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In this paper, we present results from an experimental study into turbulent Rayleigh-
Bénard convection forced externally by periodically modulated unidirectional rotation
rates. We find that the azimuthal rotation velocity θ̇ (t) and thermal amplitude δ(t) of the
large-scale circulation (LSC) are modulated by the forcing, exhibiting a variety of dynamics
including increasing phase delays and a resonant peak in the amplitude of θ̇ (t). We also
focus on the influence of modulated rotation rates on the frequency of occurrence η of
stochastic cessation or reorientation events, and on the interplay between such events and
the periodically modulated response of θ̇ (t). Here we identify a mechanism by which η

can be amplified by the modulated response, and these normally stochastic events can
occur with high regularity. We provide a modeling framework that explains the observed
amplitude and phase responses, and we extend this approach to make predictions for
the occurrence of cessation events and the probability distributions of θ̇ (t) and δ(t) during
different phases of a modulation cycle, based on an adiabatic approach that treats each phase
separately. Last, we show that such periodic forcing has consequences beyond influencing
LSC dynamics, by investigating how it can modify the heat transport even under conditions
where the Ekman pumping effect is predominant and strong enhancement of heat transport
occurs. We identify phase and amplitude responses of the heat transport, and we show how
increased modulations influence the average Nusselt number.
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I. INTRODUCTION

Thermal convection is ubiquitous and underlies many important features of natural flows. It
occurs on large scales in the atmosphere and oceans and has short-term as well as long-term impacts
on weather and climate [1,2]. It also plays an important role in many technological processes, where
both the enhancement and inhibition of heat transport may have significant applications [3]. It has
even been suggested that it could play a role on small scales in biochemical systems to drive the
polymerase chain reaction of DNA replication, as observed in laboratory experiments [4,5].

The quintessential laboratory experiment to investigate thermal convection is the extensively
studied Rayleigh-Bénard convection (RBC) system, in which a fluid inside a closed container is
heated from the bottom and cooled from the top [6–8]. In such a closed system, even when the
temperature difference between the top and bottom plate is sufficiently high for the bulk fluid to
be in a turbulent state, a convective large-scale circulation (LSC) in the fluid column can survive,
presenting a relatively well-defined flow pattern in a background of highly turbulent fluid. This LSC
is manifested as a convection roll whose size is comparable to the height of the RBC cell. In many
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studies, the LSC has been modeled as a circulation in a vertical plane, carrying hot fluid up along
one side of the sample and cold fluid down near the other side (for examples, see Refs. [9–12]).

In many astrophysical and geophysical systems, thermal convection is strongly influenced by
the background rotations [2,13,14]. In the recent past, a substantive body of research work has been
devoted to exploring the dynamical behavior of an LSC in a rotating RBC setup and its role in
overall heat transport. This has involved elaborate studies on the azimuthal rotations of the LSC
flow and its thermal strength [15–22], the structure of thermal and momentum boundary layers
under external rotation [23–25], and the influence of rotation on the statistical responses of LSC
orientation and strength [16,26,27].

Motivated by its broad geophysical relevance, in this paper we extend on the previous research
works and consider the influence of time-varying rotations on turbulent RBC. In the geophysical
context, the adjustment of a fluid column to a change in its rotation is an important process in
oceanography, primarily in studies on wind-stress-driven flows in the upper oceans [28–30] and
their influence on large-scale phenomena such as El Niño [31]. Since such geophysical flows are
often influenced by thermal convection, their responses could potentially be better understood by
studying the fluid dynamics in turbulent RBC with time-varying rotations.

In the astrophysical context, many celestial bodies themselves do not have a constant rotation rate;
the gravitational interaction of a planet with its satellites and other neighbors, for example, can force a
periodic variation of its rotation rate (libration), thereby potentially influencing large-scale thermally
driven systems on its surface or in its interior [32–36]. An example of a strongly librating body with
a liquid interior is the planet Mercury [37]. The accelerations generated by the time-varying spinning
rate may modify the convective flow structures in Mercury’s molten core and could have considerable
influence on its global magnetic field. A review article [38] summarizes the existing and ongoing
laboratory investigations of planetary core dynamics and discusses the effects that libration has on
the flow structures in rotating convection systems.

From the point of view of the fundamental interest in studying turbulent systems, turbulent
flows are often subject to various types of periodic modulation. Examples include the Earth’s tidal
ocean currents, the atmospheric flows periodically forced by solar radiation [39], and the pulsatile
blood flow through arteries [40]. If the modulation is slow, i.e., when the modulation period is
larger than the dominant internal time scales of the flow, the flows can adjust “adiabatically” to the
different states under various rotation rates. In a turbulent RB system rotating at constant rate, the
potential presence of a large-scale circulation in conjunction with a turbulent background makes for
a situation in which the dynamics of the LSC can be well described by stochastic equations for the
diffusive LSC orientation and strength [10,18,26,27,41,42]. How are the dynamical and statistical
properties of the LSC influenced by external forcing (such as from time-dependent rotation)? Under
the adiabatic approximation, are the existing low-dimensional models still capable to predict the
dynamical behavior of the LSC flow that is subjected to modulated rotations? These are the intriguing
problems we will address in this work.

In this study, we investigate the effects of time-varying (unidirectional) rotation rates on the
dynamical as well as statistical behavior of the LSC in a turbulent background under the influence
of periodically modulated rotations. While there exists a body of previous research works, both
experimental and numerical, on RB convection with time-dependent rotation, such works have
mostly focused on nonturbulent states [43–47]. Recently, however, DNS studies [48,49] and an
exploratory experimental study [50] have shown potentially significant effects of modulated rotation
on heat transport in turbulent RB convection.

To our knowledge, our study is the first full experimental study into the effects of modulated
rotation rates on the dynamical and statistical LSC behavior in turbulent RB convection. A selection
of initial results from this study has recently been published in Ref. [51]. The present paper goes into
more depth on the methodology of the results and greatly expands upon the previous short paper by
providing complete results on the experimental and theoretical investigation of the dynamical and
statistical responses of various LSC parameters. We describe a wide range of experimentally observed
phenomena, ranging from the amplitude and phase responses of LSC strength and orientation, to
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FIG. 1. A schematic of the experimental setup: (A) rotary table; (B) bottom thermal shield; (C) foam
sheet; (D) supporting ring; (E) bottom plate; (F) main heater in bottom plate; (G) O-ring; (H) capillary fluid
inlet; (I) sidewall cylinder; (J) thermal side shield; (K) top plate; (L) capillary fluid outlet; (M) double-spiral
water-cooling channel.

a possible resonant interplay between modulated flow responses on the one hand, and normally
stochastic cessation and reorientation events on the other. We provide extensions of previous
modeling approaches to explain the various dynamical and statistical phenomena observed in a
consistent manner throughout. Last, we move to a different parameter range to provide an initial
investigation of the dynamical and statistical response of heat transport in turbulent RB convection
with modulated rotation in the absence of an LSC, to show how the effects of modulation go beyond
influencing large-scale flow structures.

This paper is structured as follows. Section II provides details on the experimental setup and
methods. Section III explains the experimental results pertaining to the responses of LSC strength
and azimuthal orientation or velocity under the influence of modulated rotation. (These results have
been discussed much more briefly in Ref. [51]). Section IV provides the modeling approach used to
explain the results from Sec. III. Section V provides experimental results pertaining to the statistical
responses of LSC strength and velocity undergoing modulated rotations and the role of stochastic
cessation events therein. Section VI extends the modeling approach from Sec. IV to explain the
observed statistical phenomena in a consistent manner. Section VII details the experimental results
from an exploratory investigation of the influence of modulated rotations on heat transfer in turbulent
RB convection. Last, conclusions and recommendations for future research are given in Sec. VIII.

II. EXPERIMENTAL APPARATUS AND METHODS

A schematic diagram of the experimental apparatus used for this study is shown in Fig. 1. A
rotary table (A) rested securely on the laboratory floor. Its rotating axis was adjusted accurately
to be parallel with gravity. Supported on A was the bottom thermal shield (B) of the convection
system. Two heaters made of resistance wires were separately contained inside the bottom and the
periphery of shield B, respectively (not shown in the figure). Thermistors were installed in various
locations inside B. During experiments, the input power to the two heaters was controlled such that
the temperature in the whole volume of B remained the same as the bottom plate (E) temperature
(Tb), with an accuracy better than 0.01 K. By virtue of this temperature regulation method, the heat
loss through the bottom plate E to the shield B was reduced such as to become essentially negligible.

On top of the shield B, the bottom plate E of the convection cell was supported on a ring D
made of bakelite. Bakelite has a high rigidity and a tensile strength comparable to steel, but a much
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lower thermal conductivity. Thus, the bakelite ring served as a rigid supporting base of the cell with
desirable thermal insulation. The bottom plate E was made of oxygen-free copper (OFHC, type
TU1). It had a thickness of 35.0 mm and a diameter of 285.7 mm. Its central area of 242.5 mm
diameter was covered uniformly by parallel straight grooves connected by semicircles at their ends.
A main heater (F) made of resistance wire with a diameter of 1.0 mm was embedded and epoxied
into the grooves. Seven thermistors were installed in the bottom plate, one at the center and the other
six equally spaced on a circle of 210.0 mm diameter. Temperature inhomogeneity on the plate, as
measured by these thermistors, was within 1% or 2% of �T , the temperature difference between
the top and bottom plate, during experiments.

