ri/zτ

RBC1 3 × 105 0.021 0.483 ± 0.009 1830 ± 30 18 ± 1 220 ± 12
RBC2 106 0.021 0.439 ± 0.006 3030 ± 40 24± 2 300 ± 30
RBC3 107 0.021 0.387 ± 0.005 8450 ± 100 35 ± 4 650 ± 80
RBC4 108 0.021 0.332 ± 0.004 22 900 ± 300 48 ± 4 1700 ± 130
RBC5 4 × 108 0.021 0.334 ± 0.004 46 000 ± 600 76 ± 5 2800 ± 190
CF – – 1.054 1145 78 989

An additional DNS for a pressure gradient-driven channel flow (CF) is used for comparison. It
is based on a finite difference method with uniform grid spacing in the horizontal directions with
periodic boundaries and with a nonuniform grid in z direction that corresponds to the Chebyshev
collocation points [16]. The channel has the extensions Lx : Ly : Lz = 4π : 2π : 2.

Results for Ra = 1 × 108 and Pr = 0.021 (RBC4) are shown in Fig. 1. Temperature, magnitude
of the skin friction field (see Sec. III for definition), and pressure are shown for horizontal slices
through the bottom boundary layer, for two different instants in time. One sees that the temperature
is very diffuse. One also sees the overall large-scale direction of the flow, which changes with time
from approximately 0.7 radians in the top plot to 6 radians in the bottom plot. Finally the pressure
shown in Figs. 1(c) and 1(f) has a fairly steep favorable gradient near the impact region, but then
becomes fairly flat and then rises slightly in the ejection region.

III. SYMMETRY-BREAKING LARGE-SCALE FLOW

It is known that the large-scale circulation (LSC) in a closed cylindrical convection cell has a
complex three-dimensional structure [12,17–19]. For aspect ratio � = 1, the wind, which is averaged
over 6–30 free-fall times Tf , takes the form of a single flow roll with a preferred orientation: a
configuration that clearly breaks azimuthal symmetry. This roll is additionally twisted and changes
orientation slowly in time. It is thus expected that statistical homogeneity in the azimuthal direction
can be reestablished over a very long time interval only. First estimates in Ref. [20] suggest times
t � 104Tf or even larger. Statistical sampling can typically be done in DNS over shorter time
intervals only, particularly for simulation runs at the highest Rayleigh numbers.

Figure 2 displays instantaneous snapshots of the streamlines of the two-dimensional skin friction
vector field at the bottom plate for convection in mercury at Ra = 106 (left) and 108 (right). The skin
friction field can be considered as a blueprint of the near-wall viscous boundary layer dynamics and
has been studied in wall-bounded shear flow [21,22] as well as in Rayleigh-Bénard convection [23].
At the bottom plate (z = 0), the velocity gradient tensor Ãij takes the following form:

Â|z=0 =
⎛
⎝0 0 ∂ũx/∂z̃

0 0 ∂ũy/∂z̃

0 0 0

⎞
⎠ . (8)

Both components form a two-dimensional wall shear stress vector field and a related skin friction
field. They are defined as

τ̃w = ρ̃0ν̃
∂ ũ(2)

∂z̃

∣∣∣∣
z̃=0

and s̃ = τ̃w

ρ̃0ν̃
. (9)
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FIG. 1. Boundary layer structure in a turbulent convection flow at Pr = 0.021 and Ra = 108. Two snapshots
are shown at t = 35.1 (upper row) and 37.1 (lower row). (a), (d) Temperature T at z = 0.0024, which
corresponds with 0.09δT . (b), (e) Magnitude of skin friction |s| in logarithmic units [see Eq. (9)] at z = 0.
(c), (f) Pressure p at z = 0.0024. The view of the bottom plate is from below.

The superscript denotes the two horizontal (or tangential) x and y components. Particularly for
the higher Rayleigh number, one can clearly divide the near-plate boundary layer into three main
regions: the impact region where the cold LSC flow masses hit the bottom plate, the shear region
where the LSC sweeps across the interior section of the plate, and the ejection region where the
heated fluid rises up towards the cold top plate again. This separation into three distinct regions
requires a sufficiently large Rayleigh number. We will return to this point in Sec. V when discussing
the derivatives at the plates at z = 0 and 1. On the basis of the critical points of the skin friction field
the inner region can be clearly distinguished from the impact and ejection regions. Also visible is
the broken azimuthal symmetry of the flow.

We define two different area-time averages, one across the whole plate A with r � ro = 0.5
which will be denoted by 〈f 〉A,t (as already mentioned in Sec. II), and one across an interior section
of the plate which is indicated in Fig. 2 for points with r � ri. If not stated otherwise, ri = 0.3 is
taken. The latter will be denoted as 〈f 〉b,t . As seen in Fig. 2, the average with respect to the interior
plate section excludes the impact and ejection region and brings us closest to the conditions in a
canonical boundary layer with a unidirectional mean flow, at least for the higher Rayleigh number.
Therefore, most of the statistical analysis is restricted to this inner region in the following.