A central section of the plate E, 242.5 mm in diameter, was closely fitted into the sidewall cylinder
(I). On one point of the side of the central section in E, there was a capillary (H) of 1.0 mm in diameter
through which the fluid entered the system. The cylindrical sidewall was made of Plexiglas and had
a wall thickness of 4.0 mm. A nitrile-butadiene rubber O ring (G) sealed the fluid from outside the
sidewall. A similar construction was used to terminate the sidewall near the top plate (K).

The top plate (K) was made of OFHC copper, similar to the bottom plate in its dimensions. It
had a double-spiral water-cooling channel (M) machined directly into it from the top. A constant
temperature in K (Tt ) was maintained by circulating coolant in channel M driven by a refrigerating
circulator (PolyScience PP30R). The circulation flow speed of the coolant was further enhanced
through a programmable fluid pump. A capillary fluid outlet (L) and seven thermistors were installed
in K at positions similar to those in the bottom plate. Temperature inhomogeneities in the top plate
were about twice larger than in the bottom plate. Thermal protection to the side of the cell was
provided by a thermal side shield (J) made of aluminium. Its temperature, controlled by a second
coolant-circulation system, was maintained at the same value as the mean fluid temperature in the
cell, to an accuracy of 0.01 K. To reduce heat lost through air convection in the vicinity of the cell,
the space outside the cell but inside the shields (B and L) was filled with low-density foam sheet (C).
During the experiment, the two sets of coolant circulating circuits as well as all the electrical wires
were brought into the convection system through a rotary feed-through built into the table (A).

The experiments pertaining to LSC responses (Secs. III and V) were performed with a temperature
difference �T = Tb − Tt = 16.00 K, giving a Rayleigh number Ra = αg�T L3/κν = 8.24×109

(g is the gravitational acceleration; α, ν, and κ are the thermal expansion coefficient, the kinematic
viscosity, and thermal diffusivity of water, respectively; L the sample height), with the Prandtl
number constant at Pr = ν/κ = 4.38. The experiments on heat transfer (Sec. VII) were performed
with a four times smaller value �T = 4.00 K, yielding Ra = 2.06×109.

The sample had a diameter D = 240.0 mm and a height L = 240.0 mm, yielding an aspect
ratio 	 = 1.00. Three rows of thermistors (eight on each row), equally spaced azimuthally and
lined up in vertical columns at heights L/4, L/2, and 3L/4, were installed into the sidewalls.
During experiments, we measured the temperature of each thermistor Ti , and fit the function
Ti = T0 + δ cos (iπ/4 − θ ), i = 1, . . . ,8, to the eight temperatures in each row. Following this
method, as used before in Refs. [16,21], the thermal amplitude δ(t) of a large-scale circulation
(LSC), and the azimuthal orientation θ (t) of its circulating plane (as seen from the rotating frame
of reference), could be determined. (The results shown in this paper are measurements from the
middle-row thermistors unless otherwise noted. However, results from the top and bottom thermistor
row were always used for consistency checks with the middle row.)

This azimuthal temperature-fitting method, which assumes a sinusoidal temperature profile,
cannot always extract the necessary information needed to characterize the temperature profile [22].
As advocated in Refs. [22,52], more complete information can be extracted by doing a Fourier
analysis of the azimuthal temperature profile. We have used this approach to show that the first mode
of the profile is dominant for all ω/�0 investigated (Appendix A), thus validating the method of
finding the LSC azimuthal orientation and thermal amplitude through the fitting function of Ti .

When working in a modulation mode, the rotating velocity of the sample was varied periodically
according to �(t) = �0[1 + β cos (ωt)], with β < 1 to ensure unidirectional modulation. More
information on the experimental protocol to obtain such rotation rates is given in Appendix B.
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The heat transfer in the sample can be expressed by the dimensionless Nusselt number Nu,
which is the ratio of the total heat transfer to the purely conductive heat transfer that would occur in
the absence of any convection (i.e. below the convective instability threshold). Hence it is given by
Nu = QL/(�T λ), where Q is the vertical heat flux and λ is the thermal conductivity of the fluid. In
this experimental setup, Q is determined by the input power to the heater F in the bottom plate (with
appropriate corrections [21]), the value of which is rigorously controlled through digital feedback
on the basis of the requirement that the bottom plate temperature Tb remain constant throughout an
experiment.

III. EXPERIMENTAL RESULTS: PERIODIC RESPONSE OF THE LSC AZIMUTHAL
VELOCITY AND AMPLITUDE

In this section, we discuss our experimental results pertaining to the influence of modulated
rotation rates on the dynamics of the large-scale circulation. We first focus on the azimuthal LSC
velocity θ̇ and the thermal LSC strength δ under constant-rotation conditions. Afterwards, we present
our results on modulated-rotation and compare them to the constant-rotation case.

A. Results for constant rotation

In Fig. 2 we plot the orientation θ (t) for a number of experiments. The values next to the curves
indicate the corresponding value of 1/Ro. The curve corresponding to 1/Ro = 0 consists solely
of fluctuations around the value θ = 0. For 1/Ro > 0, a linear, retrograde trend of θ is clear. The
average retrograde rotation speed increases with increasing 1/Ro. Since θ represents the orientation
of the LSC with respect to a fixed point on the sample, i.e., as seen from the rotating sample frame,
this linear trend and its increase with 1/Ro are unsurprising. They signify that the LSC, on average,
rotates at a constant rate as well, but slower than the sample. As seen in the inset to Fig. 2, though,
on short time scales, this average trend is significantly distorted by fluctuations.

We perform a linear fit to each of these curves to determine the mean retrograde rotation speed,
denoted 〈θ̇〉, as a function of 1/Ro. The result is given in Fig. 3(a). Beyond an initial increase with
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FIG. 2. The LSC orientation θ (always retrograde as seen from the rotating frame) with respect to time,
obtained from middle-thermistor data. The values next to the curves indicate the value of 1/Ro. We have
arbitrarily defined θ (0) = 0 for each curve. (inset) Close-up for 1/Ro = 0.076, 0.338, 0.422, and 0.507 (from
top to bottom) on a shorter time scale, showing how the linear trend is significantly affected by diffusive
motions.
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FIG. 3. Dynamical properties of the LSC when the sample rotates at constant rates. (a) The mean retrograde
rotation velocity 〈θ̇〉 as a function of 1/Ro. Blue circles: experimental data from [21] with Ra = 8.97×109; red
squares: the present work with Ra = 8.24×109. The range in which we perform modulated rotation experiment
is indicated by the vertical dashed lines. (b) The mean LSC amplitude δ0 as a function of 1/Ro. Solid line:
linear fit to the squares from which we determine χ (�) = −5.1/Ro + 3.1 in Eq. (3).

1/Ro, the curve levels off for 0.15 � 1/Ro � 0.30, before increasing sharply for higher 1/Ro. The
same trend has been reported in Ref. [21] (also included in Fig. 3). An explanation for the qualitative
shape of this trend is currently unknown.

We also plot the time-averaged amplitude δ0 of the LSC as a function of 1/Ro in Fig. 3(b). We
see that the average amplitude first increases with the inverse Rossby number but reaches a peak and
then drops sharply around 1/Ro ≈ 0.3. Apart from the variation in the temporal mean δ0, the time
series of δ(t) do not exhibit significant differences for different values of 1/Ro.

B. Results for modulated rotation

We chose �0 = 0.104 rad/s and β = 0.212, so the Rossby number Ro = √
αg�T /L varied

periodically in the range 0.31 � 1/Ro � 0.5 in the presence of modulation. As depicted in Fig. 3,
in this parameter range (between the dashed vertical lines), the LSC retrograde rotation rate 〈θ̇〉 and
its average thermal amplitude δ0 varied nearly linearly and most rapidly with �, so we expected the
strongest responses of these parameters to modulated values of �. The normalized modulation rate
ω/�0 ranged from 0 to 1.0.

The LSC flow velocity in its circulating plane, U ≈ 1.5 cm/s (see also Sec. IV), was determined
by approximating the turnover time of the LSC through the autocorrelation functions of the sidewall
temperatures [21]. Thus the Strouhal number Sr = L�̇/(4�U ), which measured the ratio of the
Euler force (the pseudoforce appearing in a frame of reference rotating at a time-dependent rate)
and the Coriolis force, did not exceed 0.08 [51].

In our experiments with modulated rotation, the orientation θ (t) of the LSC, as obtained from the
cosine fitting procedure, is seen to exhibit a linear retrograde movement on large time scales for all
values of ω/�0, just as in the constant-rotation experiments. In Fig. 4 we plot the linear retrograde
rotation speed 〈θ̇〉 and the average thermal amplitude δ0 against ω/�0. We have also included the
experiment from the constant-rotation series (ω/�0 = 0) that has the same mean 1/Ro = 0.42. It
is clear that neither 〈θ̇〉 nor δ0 is significantly affected by the modulation of the rotation rate.