The local orientation angle is also calculated in each plane at fixed height z > 0 by

〈φ(z,t)〉b = arctan

[ 〈uy(z,t)〉b
〈ux(z,t)〉b

]
. (10)
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FIG. 2. Boundary layer structure in a turbulent convection flow for RBC 2 (left) and RBC4 (right).
Streamlines of the skin friction field at the bottom plate [see Eq. (9)]. Impact, shear, and ejection sections
are indicated. The block arrows in all three sections indicate the temporal variations. The interior plate section
for data points with r � ri is highlighted and will be used for most of the analysis. The view on the bottom
plate is from below as in Fig. 1.

As indicated by the filled arrows in the right panel of Fig. 2, impact and ejection regions will slowly
move azimuthally. We investigate this further in Fig. 3, where we show instantaneous profiles of
〈φ(z)〉b for two different Rayleigh numbers. One sees that the orientation angle twists as z increases
from the angle at z � 0, to eventually match the orientation angle at z � 1 (which is different from
the angle at z � 0 by about π radians). If we focus on the right panel of Fig. 3, one sees that
sometimes this twist is clockwise (as for the first 15 snapshots), other times it is counterclockwise
(as for snapshots 30–60), and sometimes the twist changes direction (as seen in snapshots 20–30
and the last three as well). Of course, near the center of the container the horizontal velocity is
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FIG. 3. Local orientation angle 〈φ(z)〉b [see Eq. (10)] as a function of z̃/H̃ for consecutive snapshots for
RBC3 (left) and RBC5 (right). The color bar coding is for snapshot number, and each snapshot is output at
regular spaced intervals of time, 0.14T̃f for RBC3 and 0.08T̃f for RBC5. Note that the angle is not defined at
the plates due to no-slip boundary conditions.
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FIG. 4. Left panel: Local orientation angle 〈φ〉b [see Eq. (10)] as a function of time as measured in free-fall
time units T̃f for z � 0 (bottom plate) and z � 1 (top plate) for RBC3 (magenta = bottom and orange = top)
and RBC5 (blue =bottom and gray = top). Right panel: Oscillation frequency ω of the local orientation angle
〈φ〉b as a function of Ra. The line is a fit to the data and gives (0.08 ± 0.05)Ra0.42±0.02. The frequency ω is in
radians per diffusive time units t̃d = H̃ 2/κ̃ .

significantly reduced compared to near the top and bottom plates, but we still see a steady twist in
〈φ(z)〉b for most of the time, even in the center of the container. A similar behavior is seen for the
left panel of Fig. 3, although the behavior occurs more rapidly in free-fall time units.

One also sees that the local orientation angle for fixed z oscillates with time. The angle 〈φ〉b
is plotted near the bottom (z � 0) and top (z � 1) of the container in the left panel of Fig. 4 for
the two representative cases, RBC3 and RBC5, as a function of the time t̃/T̃f . For both Rayleigh
numbers we see that the angle switches or oscillates, with the angle at the bottom plate out of
phase with the angle at the top plate. We measure the frequency of these oscillations ω and plot
this versus Ra in the right panel of Fig. 4. This oscillation frequency is measured in units of
radians per (dimensionless) diffusive time units td . One can convert from free-fall time units T̃f

to diffusive time units t̃d by t̃d = √
Ra Pr T̃f . The oscillation frequency increases with Ra, which

is in agreement with previous results for Pr ≈ 0.021, 5 × 105 < Ra < 5 × 109 [24] as well as for
Pr = 6,7 × 107 < Ra < 3 × 109 [25] and Pr = 19.4,8 × 108 < Ra < 3 × 1011 [26], all at � = 1.
The exponent of the fit of ω versus Ra is 0.42 ± 0.02, which agrees remarkably well with the exponent
of 0.424 of Ref. [24]. The experiments of Refs. [25,26] measured an exponent of 0.36, which is a bit
lower. Also the magnitude of the oscillation frequencies that we measured for Pr = 0.021 are lower
than those measured for Pr = 6 by a factor of 30, indicating that lower Prandtl number stabilizes the
oscillations of the LSC for a given Ra.

How can the mean velocity profile be determined under such circumstances? The definitions which
are applied in the theory of classical turbulent boundary layers after a Reynolds decomposition use
streamwise and spanwise directions. In contrast to a canonical boundary layer or a wall-bounded
flow, a proper mean flow determination in RBC has to be adjusted to these permanently changing
conditions. One has to determine a mean horizontal wind orientation for each plane at a given height
z and for each time instant.