1. Modulation of azimuthal LSC velocity

It has been reported in Refs. [16,19], in the context of constant-rotation RB convection, that the
fluctuations of θ around the linear retrograde trends have a diffusional character; i.e., the power
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FIG. 4. Dynamical properties of the LSC when the sample rotation is modulated sinusoidally. (Left ordinate)
The mean retrograde rotation velocity 〈θ̇〉 versus ω/�0. (Right ordinate) The mean LSC thermal amplitude δ0

versus ω/�0. The dashed lines indicate the means across the range of ω/�0; the error bars show the series’
standard deviation with respect to this mean.

spectrum of any detrended time series θd = −(θ + 〈θ̇〉t) falls off with the frequency as a power law
with exponent −2. To establish the character of fluctuations of θ in the modulated-rotation case, we
again calculate the detrended time series. In Fig. 5(a) we plot two example series θd for different
ω/�0. It is obvious in these plots that a periodic modulation in the LSC orientation can be seen once
the linear retrograde trend is removed. There is thus a clear periodicity present in a noisy background.

These example series correspond to very low modulation frequencies during which the response
is extremely clear. We plot their power spectra Pθ in Fig. 5(b) against the corresponding normalized
frequency f/ω, along with two example power spectra for higher ω/�0. The general fall-off slope
of these curves is indeed consistent with Pθ (f ) ∼ f −2, as for constant rotation. It can be seen
that the curves for ω/�0 = 1/40,1/20 exhibit a very clear peak at f = ω, indicating a distinct
presence of an oscillatory response in θd ; however, the peak becomes much weaker for ω/�0 = 1/3
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FIG. 5. (a) Two example series θd for different ω/�0. The periodic behavior in a noisy background is clear.
(b) Power spectra of θd (t) for four different ω/�0. There is a clear peak at the modulation frequency ω as long
as ω < ωc.
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FIG. 6. Part of a time series for ω/�0 = 1/8, showing the synchronization of the measured quantities θd (t)
(a) and δ(t) (b). The vertical lines indicate the timings of maxima in the forcing �(t). Phase shifts between
θd (t), δ(t) and �(t) thus become apparent.

and disappears at ω/�0 = 1. We find that this corresponds roughly to the critical value ωc, when
the oscillatory response stops being distinguishable in the noisy time series of θd . This could be
explained by the fact that the modulation period 2π/ω becomes smaller than the LSC turnover time
T ≈ πL/U ≈ 50 s for ω � �0 [51].

In order to illustrate how the oscillations in LSC orientation are timed in comparison to the modu-
lation of the RB cell, it is instructive to plot θd (t) and �(t) together. An example is given in Fig. 6(a),
corresponding to an experiment with ω/� = 1/8. The vertical lines in this plot denote maxima in
�(t). It is clear from this figure that there is a well-defined phase shift of θd (t) with respect to �(t).
Even more instructive is to construct an “ensemble oscillation” of θd (t) and δ(t). This can be done
by dividing the data into sections corresponding to one modulation period T = 2π/ω each, setting
the mean of θd (t) in each of those sections to zero, and overlapping all the resulting curves for θd (t).
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FIG. 7. (a) The ensemble of θd (t) for the same experiment as in Fig. 6. (b) Same as (a), but with the responses
filtered out through the criteria mentioned in the text plotted in green, indicating how anomalous responses can
be discarded from the ensemble. The smooth black curves represent �(t) in arbitrary units, showing clearly a
phase difference between θd and �(t).
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FIG. 8. Sudden drops in the thermal amplitude δ(t) of the LSC (a) are seen to be strongly correlated to
sudden changes in θd (t) (b). These example data are for an experiment with 1/Ro = 0, but such events occur
also at finite rotation and modulation rates (see Sec. V and Fig. 12). The horizontal line indicates the criterion
δ � 0.10δ0; the vertical red lines indicate the moment where this criterion is first met, showing how it coincides
with the sudden change in orientation.

An example result, corresponding to the same experiment with ω/� = 1/8, is given in Fig. 7(a),
which displays a well-defined ensemble oscillation. However, there are clear deviations from the
ensemble oscillation as well, as can be clearly seen in the figure. These are found to correspond to
sudden changes in orientation of the LSC and are generally correlated to very low values of δ(t).
Such events happen when the LSC amplitude dips to near zero, stopping the overall circulation for a
moment before it regenerates at a new orientation. We therefore classify these “events” as cessations,
during which the LSC almost or completely vanishes [17]. An example (from an experiment without
rotation, 1/Ro = 0) of part of a time series of θd and δ containing a cessation event is shown in
close-up in Fig. 8, where the described characteristics can be clearly discerned.

In order to correctly calculate the phase and amplitude responses of θd (t), these cessations need to
be discarded from the ensemble, as θd does not display a clean oscillatory signal at these times. This
was done as follows. Since the cessations are strongly correlated to low values of δ(t), we first discard
all the periods in which δ drops below δc ≡ 0.10δ0 at least once. This criterion is based on the fact
that the uncertainty in determining δ has a comparable magnitude to δc; thus, such low values of δ are
likely to represent the near-absence of an LSC. Second, knowing that the criterion δc ≡ 0.10δ0 does
a good, but not a perfect, job in filtering out event-affected periods, we also discard the other periods
in which θd is so strongly affected by an event that its net rate of change |�θd |/T from the start to
the end of one modulation period (T = 2π/ω) is larger than 0.01 rad/s. This criterion ensures that
strongly deviating responses are filtered out, but at the same time that we do not discard responses in
which the periodic behavior could “recover” from an anomaly within one period T , which is mainly
relevant for very slow modulations (where the periodic behavior has enough time to recover from
short-time-scale reorientations for its phase and amplitude response to still be clearly measurable).

An example result is plotted in Fig. 7(b), where the periods discarded from Fig. 7(a) by the above
criteria are plotted in green. It is seen that these criteria do a good job at “cleaning up” the data;
nevertheless, they are not perfect. Thus, some unwanted signals due to cessations, and possibly other
events invariably do remain in the ensemble; however, their frequency of occurrence is extremely
low, and therefore they no longer affect our data analysis.
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FIG. 9. (a–c): Ensembles of θ̇d for ω/�0 = 1/20,1/8,1/3, respectively. The filtered-out responses are
plotted in green, those kept are plotted in blue. The smooth black line is �(t) (in arbitrary units) to show the
phase shift between θ̇ (t)d and �(t). (d) Experimental results on the phase shift φθ̇ as a function of ω/�0,
calculated from data from all three thermistor rows, and the corresponding numerical result (solid line) from
Eq. (3). The dashed line indicates a phase shift of −π/2, to which both experimental and model results converge
for high ω/�0. (Inset) The numerical result from Eq. (3) with extended x axis, to show its convergence to
the same value −π/2 as experimentally observed. (e) Experimental results on the amplitude response Aθ̇

normalized by its value at zero modulation, Aθ̇ (0) = 0.010 rad/s, as a function of ω/�0, and the corresponding
numerical result (solid line) from Eq. (3).

From a physical point of view, we are more interested in the response of the azimuthal velocity θ̇

than the orientation itself. We thus set out to calculate θ̇d (t) = ∂θd/∂t from the raw data θd (t). For
this, we smooth each data set θd (t) using a fourth-order Savitzky-Golay (SG) filter with a window
length spanning one modulation period. In SG filtering of order n, a polynomial of order n is fit to
all points within a window; the value of this polynomial at the midpoint of this (odd-sized) window
is taken to be the “smoothed” value at that point, and the value of the derivative of this polynomial
at the midpoint is taken to be the derivative at that point. The window is then shifted by one point;
the fitting is redone, and the values at the next point are calculated. SG filtering can, of course, only
be used to approximate derivatives up to the order of the filter itself.

Using this method, we are able to discard the effects of noisy fluctuations and reliably estimate
the oscillatory component of the azimuthal velocity. In Figs. 9(a)–9(c), we plot three examples of
ensembles of θ̇d obtained in this way. From these ensembles, we can now directly calculate the
phase shift φθ̇ using a cross-correlation approach and taking the thermal diffusion time from fluid to
thermistor into account (as explained in detail in Appendix C) and the amplitude response Aθ̇ . The
results (mean values with the error bars indicating standard deviations) are given in Figs. 9(d)–9(e).
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FIG. 10. An example power spectrum Pδ for ω/�0 = 1/10.

It is clear that φθ̇ tends to ≈ − π/2 as ω/�0 increases. Furthermore, there is an initial increase
of Aθ̇ with ω/�0 followed by a decrease; the latter is to be expected in view of the fact that the
oscillatory signal in θd gets lost for ω > ωc. The maximum in Aθ̇ appears to represent a resonance.
As explained later (see Sec. IV), a simple dynamical model coupling LSC orientation speed θ̇ to LSC
strength δ can explain this as a resonant interaction between the LSC flow speed (which depends
on its strength δ) and the rotation speed of the sample, resulting in a Coriolis force with maximum
amplitude at a finite ω.