A planar rotation R̂3(z,t) by 〈φ(z,t)〉b defines a new coordinate frame that is aligned in each plane
z and at each time t with the mean wind direction above the interior section b with r � ri or the full
plate. New coordinates and velocity components are then given by⎛
⎝x‖

y‖
z‖

⎞
⎠ =

⎛
⎝ cos〈φ〉b sin〈φ〉b 0

− sin〈φ〉b cos〈φ〉b 0
0 0 1

⎞
⎠

⎛
⎝x

y

z

⎞
⎠ and

⎛
⎝U‖

V‖
W‖

⎞
⎠=

⎛
⎝ cos〈φ〉b sin〈φ〉b 0

− sin〈φ〉b cos〈φ〉b 0
0 0 1

⎞
⎠

⎛
⎝ux

uy

uz

⎞
⎠ .

(11)
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FIG. 5. Vertical profiles of 〈U‖(z)〉. Left: Profiles averaged over the interior region. Right: Profiles averaged
over the whole plate. The corresponding boundary layer thicknesses δT = 1/(2Nu) are indicated by horizontal
lines with the same color. In all cases the profiles taken from the top and bottom plate are included in the time
average.

The rotated velocity components define the new streamwise (U‖), spanwise (V‖), and wall-normal
components, respectively. The area-time averages of the streamwise component 〈U‖(z)〉A,t and
〈U‖(z)〉b,t are shown in Fig. 5. We verified that the spanwise mean 〈V‖(z)〉A,t and 〈V‖(z)〉b,t are now
indeed zero across the whole height. As expected, the restriction to the plate interior leads to an
increase of the amplitude of the mean streamwise velocity, which is visible by a comparison of the
left and right panels of Fig. 5. Furthermore, the maxima of the mean profile for the plate interior (left
panel of Fig. 5) are always closer to the wall, which indicates a smaller local boundary thickness
in the interior. This is in agreement with Refs. [10,27]. Note that the profiles for Ra = 4 × 108 in
both panels of Fig. 5 do not quite follow the trends as for the rest of the Rayleigh numbers. This is
because this simulation could not be run for as long, and hence fewer statistics were gathered.

To summarize this section, this planar rotation has brought the complex large scale flow closest
to a standard boundary layer case. We have removed the torsional degrees of freedom from the flow.
A similar (not the same) idea was investigated for a plane Poiseuille flow with periodic boundary
conditions in the streamwise and spanwise directions by Kreilos et al. [28].

IV. MEAN PROFILES IN THE BOUNDARY LAYER

A. Mean streamwise velocity

As a next step, we now study how the mean streamwise velocity compares to a turbulent boundary
layer. The dimensionless friction velocity is given by

uτ =
(

Pr

Ra

)1/4
〈(〈

∂ux

∂z

〉2

b

+
〈
∂uy

∂z

〉2

b

)1/4∣∣∣∣
z=0

〉
t

. (12)

The rotation (11) is not defined at z = 0 since both velocity components are exactly zero in Eq. (10).
Thus one is left with the original wall-normal derivatives at the plate. And a similar equation is used
for the top plate except the gradients are evaluated at z = 1. Note that (12) is similar to the equation
(3.8) in Ref. [27]. The viscous length scale of a turbulent boundary layer is given by z̃τ = ν̃/ũτ . The
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FIG. 6. Left: Semilogarithmic plot of the vertical profiles of 〈U+
‖ (z)〉b,t versus z+. The linear law in the

viscous buffer layer and the logarithmic law of the wall are also indicated. The von Kármán constant is κ = 0.4,
and the offset is B = 5.5. For comparison, we also plot a profile which is obtained in a channel flow simulation
at the same friction Reynolds number as the run with the highest Rayleigh number. Right: Velocity profiles for
RBC5. The gray line is the same as in the left panel. The instantaneous profiles for all 75 snapshots (in orange)
are also plotted here, to give a sense of the range of variation of such profiles with time. In all RBC cases the
profiles taken from the top and bottom plate are included.

dimensionless length is then given by

zτ =
√

Pr

Ra
u−1

τ . (13)

Figure 6 (left) shows the logarithmic velocity profile, 〈U+
‖ (z)〉b,t = 〈〈U‖(z,t)〉b/uτ (t)〉t versus z+ =

〈z/zτ (t)〉t . Specifically the bulk-averaged instantaneous logarithmic velocity profiles are scaled
with each individual uτ (t),zτ (t) and then time-averaged. This provides a more dynamic estimate
of the profiles, similar to what was done in Ref. [29]. We also indicate the linear scaling in the
viscous sublayer, which is well resolved in our DNS and a logarithmic law of the wall for a
canonical turbulent velocity boundary layer with the standard von Kármán constant κ = 0.4 and
offset coefficient B = 5.5.

It is seen that the profiles do approach the logarithmic law as Ra increases, but they are not yet
turbulent enough to reach the canonical log law. Finally for comparison, a profile is plotted which
is obtained in a channel flow simulation at the same friction Reynolds number as the run with the
highest Rayleigh number (see Table I). Interestingly the channel flow comparison plot shows an
overshoot which is typical in channel flow for Reynolds numbers that are too low to be turbulent in
the sense that they follow the logarithmic law [30,31]. However, this is not true for the RBC case,
where the profiles are consistently below the log law.

To obtain a sense of the uncertainly in calculating these profiles, the same time-averaged profile is
plotted for RBC5 as the green curve in the right panel of Fig. 6 along with all 75 instantaneous profiles
in orange. One does see these curves instantaneously approaching even closer to the logarithmic
law, revealing the transitional nature of these boundary layer profiles.

The friction Reynolds number is defined here as Reτ = ũτ δ̃∗/ν̃. In our scaled units this translates
to

Reτ = uτ δ∗

√
Ra

Pr
. (14)

The relevant length scale used here is the z position of the maximum of the time-averaged profile
and is denoted as δ∗ and scaled in units of H̃ . Note that we use the time-averaged profile instead
of the maximum of each instantaneous profile, since there is too much variability in local profiles
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FIG. 7. Friction Reynolds number Reτ versus Rayleigh number Ra. The red line is a power law fit to the
data and gives Reτ = (1.75 ± 0.3) × Ra0.19±0.01. Inset: Ratio of maximum of the streamwise velocity profile δ∗
to the thermal boundary layer thickness δT . The red line is a fit to the data, δ∗/δT = (0.067 ± 0.02) log(Ra) −
(0.4 ± 0.3). Note that most of the error bars are too small to be seen.

for the instantaneous method to always provide a well-defined δ∗(t). We do still use our local uτ (t)
which enables us to estimate the error bars associated with 〈Reτ (t)〉t .

In Table I both Reynolds numbers are listed for all simulation runs. The magnitudes of Reτ

consistently take values for which a turbulent boundary layer is not yet established in a canonical
channel flow, which are Reτ � 200 [30,32]. In Fig. 7 we plot the friction Reynolds number versus
Rayleigh number and detect for the range of Rayleigh number an approximate growth as a power
law. The inset of the figure displays the ratio of δ∗, the distance from the wall at which the maximum
streamwise velocity in the interior section is found, to δT , the thermal boundary layer thickness. This
ratio is steadily increasing towards 1, which can be interpreted as a growth of the velocity bursts.
Finally using the fit in Fig. 7 we estimate that the Rayleigh number at which Reτ = 200 is Ra = 1011

for Pr = 0.021, with 3 × 1010 < Ra < 5 × 1011 when the scatter in the data is taken into account.

B. Reynolds stresses

The Reynolds stress, which couples the streamwise velocity fluctuations to the wall-normal ones
and is responsible for the momentum transfer from the wall into the bulk of the wall-bounded flow,

FIG. 8. Reynolds shear stresses versus distance from the wall. Left: Stress component T +
UW . Mid: Replot of

T +
UW in logarithmic units. Right: Stress component T +

V W . The profiles are a combination of statistics from the
bottom and top plates. All quantities are again given in inner units. The legend holds for all panels.
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plays a central role in the production of turbulent kinetic energy. Figure 8 displays the Reynolds
shear stresses in the present system in inner units. The components are given by

T +
UW (z) = −〈U ′

‖W
′
‖〉b,t /u

2
τ , (15)

T +
V W (z) = −〈V ′

‖W
′
‖〉b,t /u

2
τ , (16)

with the Reynolds decomposition

U ′
‖(x‖,y‖,z,t) = U‖(x‖,y‖,z,t) − 〈U‖(z)〉b,t , (17)

V ′
‖(x‖,y‖,z,t) = V‖(x‖,y‖,z,t), (18)

W ′
‖(x‖,y‖,z,t) = uz(x‖,y‖,z,t) − 〈uz(z)〉b,t . (19)

Again, the rotation has been applied and the fluctuations of all three velocity components in the
rotated frame have been determined subsequently. The magnitude and the extension from the wall
into the bulk of the positive amplitudes of T +

UW are comparable with the data of Elsnab et al. [31].
In addition, the T +

UW profile for RBC5 is comparable with the channel flow run at the same Reτ .
The maximum of the CF stress profile is shifted by �z+ = 10 away from the wall, and the zero is
almost identical. The midpanel confirms that all profiles start with a cubic z dependence from the
wall. This is a consequence of the Taylor expansion in combination with the incompressibility. For
example, at z = 0 follows

U ′
‖(x‖,y‖,z,t) � s ′

x(x‖,y‖,t)z + · · · , (20)

V ′
‖(x‖,y‖,z,t) � s ′

y(x‖,y‖,t)z + · · · , (21)

W ′
‖(x‖,y‖,z,t) � −1

2

(
∂s ′

x

∂x‖
+ ∂s ′

y

∂y‖

)
z2 + · · · . (22)

The leading order expansion coefficients are the components of the skin friction field as well as its
divergence. The vertical shift is determined by the magnitude of the shear at the plate, which is larger
for all convection runs in comparison to CF (see also Sec. V). The other Reynolds stress contribution
T +

V W is indefinite for the time intervals that were accessible to gather statistics (see right panel of
Fig. 8). It can be expected that this stress becomes exactly zero in the very long time limit.