In Fig. 9(e) we have normalized Aθ̇ by the equivalent “amplitude” of 〈θ̇〉 spanned in the relevant
librational range. From Fig. 3(a) we estimate 〈θ̇〉 to vary by approximately 0.0149 rad/s between
1/Ro = 0.33 and 1/Ro = 0.51. Thus, if θ̇d only followed the average trend with 1/Ro without any
lag, it would have an amplitude of roughly Aθ̇,0 = 0.0149/2 rad/s. Henceforth, we call this the
“adiabatic” amplitude. [Correspondingly, there is also an adiabatic amplitude Aδ,0 for δ(t).] The
limit of the quantity Aθ̇/Aθ̇,0 for ω → 0 limit is indeed unity, as would be expected; the peak value
of Aθ̇/Aθ̇,0 is roughly twice as large.

2. Modulation of LSC strength

As already seen in Fig. 4, we find that the mean strength of the LSC δ0 is independent of ω/�0.
However, similar to θd (t), the amplitude δ(t) also contains a clear oscillation at the modulation
frequency. An example of a synchronization plot of δ(t) with �(t) is given in Fig. 6(b). In Fig. 10
we show an example power spectrum Pδ from an experiment with ω/�0 = 1/10. We see that δ(t)
contains not only a dominant oscillation at frequency f = ω, just like Pθ , but also higher harmonics
that are discernible (in this case) up to f = 6ω, as indicated. As is the case for θd (t), the oscillatory
signal for δ(t) gets weak at very high modulation rates and disappears around ω/�0 ≈ 1.

As was the case for θd (t), we can construct ensembles of δ(t) in exactly the same way. Three
examples are given in Figs. 11(a)–11(c). We note here that in Fig. 11(a), corresponding to ω/�0 =
1/40, the slowest modulation rate investigated, δ(t), looks to be in antiphase with �(t). This
corresponds to the adiabatic response of δ to changes in 1/Ro, since the dependence of δ on 1/Ro
in the range 0.33 < 1/Ro < 0.51 is approximately a linearly decreasing trend; cf. Fig. 3. We thus
define the phase shift φδ to be zero when δ(t) is in perfect antiphase to �(t).

Calculating the phase shift and the amplitude response from the ensembles of δ results in a mean
and standard deviation for each ω/�0; these two quantities are plotted in Figs. 11(d)–11(e). We
observe that the phase lag φδ increases faster with ω/�0 than does φθ̇ , with no apparent asymptotic
limit for high ω/�0; furthermore, the amplitude Aδ shows no maximum like Aθ̇ and decreases with
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FIG. 11. (a–c): Ensembles of δ for ω/�0 = 1/40,1/8,1/3, respectively. The smooth black lines show the
shape of �(t) to define the phase relative to which φδ is calculated. (d–e) The phase shift φδ and the amplitude
response Aδ , respectively, as a function of ω/�0, calculated from data from all three thermistor rows. The black
line represents the numerical results from the model given by Eq. (3).

ω/�0 in a linear fashion. In the limit ω/�0 → 0, Aδ is seen to approach the adiabatic amplitude
Aδ,0, as should be expected.

IV. MODELING OF THE DETERMINISTIC LSC DYNAMICS

In the following, we present an extended model of the LSC velocity and amplitude, based on
earlier approaches by Brown and Ahlers [16,18], to explain the observed phase and amplitude
responses. The basis of this model is formed by two Langevin-type equations for volume averages
of θ̇ and δ. We first shortly explain the approach of Brown and Ahlers to obtain these equations in
the context of constant-rotation RB convection, before extending the model to include the effects
of modulated rotations. Results from this model have been previously described in Ref. [51] in less
detail and are presented with more comprehensive explanations here.

The Langevin equation for δ is obtained starting from the Navier-Stokes (NS) equation in the polar
direction, keeping buoyancy and drag terms: u̇φ = gα(T − T0) + ν∇2uφ . Performing a suitable
volume averaging, assuming that the temperature and velocity profiles are linear in the radial
coordinate, and assuming that the polar velocity is instantaneously proportional to the thermal
amplitude (for details, see Ref. [16]), the equation for δ becomes

δ̇ = δ

τδ

− δ3/2

τδδ
1/2
0

, (1)
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with τδ = L2/(18νRe1/2
m ) and δ0 = 18π�T Pr Ra−1Re3/2

m . Here Rem is the time-averaged Reynolds
number UL/ν. For our experimental parameters, τδ ≈ 62 s and δ0 ≈ 0.22 K (for the latter, cf. also
the experimental results in Fig. 4).

The Langevin equation for θ̇ is obtained starting from the NS equation in the azimuthal direction,
keeping rotational pseudoforces and viscous drag: u̇θ = −2(� + θ̇ ) × uφ − θ̈ × r + ν∇2uθ . We
assume that the Euler acceleration ∼�̇ × r is much smaller than the Coriolis acceleration and can
be neglected in this approach (see Sec. III B). Again, assuming that the velocity profiles are linear
in the radial coordinate, performing a suitable volume averaging (for details, see again Ref. [16]),
employing the same proportionality between polar velocity and thermal LSC amplitude as in the
derivation of Eq. (1), and lastly defining the direction of θ̇ to be prograde [to ensure comparability
with the experimental results, where θd = −(θ + 〈θ̇〉t) is prograde], the equation for θ̇ becomes

θ̈ = −
(

δ

τθ̇ δ0
+ δ1/2

2τδδ
1/2
0

)
θ̇ + δ

τθ̇ δ0
�, (2)

where τθ̇ = 4L2/(3νRem); for our experimental parameters, τθ̇ ≈ 19 s.
It is clear that a modulated rotation rate �(t) will result in a modulated response of θ̇ in this

model, due to the modulation of the Coriolis term ∼�. However, the equation for δ does not contain
any terms that respond to a temporal change of �. This has to be amended by taking into account
the � dependence of the momentum BL thickness λ (see, i.e., Ref. [23]), which modifies the viscous
drag terms in both Eqs. (1) and (2). Physically, it means that the thickness of the viscous boundary
layers will periodically change along with the rotation rate of the RB cell, resulting in a periodically
modulated drag force.

Based on arguments by Assaf et al. [27], the � dependence of the momentum BL thickness can
be quantified as χ (�) ≡ λ2(�)/λ2(0) ≈ δ(�)/δ(0), the latter of which can be directly obtained from
the experimental result shown in Fig. 3. The viscous drag terms in both equations, which depend on
λ as ∼1/λ (cf. Ref. [16]), then have to be multiplied by χ (�)−1/2.

Furthermore, we assume that it takes a finite time for the bulk circulation to respond to
the modulation of the BL thickness, which should be of the order of the LSC turnover time
T ≈ πL/U ≈ 50 s. This effect is included in the model by using �∗(t) = �(t − T ), instead of
�(t), to calculate the time-dependent drag terms.

The full system of equations thus becomes

δ̇ = δ

τδ

− δ3/2

τδδ
1/2
0

√
χ (�∗)

; θ̈ = −
[

δ

τθ̇ δ0
+ δ1/2

2τδδ
1/2
0

√
χ (�∗)

]
θ̇ + δ

τθ̇ δ0
�. (3)

The only free parameter in this model is the typical LSC flow speed U , which is contained in the
time constants τδ and τθ̇ as well as in δ0. We use the value U = 1.5 cm/s (see Sec. III B), which is
typical for the Ra, Pr, and 	 values with which our experiments are concerned. We now compare the
predictions by the model to the experimentally obtained results. All system parameters (L, ν, etc.)
in the model are thus taken equal to those used in our experiments. We solve the system (3) using
numerical integration with first-order time stepping.

Results for φθ̇ and Aθ̇ are given in Figs. 9(d)–9(e). Here it can be seen that model and experiment
are in qualitative agreement: the model reproduces both the asymptotic value of −π/2 for the phase
shift of θ̇ at large ω/�0, as well as the maximum at finite ω/�0 for Aθ̇ . The range of ω/�0 in
which these developments are projected to happen (top horizontal axis) is, however, larger than
measured experimentally (bottom horizontal axis) in both cases. We assume that this is due to a
relative underestimation of the strength of the azimuthal fluid acceleration of the LSC in Eq. (3)
(the term ∼θ̈ ) in comparison to the inertial and viscous terms.

The model also provides an explanation for the resonant peak in Aθ̇ observed experimentally.
This peak is caused by an optimal coupling between δ(t) and �(t) in the Coriolis term ∼δ/(τθ̇ δ0)�.
As both δ(t) and �(t) are oscillating functions with a phase shift φδ(ω) + π between them, and they
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are in perfect antiphase in the limit ω → 0, the amplitude of the Coriolis term reaches a maximum
at a finite ω/�0.

Results for φδ and Aδ have been plotted in Figs. 11(d)–11(e). Here the model agrees both
qualitatively and quantitatively very well with the experimental results, showing both the strong
phase lag as well as the continuously decreasing amplitude of δ with increasing ω/�0.

V. EXPERIMENTAL RESULTS: STATISTICAL DYNAMICS OF THE LSC FLOW

In this section, we provide in-depth results on the influence of modulated rotation rates on the
statistical behavior of cessation events and the way in which these influence the overall statistics
of θ̇ and δ. The results discussed here pertain to the same parameter ranges as in the previous two
sections and are obtained from the same experimental runs and/or repeats thereof.