In Fig. 9 we show the variability in the instantaneous Reynolds stress profiles T +
UW for RBC4 and

RBC5 and at the top and bottom plate. The variability, particularly for RBC5, is more extreme. Note
that these profiles were plotted after the system reached a statistically steady state, and some of the
largest deviations from the average occur late during the simulation time.

C. Mean temperature

While the turbulent momentum transfer is significantly enhanced at low Prandtl numbers, which
becomes visible by the large Reynolds numbers, the turbulent heat transfer is strongly reduced due
to the large thermal diffusivity. In this subsection, we will plot the mean temperature profiles in
inner wall units, which requires an additional quantity besides the friction velocity. The friction
temperature, following Refs. [33,34], is defined by T̃τ = −κ̃ ũ−1

τ 〈∂T̃ /∂z̃|z̃=0〉b,t . In dimensionless
notation this results in

Tτ = −
〈

u−1
τ (t)√
RaPr

〈
∂T

∂z

〉
b

∣∣∣∣
z=0

〉
t

, (23)

084402-11



SCHUMACHER, BANDARU, PANDEY, AND SCHEEL

0  20 40
-0.4

0.4

1.2

-T
+ U

W

z=0

0  20 40

z=1

0  20 40

z=0
z=1
Average

0  50 100

z+

-0.4

0.4

1.2

-T
+ U

W

z=0

0  50 100

z+

z=1

0  50 100

z+

z=0
z=1
Average

FIG. 9. Variability of the Reynolds stresses −T +
UW (z+) at the bottom and top plates with respect to time.

The data in the upper row display instantaneous profiles from 57 snapshots in orange obtained from RBC4,
the ones in the lower row from 75 snapshots from RBC5. The corresponding average is the gray line. The two
panels to the right compare the averages the top and bottom plates as well as the total average profiles.

where, again, this quantity is evaluated at the upper plate (z = 1) when the boundary layer at the
upper plate is analyzed. The dimensionless temperature profile

〈θ (z)〉b,t =
{

1 − 〈T̃ (z)〉b,t

�T̃
: z ∈ [0,1/2]

〈T̃ (z)〉b,t

�T̃
: z ∈ [1/2,1]

(24)

is rescaled with the dimensionless friction temperature Tτ . Figure 10 (left) shows 〈θ+(z)〉b,t =
〈〈θ (z,t)〉b/Tτ (t)〉t versus z+ = 〈z/zτ (t)〉t . The right panel of Fig. 10 shows the range of variation in
the instantaneous profiles for RBC4. Although there is a linear range in the profiles it is not related
to the temperature profiles in a turbulent boundary layer. Following Kader and Yaglom [33,34] the
logarithmic temperature profiles should follow

〈θ+(z)〉 = α ln z+ + β(Pr) with α ≈ 2.12, β(Pr) = (3.8Pr1/3 − 1)2 − 1 + 2.12 ln Pr. (25)

Equation (25) has been obtained by an interpolation of a comprehensive data record of turbulence
experiments in pipes, channels, and boundary layers which span a range of Prandtl numbers from 100
to 0.022. It can be seen that the present data do not match with the Yaglom-Kader parametrization.
This could be again related to the fact that the boundary layer is not yet fully turbulent.

There is a region which is logarithmic for each temperature profile, and we can fit a line to
those data and find a slope. In all cases we obtain a value less than the logarithmic profile value
of α ≈ 2.12 of the Yaglom-Kader parametrization. But, the slope is increasing as Ra increases.
This is true both instantaneously [finding the slopes of the orange curves in Fig. 10 (right)] and
on average. We provide a table (Table II) which compares our instantaneous and average slopes to
those of Kadar and Yaglom as well as the work done by Ahlers et al. [35,36]. Although our slopes
are far from the Yaglom-Kader results, they are close to the results by Ahlers and co-workers, when
scaled to be consistent with their units. This is noteworthy since their Rayleigh numbers were much
higher (1011–1012), and this was for Pr = 0.8 and aspect ratio � = 1. However, as noted in Wei and
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FIG. 10. Left: Semilogarithmic plot of the mean temperature profiles. We display 〈θ+(z)〉 =
〈〈θ̃(z,t)〉b/T̃τ (t)〉t versus z+ = 〈z/zτ (t)〉t for Pr = 0.021. In all cases the profiles taken from the top and
bottom plate are included in the time average. Rayleigh numbers are indicated in the figure for each data set.
Also indicated is logarithmic law (25) as a dashed line. Right: Temperature profiles for RBC5. The gray curve
is the same as in the left. The instantaneous profiles are also plotted here in orange, to give a sense of the range
of variation of such profiles with time.

Ahlers [36], who performed experiments for Pr = 12, α decreased as Prandtl number increased, so
the trend here for our 〈αf 〉Tτ values to be larger than those of Ahlers for our smaller Prandtl number
is consistent.

A second rescaling was suggested by Chung et al. [8] for convection at low Prandtl numbers.
Following the original idea by Kraichnan [4] the authors developed a three-layer model consisting
of a conduction layer, transition layer, and convection layer with corresponding characteristic scales
of length, velocity, and temperature, respectively. Similar to the inner viscous units, we can take
inner conductive units as follows. One defines a characteristic velocity scale ũc = (κ̃2g̃α̃Q̃/ν̃)1/4,
a characteristic length scale z̃c = κ̃/ũc, and a characteristic temperature scale T̃c = Q̃/ũc. In
dimensionless notation this results in

zc = 1

(Nu Ra)1/4
and Tc =

(
Nu3

Ra

)1/4

. (26)

In Fig. 11 we replot 〈θ∗(z)〉 = 〈T (z)〉/Tc versus z∗ = z/zc. We compare the mean temperature
profiles obtained for the whole plate and the interior section. For all three Rayleigh numbers, it is
observed that the temperature profiles follows a −1/3 scaling with respect to z∗ = z/zc in a short

TABLE II. Slopes found by fitting a log law to the region of each instantaneous profile, which follows a
log law. This was done for each profile for our data set and for the top and bottom plate. The value 〈αf 〉 is the
average for each data set and the error (found by standard deviation), and the max and min values are also listed.
For comparison, α = 2.12 by Yaglom-Kader (Y/K) is given. Finally the data from Ahlers et al. [35] (ABH) for
Pr = 0.8 is also listed, where we used their fits (either equation 4.6 or 4.7 in Ref. [35]) and then multiplied our
〈αf 〉 by Tτ to convert to their units.

Ra 〈αf 〉 max αf min αf Y/K 〈αf 〉Tτ ABH

3 × 105 0.33 ± 0.01 0.36 0.28 2.12 0.22 ± 0.01 0.14 ± 0.02
1 × 106 0.35 ± 0.03 0.41 0.25 2.12 0.21 ± 0.02 0.12 ± 0.02
1 × 107 0.40 ± 0.05 0.52 0.28 2.12 0.20 ± 0.03 0.09 ± 0.01
1 × 108 0.48 ± 0.05 0.59 0.38 2.12 0.20 ± 0.03 0.07 ± 0.01
4 × 108 0.50 ± 0.04 0.58 0.38 2.12 0.18 ± 0.01 0.06 ± 0.01
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FIG. 11. Test of power law behavior (26) of temperature profiles.

range for z∗ > 1, but only for the interior averaged profiles. Such a scaling has been predicted by
Priestley [37] on the basis of dimensional analysis and has been detected for Pr � 1 [8,38]. Here,
we confirm the scaling for low-Prandtl-number convection.

V. VELOCITY AND TEMPERATURE DERIVATIVES AT THE PLATES

It has been noted in the last section that the boundary layer structure is in some respects similar
to the near-wall dynamics in planar wall-bounded shear flows, in particular for the simulations at the
largest Rayleigh numbers. Therefore, the statistics at the wall will be studied in this last section, and
in particular the velocity derivatives. In Fig. 12 the derivatives at the bottom plate, ∂T /∂z, ∂ux/∂z,
as well as ∂uy/∂z are found at each time step at four different locations (see caption of Fig. 12) all

160.0 160.5 161.0 161.5 162.0 162.5 163.0  
 

-60
 

-40
 

-20
 
0

∂
T

/∂
z

160.0 160.5 161.0 161.5 162.0 162.5 163.0  
 

-300

0

300

600
 

∂
u

x/∂
z

160.0 160.5 161.0 161.5 162.0 162.5 163.0  
t/T

f

 
-300

0

300

600
 

∂
u

y/∂
z

1
2
3
4

45.5 46.0 46.5 47.0 47.5 48.0  

-60

-40

-20

0

∂
T

/∂
z

45.5 46.0 46.5 47.0 47.5 48.0  

-300

0

300

600

∂
u

x/∂
z

45.5 46.0 46.5 47.0 47.5 48.0  
t/T

f

-300

0

300

600

∂
u

y/∂
z

1
2
3
4

FIG. 12. Time series of derivatives at the plate z = 0 which are taken for a time interval of 3.3 T̃f in
both runs. The vertical temperature derivative ∂T /∂z and the two components of the skin friction field
are shown. Left: RBC1. The time series are taken at four history points in the interior section b, which
are approximately situated at (x1,y1) = (0.12,−0.04), (x2,y2) = (−0.04,0.12), (x3,y3) = (−0.12,−0.04),
and (x4,y4) = (0.04,−0.12). Right: RBC4. The four history points are (x1,y1) = (0.06,0.03), (x2,y2) =
(−0.03,0.06), (x3,y3) = (−0.06,−0.03), and (x4,y4) = (0.03,−0.06). The amplitudes of both data records
are directly comparable in each panel.
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FIG. 13. Probability density functions of the vertical derivatives of the horizontal velocity components
taken at z = 0 and 1 for RBC2, RBC3, RBC4, and RBC5 in the interior plate sections. For comparison, we
add the vertical derivative of the streamwise velocity component of the channel flow (CF) to both panels of the
figure.