A. Cessation frequency

In Sec. III B, we have mentioned the identification of cessations by the criterion δ < δc ≡ 0.10〈δ〉.
In the context of constant-rotating RB convection, we find that the frequency of cessations η

increases rapidly beyond 1/Ro ≈ 0.40, as also reported before for comparable Ra in Ref. [21]. The
dependence of η on 1/Ro as measured in our current study is plotted in Fig. 12(a). Interestingly, in
our experiments with modulated rotation rates, we also find a nontrivial dependence of η on ω/�0,
plotted in Fig. 12(b). There appears to be a maximum in η around ω/�0 ≈ 1/6.

We have repeated two experiments from the modulated-rotation series, namely, those with
ω/�0 = 1/10,1/6, for a duration of approximately an entire week each. We note that these two
values of ω/�0 have been chosen on the basis of their proximity to the peak in cessation frequency
(Fig. 12), enabling us to make statistical inferences about the cessation events themselves, and the
dependence of those statistics on the phase of oscillation.

In Figs. 13(a)–13(c) we show the ensembles of δ (all responses), θ̇d (without events), and θd

(without events), respectively, for the ω/�0 = 1/6 run, which is near the maximum in η. The
vertical lines here indicate the division of one period T = 2π/ω into n phases, denoted �n (in the
figure, n = 8). Since cessations are identified by near-zero values of δ, it is easy to see how the modul-
ation of δ tends to “concentrate” the cessations in a certain phase which we denote �min, where δ

reaches the minimum values of its periodic response (indicated in Fig. 13).
We recorded more than 300 event-affected responses in this experiment. This enabled us to

construct a representative ensemble of events. In Fig. 13(d), we give such an ensemble for θd (t).
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FIG. 12. Measured frequency of cessation events by the criterion δ < δc ≡ 0.10〈δ〉 as a function of (a)
1/Ro and (b) ω/�0. The vertical dashed lines in (a) indicate the range of 1/Ro in which the rotation rate was
modulated for the results shown in (b).
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FIG. 13. The ensembles of (a) δ, (b) θ̇d (clean response), (c) θd (clean response), and (d) event-affected
responses of θd , shifted to have θd (0) = 0 for the sake of clarity; corresponding to the ω/�0 = 1/6 experiment.
�min denotes the phase in which δ(t), on average, reaches the minimum values of its periodic response, and
in which events thus have the highest probability of occurring; similarly, �max denotes the phase where δ(t)
reaches its maximum values.

For the sake of clarity, we have shifted each of these curves to be zero at t = 0. It can be seen
that these anomalous responses are manifested as distinct, rather abrupt changes in orientation of
the LSC circulation in both directions, and that most of the anomalies in θd are concentrated inside
the phase �min. This concentration of cessations can be illustrated by showing the frequency of
cessations for each individual phase �n. This quantity is plotted in Figs. 14(a)–14(b) for the two
different experiments, respectively, using n = 24 (series “Experimental”). Here the horizontal axis
has been shifted by the phase corresponding to �min, to harmonize the plots for ω/�0 = 1/10 and
ω/�0 = 1/6 (�min changes with ω/�0 because φδ changes with ω). It can be seen that the curves
are roughly symmetrical and exhibit a very sharp peak among the 24 phases. The cessations thus
have a very high probability of occurring in a very small phase window, and during the rest of each
period T , the circulation is nearly always sustained. It can also be seen that this phase window is
broader for the higher ω/�0. In Sec. V, we provide a theoretical model for the shape of η(�).

We note here that it is possible to obtain similar results using not δc ≡ 0.10〈δ〉 as criterion to
identify cessations, but δc ≡ 0.10〈δ〉�, with 〈δ〉� the mean of δ during each phase �n. The criterion
δc ≡ 0.10〈δ〉� is more stringent than δc ≡ 0.10〈δ〉 during phases close to �min, but less stringent
during phases close to �max. However, since very few to zero cessations occur during the latter in any
case, it is not of great influence whether one uses 〈δ〉 or 〈δ〉� there. We find that using the criterion
based on 〈δ〉� is thus effectively quite similar to simply setting a more stringent overall criterion for
identifying cessations, i.e., δc = a〈δ〉 with a < 0.10. The resulting trends of η/ηmax corresponding
to both criteria accordingly are very similar, with absolute values of ηmax somewhat smaller using
δc ≡ 0.10〈δ〉� than using δc ≡ 0.10〈δ〉.
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FIG. 14. (a) The normalized frequency of cessations for each individual phase �n determined from data of
the long experimental run with ω/�0 = 1/10; experimental (solid) and model (dashed) results. (b) Same for
ω/�0 = 1/6. The curves show how Eq. (10) roughly reproduces the experimentally measured dependency.

B. Probability distributions of δ and θ̇d

Clearly a number of statistical properties of LSC dynamics will depend on the phase �. In Fig. 15
we plot the probability distribution function (PDF) of δ (normalized by its mean) in the phase �min

during which the ensemble mean is minimal (i.e., where the frequency of cessations is maximal),
and in the phase �max during which the ensemble mean of δ is maximal, for both ω/�0 = 1/10
and ω/�0 = 1/6. This figure illustrates clearly the different skewness of δ in different phases; it
is clear how for � = �min, the points in the left tail of the PDF are bunched together closely (near
δ = 0, which provides an absolute constraint as δ cannot be negative), thus giving the PDF a very
different shape as compared to � = �max, where such low values are nearly never reached in the
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FIG. 15. The probability distribution function (PDF) of δ in (a) the phase �min during which the ensemble
mean of δ is minimal, and (b) the phase �max during which the ensemble mean is maximal, for two different
ω/�0. In both (a) and (b), the green lines are model results according to Eq. (13).
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FIG. 16. (a) The PDFs of |θ̇d | for ω/�0 = 1/10 in a number of different phases. (b) The fall-off of the
PDFs at high |θ̇d | can be approximated by a power law, P (|θ̇d |) ∼ |θ̇d |−ε ; here we plot ε(�) from experimental
results and from the modeling approach of Eq. (14). Error bars indicate the authors’ estimates of the uncertainty
in ε. As experimental PDFs’ fall-off portions terminate at certain |θ̇d | before transitioning into a scatter cloud,
the range where a linear function can be fitted is smaller and more distinguishable for the experimental data
than for modeled curves, and accordingly the estimated uncertainties are smaller. Thus the error bars represent
uncertainties with regards to linear fitting in the current data sets.

absence of cessations. It can also be seen that the normalized PDFs for the different ω/�0 overlap
to a large extent.

The effect of the cessations on the reorientation of the LSC circulation plane can be illustrated by
the PDFs of the absolute angular change |θ̇d |. To calculate θ̇d , now, we should not use the SG filtering
approach detailed earlier, since it would smooth out the short-time-scale effects of cessations; rather,
we calculate θ̇d (t) = (θd (t + �t) − θd (t))/�t , with �t = 4 s, the temporal resolution of our data
recordings. Cessations will then be manifested by anomalously high values of |θ̇d |; thus, the PDFs
of |θ̇d | for different � can provide us with more information on the effects of cessations on LSC
statistics, and their dependence on the modulation phase.

In Fig. 16(a) we plot the PDF of |θ̇d | for ω/�0 = 1/10 in a number of different phases. The fall-off
of the PDFs at high |θ̇d |, the regime where cessations become dominant, can be approximated by a
power law, P (|θ̇d |) ∼ |θ̇d |−ε . It is evident that ε = ε(�). We have estimated ε and its uncertainty by a
suitable fit in the PDF tail for all curves, as follows. For each �, we consider the decreasing part of the
PDF and determine the range between the point at low |θ̇d | where the PDF has the highest curvature
in the log-log plot, i.e., where the angle between the lines connecting a point with its neighbors is
smallest, and the last point at high |θ̇d | where the PDF has not yet transitioned into a scatter cloud due
to low amounts of data. Extending or reducing this range by one data point more or less at low |θ̇d |
gives a range of possible slopes with which to fit the PDF, which takes into account the uncertainty
with regard to where the linear range starts. We take the average of these slopes as ε(�) and its range
as the error bar, as plotted in Fig. 16(b). It is clear that during �max, when cessations almost never
occur, ε reaches extremely high values compared to other �, in which cessations are more common.

C. Interplay between cessations and LSC dynamics

In Fig. 17 we plot the probability distribution of the magnitude of the angular change during
cessations, which we denote |�θc|, for the ω/�0 = 1/6 experiment. The results from this graph,
however, apply not only to ω/�0 = 1/6 but turn out to be accurate across a range of ω/�0.
The explanation for this is as follows. The mean angular change during cessations is given by
〈|�θc|〉 = √

τDθ,c. Here τ is the mean duration of cessation, and Dθ,c is the mean “effective”
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FIG. 17. The probability distribution of the change in LSC orientation |�θc| following a cessation, for
the long ω/�0 = 1/6 experiment. Inset: The amplitudes Aθ as a function of ω/�0; the value at which
〈|�θc|〉 ≈ 2〈Aθ 〉 is indicated by a triangular data point. This value happens to correspond to ω/�0 = 1/6.

diffusivity of θc during cessations. Now both τ and Dθ,c are independent of the modulation as long
as the period of modulation is much longer than τ . (One can estimate the order of these quantities,
for instance, from Fig. 8, where |�θd | ≈ 2.4 rad and τ ≈ 12 s, giving Dθ,c ∼ 0.5 rad2/s.) Thus,
Fig. 17 can be seen as being representative for the modulated-rotation experiments in general.