in the interior section b for runs RBC1 and RBC4. The data are displayed in the same ranges over
a time segment of a few free-fall time units. One can clearly see that all derivatives are much larger
and show more significant fluctuations for RBC4 than for RBC1. The time series indicate that the
character of both boundary layers is already strongly transitional for the largest accessible Rayleigh
numbers.

In order to compare the velocity derivative statistics with the one in the turbulent channel with
its unidirectional mean flow we proceed as follows. Similar to the rotation (11) we can apply a
transformation at the plates when treating the two nonvanishing velocity derivatives of the velocity
gradient tensor as a two-dimensional vector field. Therefore the definition (10) is adapted to

〈γ (t)〉b = arctan

[ 〈∂uy/∂z(z = 0,t)〉b
〈∂ux/∂z(z = 0,t)〉b

]
, (27)

and the original plane-by-plane transformation R̂3(z,t) is changed to the rotation R̂2(z = 0)(
∂zux(t)|z=0

∂zuy(t)|z=0

)
‖

=
(

cos〈γ (t)〉b sin〈γ (t)〉b
− sin〈γ (t)〉b cos〈γ (t)〉b

)(
∂zux(t)|z=0

∂zuy(t)|z=0

)
. (28)

The same transformation R̂2(z = 1) follows for the top plate at z = 1 with a corresponding angle. In
Fig. 13, PDFs of (∂ux/∂z)‖ and (∂uy/∂z)‖ are shown for RBC2, RBC3, RBC4, and RBC5 along with
CF, the channel flow run at a comparable Rayleigh number, each of which is scaled by its respective
root mean square (rms) value. Note the symmetry for (∂uy/∂z)‖, for all runs, further supporting that
our transformation to a streamwise and spanwise direction makes the present data better comparable
to a channel setup. Conversely the pdfs for (∂ux/∂z)‖ are asymmetric, indicating a net shear flow
for U‖. The pdfs become wider as the Rayleigh number increases, indicating an increase of the
intermittent fluctuations of the derivatives for increasing Ra. Their shape agrees remarkably well
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FIG. 14. Location of critical points for the skin friction field at the bottom plate z = 0 for run RBC4 for
57 snapshots spanning 6.7 free-fall times. The left panel shows the location of the saddle points, the middle
panel shows the location of the stable nodes (red) and foci (blue), and the right panel shows the unstable nodes
(orange) and foci (green). The yellow circle is the inner radius r = ri. The view onto the plate is from above

with the findings of Lenaers et al. [22] (see, e.g., their Fig. 2). The increasingly wider tails for the
present data underline an increasingly transitional character of the viscous boundary layer.

While the PDF of the streamwise velocity derivative of CF contains a small negative tail only, the
distributions of both components of the skin friction field for RBC have large tails for both negative
and positive values. Thus it is expected that a significant number of critical points exists, i.e.,
points at (x,y,z = 0) and (x,y,z = 1) at which s = 0. The following pairs of complex eigenvalues
λk = ak + ibk are possible: saddle points with λ1 = a1 < 0 and λ2 = a2 > 0, unstable nodes with
λ1 = a1 > 0 and λ2 = a2 > 0, as well as stable nodes with λ1 = a1 < 0 and λ2 = a2 < 0. Also
possible are unstable foci with λ1,2 = a ± ib or stable foci with λ1,2 = −a ± ib both of which with
a > 0 [21,23].

The dynamics in the boundary layer of a turbulent convection flow can be quantified by computing
these critical points of the skin friction field at the bottom or top plate as in Ref. [23]. For example,
saddle points or stable foci can be associated with plume emission and unstable nodes or foci can
be associated with plumes hitting the plate. Figure 14 shows that this mainly occurs near the outer
region of the plate. If we confine ourselves to be inside the region defined by the yellow circle in
Fig. 14, there are fewer critical points, and the region is thus more similar to the near-wall region
in a wall-bounded shear flow [21,22]. This holds in particular if one combines all three panels of
Fig. 14.