The mean value of |�θc| is seen to be approximately 2.5 rad. The amplitude Aθ , meanwhile, is
found to be 1.2 ± 0.3 rad for this run [cf. Fig. 13(c) and the inset in Fig. 17]. Thus, 〈|�θc|〉 ≈ 2〈Aθ 〉,
i.e., on average, the magnitude of a sudden change in LSC orientation is roughly equal to twice the
“clean” ensemble amplitude Aθ , or equal to the mean peak-to-peak variation of θ within one period.

As has been discussed, the sudden changes in LSC orientation are correlated to minima in δ. For
this ω/�0, the phase in which minima in δ are concentrated (�min) happens to also coincide with the
phase where θ̇d is largest [cf. Fig. 13(b)]. The implication is that, whenever an event occurs that man-
ifests itself as an anomalous change in LSC orientation, this has a very high probability of happening
in the same phase in which the “clean” signal θd would otherwise have exhibited its fastest change.

Thus, near this value ω/�0 = 1/6, the angular changes due to cessations [Fig. 13(d)] tend to
synchronize with the clean ensemble response [Fig. 13(c)], because they span roughly the same
angular range, and match closely in phase with the clean response. These two factors provide
the conditions for a kind of resonance: most sudden changes in orientation do not interrupt the
oscillatory ensemble response of θd , as they do for other values of ω/�0, but instead are obscured
within the time series by having roughly the same amplitude and phase. The result is a time series
that exhibits almost the same oscillation pattern during each subsequent phase, unchanged (in fact,
even enhanced) by the presence of cessations.

This enhances a number of physical properties of the flow. For example, while the LSC orientation
oscillates about its mean value much more regularly than for other ω/�0, where cessations interrupt
the flow instead of strengthening its pattern, the thermal amplitude δ oscillates about its mean value
as usually. This implies that the LSC leaves its “footprint” (presumably, manifested by the presence
of traces of cold or hot fluid near the sides of the cylinder walls) behind in a much more spatially
regular pattern than for other ω/�0. The “footprint” of the minimum phase (in which there is a
much smaller temperature difference between fluid carried upwards or downwards on opposite sides
of the sample than in other phases) is therefore reinforced in the same spatial location as seen from
the rotating cylinder during each period of the modulation.

Since cessations are defined by anomalously low values of δ, the question now becomes: why
do such anomalously low values occur so often at ω/�0 ≈ 1/6? This could be down to a resonant
effect, resulting from the enhanced spatial regularity of the flow. Consider that traces of the previous
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minimum phase are still present somewhere in the sample during the next modulation period (perhaps
as a small temperature anomaly in the thermal BL). If ω/�0 ≈ 1/6, then during the next minimum
phase, when the LSC would be in the same location in the rotating frame as during the previous one,
this could lead to a slightly higher chance of δ dropping low enough for a cessation to occur than if
the LSC had been in any other position during the same phase. The same process would be repeated
again during the subsequent minimum phase, until a cessation would indeed occur at some point.

Now, as we have seen, the cessation, due to its close amplitude matching with the clean ensemble
response, would effectively not interrupt the modulated flow pattern of the LSC. Thus, the process
of a previous minimum phase reinforcing the next one would continue unabated afterwards. For
other ω/�0, an LSC regenerated after cessation would be in a different position as compared to
where it would have been had the cessation not occurred; thus, this process of reinforcement would
be interrupted after any cessation. At ω/�0 ≈ 1/6, there is no such constraint.

This sets the stage for a resonant effect in which cessations, normally stochastic processes,
become more likely to happen during each subsequent modulation cycle, resulting in anomalously
high and regular occurrences of cessations at ω/�0 ≈ 1/6. We may notice that the peak in η occurs
roughly at the same ω/�0 as the peak in Aθ̇ . While we have removed the effect of cessations in the
analysis of Aθ̇ by removing all periods containing cessations from the analysis, a resonance such as
theorized above could still contribute by a small amount to the peak in Aθ̇ . This could help explain
why the model, despite predicting the occurrence of the peak in Aθ̇ , underestimates its magnitude.

VI. THEORY OF THE STOCHASTIC LSC BEHAVIOR

In this section, we provide theoretical explanations for the statistical phenomena observed in our
experiments as detailed in Sec. V. It is seen that the LSC model in Eq. (3) has provided reasonable
predictions of the deterministic dynamics of the LSC flows subjected to modulated rotations. In order
to describe the stochastic behavior of the LSC, i.e., the statistics of cessation events, the probability
distributions of both θ̇d (t) and δ(t), and particularly their dependence on the modulation phases,
we consider an extended theory with stochastic terms included that model the small-scale turbulent
fluctuations in the fluid background.

The stochastic system of equations is then given by

δ̇ = δ

τδ

− δ3/2

τδδ
1/2
0

√
χ (�∗)

+ fδ(t); θ̈ = −
[

δ

τθ̇ δ0
+ δ1/2

2τδδ
1/2
0

√
χ (�∗)

]
θ̇ + δ

τθ̇ δ0
� + fθ̇ (t). (4)

Here fθ̇ (t) and fδ(t) are stochastic terms that represent noise with, respectively, diffusivity Dθ̇ and Dδ .
Thus the stochastic behavior of the LSC is described by diffusive motions in potential wells whose
shape is determined by the deterministic terms in Eq. (4), which change periodically in response to
the applied modulations. The potential functions are given by V (θ̇) = − ∫

θ̈ ∂θ̇ and V (δ) = − ∫
δ̇ ∂δ.

However, considering that in this study the applied modulation period is typically much longer
than the characteristic time scale of the flow, dictated by the LSC turnover time (2π/ω > T ), we can
additionally make the simplified assumption that the diffusion of both θ̇ (t) and δ(t) is constrained
in potential wells V (θ̇ ) and V (δ) that vary adiabatically between different modulation phases. For
a given phase �, therefore, V (θ̇) and V (δ) are then assumed to be stationary with their control
parameters given by their phase-average values. The governing equations then become

δ̇ = δ

τδ

− δ3/2

τδ〈δ〉1/2
�

+ fδ(t); θ̈ = −
( 〈δ〉�

τθ̇ δ0
+ 1

2τδ

)
θ̇ + 〈δ〉�

τθ̇ δ0
〈�〉� + fθ̇ (t). (5)

Here 〈δ〉� = δ0〈λ2(�∗)〉�/λ2(0) is the time average of δ during the phase � [effectively merging
the factors δ

1/2
0 and

√
χ (�∗) into a single value for each phase] and 〈�〉� is the average value of

� during this phase. We have simplified the θ̇ equation consistently with the adiabatic approach by
using the additional approximation δ/〈δ〉� ≈ 1 within each separate phase �. This approximation
is valid since the relaxation time scale δ, given by τδ , is much larger than that of θ̇ . Variation of θ̇
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is thus typically much faster than that of δ. Thus, we take the time-dependent variable δ(t) to be its
phase-average value for the θ̈ equation.

In this adiabatic approximation, the statistic behavior of θ̇(t) and δ(t) is not dependent on
previous phases and can be evaluated separately for each phase. It is determined by the strength of
the stochastic driving terms fθ̇ (t) and fδ(t) and the two potentials functions, respectively:

V (δ) = −1

2

δ2

τδ

+ 2

5

δ5/2

τδ〈δ〉1/2
�

(6)

and

V (θ̇) = θ̇2

2

( 〈δ〉�
τθ̇ δ0

+ 1

2τδ

)
− 〈δ〉�〈�〉�

τθ̇ δ0
θ̇ . (7)

This adiabatic approach can be useful in describing phase-specific characteristics of θ̇ (t) and δ(t),
as we will demonstrate in the following sections.

A. Cessation frequency

Here we discuss a theoretical approach to model the shape of the modulated cessation frequency
curves, displayed in Fig. 14. We follow the approach outlined in Assaf et al. [26], which uses the
potential function of the thermal LSC amplitude to estimate the frequency of cessations. To start,
we use the potential function V (δ) from Eq. (6) resulting from the adiabatic approximation. The
average time T∗ it takes the thermal amplitude to reach a certain low value δ∗ � δ0 is now given by

T∗(δ∗) =
√

2π

√
τδDδ

|V ′(δ∗)| e
2

Dδ
[V (δ∗)−V (〈δ〉)]

, (8)

where V (〈δ〉) is the potential evaluated at the mean value 〈δ〉 = 〈δ〉�. We present the time T (δ∗)
here using the dimensional quantities related to δ; in Ref. [26], the approach is presented in terms
of dimensionless parameters related to ξ ≡ δ/δ0. The reader may easily check that the equations
given here are equivalent to those provided in Ref. [26], by realizing that Dξ = τδ/δ

2
0 · Dδ , V (ξ ) =

τδ/δ
2
0 · V (δ), and V ′(ξ ) = τδ/δ0 · V ′(δ).

Correspondingly, the frequency of cessations η is given by

η−1 = 1

δc

∫ δc

0
T∗(δ∗)∂δ∗, (9)

where δc is the amplitude threshold below which a cessation is defined to occur (for which we use
the same criterion for δc as applied to our experimental analysis). Combining Eqs. (8) and (9) gives

η−1 =
√

2π

√
τδDδ

δc

∫ δc

0

1

|V ′(δ∗)|e
2

Dδ
[V (δ∗)−V (〈δ〉)]

∂δ∗. (10)

In the case of modulated rotation rates, as seen in our experimental results, Dδ becomes periodically
modulated as well, Dδ = Dδ(�). This is clear from Fig. 13(a): when δ(t) is in its minimum phase
�min, for example, it is constrained by the requirement that δ � 0. The farther away δ is modulated
towards high values, the less it is influenced by this constraint. Thus, the diffusivity will reach a
minimum in the minimum phase.

We prove this inference by calculating the diffusivity of δ as a function of the phase, Dδ(�),
from the experimental data as follows. First, we calculate the mean-square displacement ψ of δ(t)
for each phase �:

ψ(τ )|�=�n
= 〈(δ(t + τ )|�=�n

− δ(t)|�=�n
)2〉t − 〈[δ(t + τ )|�=�n

− δ(t)|�=�n
]〉2

t . (11)

Here the subscript (...)|�=�n
means that the variable in question is evaluated only within a certain

phase �n out of N total phases within one period in the range 0 � t � 2π/ω. The diffusivity of
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FIG. 18. Experimental data for the diffusivity Dδ(�) [determined using Eq. (12)], alongside the average
value of δ(t) in each phase � (both divided by their mean and subtracted by one) for ω/�0 = (a) 1/10; (b) 1/6.
Both variables show, roughly, the same overall development and a similar normalized amplitude. The effect of
these trends of 〈δ〉 and Dδ together results in a peak in the cessation frequency η as computed from Eq. (10) in
the phases where 〈δ〉 is small.

δ(t)|�=�n
is then given by a linear fit of the form

ψ(τ )|�=�n
∼ Dδ(�n)τ (12)

in the range 0 � τ � 30 s, where such a fit is typically possible. In Fig. 18 we show the normalized
values of Dδ(�) obtained in this way, along with the values of the temporal mean 〈δ〉� in each phase,
for two different ω/�0. It can be seen that, indeed, both shapes roughly follow the same development,
with minima globally occurring in similar phases �, and sharp increases in Dδ corresponding to sharp
increases in 〈δ〉�. Indeed, even the amplitude-to-mean ratio of both variables is roughly the same.

We now proceed by modeling the phase dependence of η by inserting the experimental values of
Dδ(�) and 〈δ〉 into Eq. (10). The value Dδ(�) enters the equation both in the prefactor as well as in the
exponent of the integrand. The value 〈δ〉 is used to evaluate the term V (〈δ〉) in the exponent. Results
from Eq. (10) for ω/�0 = [1/10,1/6] are plotted in Figs. 14(a)–14(b) along with the experimental
results. It can be seen that the modeled shapes of the cessation frequency are close to what has been
experimentally measured, with a distinct peak in cessations occurring in or close to the phase �min.
Furthermore, the experiment and model results both exhibit a broader peak for the higher modulation
rate ω/�0 = 1/6. Thus, it appears that our approach strengthens the theory of Assaf et al. [26,27]
by replicating closely an experimentally observed temporally modulated cessation frequency.

We note here that the shape of η(�) according to Eq. (10) is found to be insensitive to the value
chosen for δc, but the absolute values of η(�) are not. Using δc = 0.10δ0 as in the experiments,
absolute values from the model are somewhat higher than experimentally measured; for instance,
for ω/�0 = 1/6, the maximum in η is then 9×10−3 s−1, as compared to 3.5×10−3 s−1 from the
experimental data. In order to obtain results that match closely with the experimental values, a value
δc ≈ 0.05δ0 would have to be used in the model. This difference in absolute values of cessation
frequency between model and experiments is likely down to two reasons. First, η is extremely
sensitive to the exponential term given by both Dδ and 〈δ〉, but we use here their arithmetic mean
in each phase, as an approximation. This may cause part of the differences in the magnitude of η.
Second, and more importantly, in Eq. (9), it is assumed that the PDF P (δ∗), representing the fraction
of cessation events in which the minimum of δ is δ∗, taken across all cessation events (within a
phase), is a constant. However, experimental data show that P (δ∗) decreases when δ∗ decreases, so
we should in theory integrate Eq. (9) over P (δ∗)∂(δ∗) to obtain η. The approximation treating P (δ∗)
as a constant here has overestimated η.
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B. Probability distribution of δ

Here we discuss an approach allowing to model the shape of the probability distribution of δ,
given by

P (δ) = Cδe
−2V (δ)/Dδ , (13)

where Cδ is the appropriate normalization constant. We have seen that the shape of the PDFs
depends on the phase � (see Fig. 15). Thus, it is important to take this dependency along here,
which we do using the “adiabatic” approximation from Eq. (6).

We fitted the function P (δ) to the experimentally obtained PDFs by varying the parameters Dδ

and 〈δ〉� within realistic ranges. (The value of Cδ always results from the requirement that the
area under the PDF be unity, and is not further relevant.) Upon fitting Pδ to the experimental PDFs
corresponding to � = �max in Fig. 15, we found that a least-squares fitting procedure resulted
in best-fit parameters corresponding to Dδ = 6.4×10−5 K2/s and 〈δ〉� = 0.33 K. Clearly, these
parameters are quite comparable to experimental values for � = �max, with Dδ ∼ 3×10−5 K2/s
and 〈δ〉 ≈ 0.3 K during the maximum phase (cf. Fig. 13 for the latter). The same procedure applied to
� = �min resulted in Dδ = 5.8×10−5 K2/s and 〈δ〉� = 0.22 K. These values diverge more strongly
from experimental results, with 〈δ〉 ≈ 0.10 K during the minimum phase for both ω/�0 = 1/10,1/6.

The curves P (δ) corresponding to these parameters are shown as smooth lines in Fig. 15. It can be
seen that the shape of the PDF is represented extremely well for �max, but slightly less so for �min. We
assume that one chief reason this approach fails to work well for the minimum phase is that the mathe-
matical model in this form cannot account for the steep drop-off of the PDF that happens in the vicinity
of zero, as the increased occurrence of cessations is not explicitly modeled in Eq. (6). While the value
of δ can never be lower than zero, this only presents a real inaccuracy in the model in the minimum
phase, when the most likely values of δ are concentrated much closer to zero than during other phases.

C. Probability distribution of θ̇d

Last, we can use our modeling approach to replicate some of the statistical features of the
probability distributions of θ̇d , experimental results of which are given in Fig. 16. We demonstrate
two approaches in this section: (1) Assuming the conditional PDF P (θ̇ |δ) equilibrates much faster
than the time scale of τδ , and then following the calculations as those in [26]; and (2) a simplification
of this approach using the adiabatic approximation.

Under approach (1), we calculate the probability distribution of θ̇ in the model as follows:

P (θ̇ ) =
∫ ∞

0
P (θ̇ |δ)P (δ) ∂δ. (14)

Here the steady-state conditional PDF P (θ̇ |δ) is given by

P (θ̇ |δ) = Cθ̇e
−2V (θ̇)/Dθ̇ = Cθ̇e

−
{[

δ
τ
θ̇
δ0

+ δ1/2

2τδ δ
1/2
0

√
χ(�∗ )

]
θ̇2−2 δ�θ̇

τ
θ̇
δ0

}/
Dθ̇

(where Cθ̇ is a normalization constant, and Dθ̇ is the diffusivity of θ̇ ; we use the value
Dθ̇ ≈ 8×10−5 rad2 s−3 as estimated from our experiments), and the PDF P (δ) is given by

P (δ) = Cδe
−2V (δ)/Dδ = Cδe

−
[
− δ2

τδ
+ 4

5
δ5/2

τδ δ
1/2
0

√
χ(�∗ )

]/
Dδ (�)

.

In Eq. (14), therefore, the dependence on � appears implicitly in Dδ (Dθ̇ has little dependence on
�, as θ̇ is not constrained by the requirement to be positive, unlike δ) as well as in the Coriolis term
∼� in the exponent of P (θ̇ |δ) and in the factor χ (�∗).

Calculating results from Eq. (14) using the above equations gives the shapes of P (θ̇ ) for each
value of �. For each �, θ̇d is then calculated from θ̇ by subtracting the constant term 〈�〉�/

[1 + τθ̇ δ0/(2τδ〈δ〉�)], which can be derived from Eq. (5) to be the constant term in the theoretical
solution for θ̇ (t) [representing the linear trend of θ (t) on long time scales]. A number of the shapes
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FIG. 19. (a) Results from Eq. (14) for the PDFs of |θ̇d | in various phases �, for model parameters
corresponding to the experiment with ω/�0 = 1/10. (b) The experimental results for � = �max − π/8
compared to model results from two approaches: (1) from Eq. (14); (2) from using the adiabatic simplification
P (θ̇ ) = e−2V (θ̇ )/Dθ̇ with V (θ̇) as in Eq. (7), for ω/�0 = 1/10 and � = �max − π/8. Inset: When normalizing
the horizontal axis by the value |θ̇d, max|, where the maximum probability occurs, and renormalizing each
PDF such that its integral is unity, experimental and model results roughly collapse for data sets where � is
near �max.