VI. SUMMARY AND CONCLUSIONS

The structure of the boundary layers in a high-Reynolds number turbulent Rayleigh-Bénard flow
has been studied from the perspective of transitional wall-bounded flows, such as a channel flow.
Since the momentum transfer response (and thus the large-scale Reynolds number) is very large in
liquid metal convection flows at very low Prandtl numbers compared to air or water, the viscous
boundary layer fluctuates particularly strongly, which is quantified by Reynolds stress profiles and
the statistics of derivatives at the walls. Our analysis is based on a series of three-dimensional direct
numerical simulation runs for Pr = 0.021. The high spectral resolution allowed us to study the
derivative statistics and to determine friction velocities and temperatures.

The torsion and the varying orientation of the large-scale circulation in the closed cylindrical cell
is (partly) removed by a symmetry transformation that is applied for each grid plane between bottom
and top separately. It is then shown that the mean streamwise velocity approaches the standard
logarithmic law of the wall from below. This is in contrast to a transient low-Reynolds number
channel, which would approach a logarithmic scaling from above caused by the parabolic laminar
flow profile at very small Reynolds numbers.
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FIG. 15. Time-averaged boundary layer structure at the bottom plate of the turbulent convection flow RBC4
at Pr = 0.021 and Ra = 108. (a) Temperature T at z = 0.0024, which corresponds with 0.09δT . (b) Magnitude
of skin friction |s| in logarithmic units at z = 0. (c) Pressure p at z = 0.0024. The view on the bottom plate
is from below. All time averages are taken over 6.72 Tf . The dotted horizontal and vertical lines are a guide
to the eye. The dotted circle indicates the interior plate section with r � ri . The solid thick line indicates the
time-averaged mean flow orientation (upper left to lower right), which is taken over the interior section.

When the sidewall effects are excluded, the temperature profiles come close to a power law
scaling similar to Chung et al. [8]. Although we could also fit a logarithmic law to the profiles, the
slope differs significantly from what is expected for a turbulent boundary layer [33,34]. It remains
to be seen if this scaling changes when the Prandtl number is even further decreased and/or the
Rayleigh number is further increased.

The Reynolds stress component T +
UW , which is obtained at the same Reτ for runs RBC5 and CF,

obeys qualitatively the same shape although the maxima are shifted by 10 wall units with respect
to each other. Together with the profiles which have been obtained for T +

V W , this demonstrates that
the transformation (11) can identify a streamwise direction and thus effectively remove a significant
part of the complex three-dimensional mean flow structure.

How can the structure of the boundary layer be described on average? We go back to Fig. 1
at the beginning and replot in Fig. 15 the time-averaged slice cuts of temperature, skin friction
magnitude, and kinematic pressure taken at the same heights as in Fig. 1. The solid line in all three
panels indicates the mean orientation of the flow in the vicinity of the plate. It is obtained again by
averaging over the interior plate section. The following picture arises:

(1) The plume impact region at the bottom plate is on average colder than the rest of the plate
region. Temperature increases along the mean streamwise direction. The hotter plate region is where
the LSC rises up towards the top plate: the plume ejection region.

(2) The skin friction field magnitude shows the biggest spatial variability in the impact and
ejection regions. This is also where most of the critical points, s = 0, are observed. As shown in
Fig. 14, the majority of these points are found outside the interior plate section. The skin friction
magnitude is largest in the interior section where the LSC sweeps across the plates and generates
strong shear.

(3) The interior plate section is well approximated by a favorable pressure gradient boundary
layer. A local pressure maximum is clearly associated with the plume impact. Pressure increases
again slightly further downstream at the opposite edge of the interior region. This might be connected
with the increase of temperature in the vicinity of the side wall.

(4) With increasing Rayleigh number, it is found that the wall stress (or skin friction) field
components fluctuate increasingly more strongly, which also underlines the increasingly transitional
character of the viscous boundary layer.
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This is a general and coarse-grained picture which is mostly related to the viscous boundary layer
dynamics. Our DNS record allows to extrapolate the existing data in order to predict when a friction
Reynolds number Reτ ∼ 200 is obtained that results in a turbulent channel flow as discussed in the
landmark paper by Kim et al. [32]. Our present low-Pr data suggest turbulence inside the viscous
boundary layer for Ra � 1011. This value would be consistent with the experiments by Glazier
et al. [39] that went up to Rayleigh numbers of Ra ∼ 1011. However, their cell for the highest Ra had
an aspect ratio � = 1/2, which reduces the downstream evolution length 2ri/zτ at a given Rayleigh
number (see Table I) and thus the scale over which the boundary layer can become turbulent.

As a next step, it would be interesting to study the near-wall structure formation in more detail.
These investigations are already in progress and will be reported elsewhere. Another interesting
direction is to lower the Prandtl number even further, e.g., to values Pr < 10−2, which are typical
for liquid sodium [10]. Numerical simulations at larger Rayleigh numbers in sodium at Pr = 0.005
are also currently underway and will be discussed in the near future.
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