P (|θ̇d |) for different phases, for model parameters corresponding to the experiment with ω/�0 =
1/10, are displayed in Fig. 19(a). We can easily compare the fall-off slope of these shapes to those
experimentally observed in Fig. 16(a). For each �, the slope was obtained through a similar procedure
as for the experimental data in Fig. 16(b), with linear fitting done in a range of one decade beyond the
peak in the PDF and in a range one-tenth of a decade further to the right; the mean of the slopes thus
determined is given as the mean in Fig. 16(b) and the spread to either side given as the error bars.

It is seen that the dependence of this fall-off shows a peak, like the experimental data, and the
synchronization with the experimental results is also clear, indicating again the adequateness of the
phase-dependent terms in the full dynamical model in Eq. (3). The peak is, however, much more
pronounced in the experimental data than in the model results. The reason is that the fall-off slope is,
among other things, a proxy for how many cessations happen in a certain phase (a very high slope
indicates the absence of cessations), and cessations are not modeled explicitly in Eq. (4), but rather
implicitly through the fact that, when δ � δ0, the stochastic term becomes dominant. This does,
however, not model the actual jump magnitude |�θc| as displayed in Fig. 17, resulting in a smaller
range of ε than derived from experiments.

Previous work [26] explained how this theoretical approach can be used to predict a slope of
ε = −4 in the tails of P (θ̇ ) when δ � δ0, representing the LSC undergoing cessations. Indeed, we
see in Fig. 16(b) that the minimum values found for ε (i.e., in the phases where cessations are most
likely) are quite close to this: −3.3 for the experimental data and −4.6 for the results from the model
(Assaf et al. [26] found −4.3 for nonrotating RB convection in a wide range of Ra). We note also,
however, that the model approach does not replicate the experimentally observed absence of a sharp
peak probability for phases where the fall-off slope is close to −4; instead, the model predicts a clear
peak probability for all � whose position changes only minimally with �.

This is a relatively involved calculation, requiring experimental data on the diffusivity of δ (likely
subject to uncertainty) as well as a separate calculation of the potential of δ before that of θ̇ can be
inferred. We show here that approach (2), using the adiabatic potential V (θ̇) from Eq. (7), can give
similar results to replicate the shapes of the probability distribution of θ̇ . The fact that we use this
adiabatic assumption, in turn, justifies using the assumption P (θ̇ ) ≈ P (θ̇ |δ) within each phase �n.
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We have used Eq. (7) to calculate the PDF P (|θ̇d |) for the curve corresponding to � = �max − π/8
[close to the maximum phase; see Fig. 16(a)]; the result is given in Fig. 19(b). With the parameters
〈δ〉� ≈ 0.3 K (close to the experimental value) and Dθ̇ ≈ 8.0×10−5 rad2 s−3, the shape of the curve
from the full equation can be closely approximated. The slope of the tail of this PDF is again very
close to what the experimental data suggest.

Both theoretical approaches slightly overestimate the value of |θ̇d | where the PDF exhibits a peak
[compare Figs. 16(a) and 19], although experimental and theoretical values of this |θ̇d | are all of order
0.01 rad/s. As discussed for the results in Figs. 9(d) and 9(e), the discrepancy could again be due to
an underestimation of the LSC inertia. However, if we plot the PDFs as a function of the normalized
variable |θ̇d |/|θ̇d, max|, where |θ̇d, max| is the value with maximum probability, and accordingly
renormalize the PDF such that its integral is equal to unity, the theoretical and experimental curves
collapse extremely well onto each other, as can be seen in the inset to Fig. 19(b). The adiabatic
approach is, in fact, even closer to the experimental curve than the result from the full Eq. (14).

In conclusion, both approaches (1) and (2) give very similar results and work well in replicating
the fall-off slope of the PDFs of |θ̇d | especially near �max. Approach (2) requires fewer estimations
of phase-dependent parameters from experimental data and is not coupled to the equation for the
PDF of δ, a quantity to which θ̇ is dynamically coupled according to Eq. (4); thus, it is a much
simpler approach to obtain very similar results. In phases near �min, the experimentally observed
shape of the probability is, however, less well replicated by these approaches, so further refinements
to the theory are needed to improve our understanding of the phase dependence of the PDFs.

VII. RESULTS FOR HEAT TRANSPORT

Our results on rotating Rayleigh-Bénard convection discussed up to this point have focused on
the dynamics of the large-scale circulation. All the responses to the modulation of the frame of
reference’s rotation rate discussed so far are related to the dynamical response of the large-scale
circulation orientation and strength.

However, this could obscure other responses to the modulated rotation rate which may be present
in the background and unrelated to the LSC, that may still have ramifications for instance for overall
heat transport. In the results discussed in this section, we have tried to take the LSC out of the
equation by moving to a different parameter range, and focus on the response of the turbulent
fluid motions when there is no LSC to influence. We first discuss how the parameter range and the
modulation range were chosen based on results for constant rotation, before moving on to discuss
the results of modulated-rotation experiments.

A. Results for constant rotation

We note that, when the rotating speed � increases beyond 1/Ro � 0.8, we do not detect any clear
signature of an LSC from the side-wall temperature signals (see also Ref. [21]). Indeed, when 1/Ro
increases, the increasing Coriolis force alters the flow field from one turbulent state, dominated by the
LSC flow, to another turbulent state in which local thermal plumes are organized into long columnar
vortices. These vortical plumes are coherent thermal structures that give rise to the enhancement of
the global heat transport, known as the Ekman-pumping effect [53].

In Fig. 20 we show results for the Nusselt number Nu (normalized by its value at zero rotation)
as a function of 1/Ro for Ra = 2.1×109, as well as results from Ref. [21] at the similar value
Ra = 2.25×109. It can be observed that an enhancement of the global heat transport with increasing
rotation rates occurs within the range 0.4 < 1/Ro < 2.5. Furthermore, it has been found [21] that
the enhancement of Nu with 1/Ro decreases as Ra becomes larger.

B. Results for modulated rotation

Based on these experimental data, we decided to perform modulated-rotation experiments at
Ra = 2.1×109 in which we set 1/Ro = 1.27 as the mean inverse Rossby number, with 0.85 <

084401-24



DYNAMICAL AND STATISTICAL PHENOMENA OF . . .

0 2 4 6 8
1/Ro

1

1.02

1.04

1.06

1.08

1.1

N
u
(Ω

)
N

u
(0

)

FIG. 20. The dependency of Nu on changing (constant) rotation rate. Plotted are the time averages of Nu
normalized by the time average at zero rotation against 1/Ro. Blue circles: experimental data from [21] with
Ra = 2.25×109; red squares: the present work with Ra = 2.1×109. The two dashed lines indicate the range
0.85 < 1/Ro < 1.70 in which we performed modulated-rotation experiments.

1/Ro < 1.70 as the range of libration. The boundaries of this range are indicated by vertical lines
in Fig. 20. This range corresponded to a mean rotation rate of �0 = 0.157 rad/s and modulation
amplitude β = 0.33. The choice was based, first, on the fact that a strong “adiabatic” response of
Nu to changing 1/Ro is to be expected in this range, as seen in Fig. 20, and, second, on the fact that
the rotary table used for our experiments could not run in a modulation mode at higher rotation rates
than the corresponding �0(1 + β) = 0.209 rad/s.

In our experiments, we find that the Nusselt number shows a periodic response at the frequency
of modulation. We show an example of a time trace of Nu in Fig. 21, from an experiment with
ω/�0 = 1/10. In Fig. 21(b), the oscillatory character of Nu can be clearly seen. We can construct
ensemble oscillations of Nu from such time traces, using the same methodology as applied earlier
for ensembles of θ̇ and δ (described in Sec. III). In Fig. 22 we plot the ensembles of modulated Nu
for two example values of ω/�0. [The maxima of �(t) occur at t = 0 in these plots.] We see that,
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FIG. 21. The time trace of Nu for a ω/�0 = 1/10 heat transfer experiment (left). A close-up of the response
of Nu between the two red lines is given in the right plot, in which the oscillations are clearly visible.
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FIG. 22. The ensemble response of Nu for two experiments at different ω/�0. The maxima in �(t) are
timed at t = 0, which is plotted in arbitrary units as solid black line.

at the (very low) value ω/�0 = 1/80, short-timescale deviations affect the periodic response much
more strongly than at ω/�0 = 1/10.

We plot the mean value 〈Nu〉 and the standard deviation σ (Nu) (both taken, in each case, across
an entire experiment minus transient periods in the beginning) against ω/�0 in Fig. 23. Since very
strong deviations from the ensemble response are present for low ω/�0, and we have no criterion for
identifying them (as we did for cessations in the discussion of LSC dynamics), we cannot determine
the amplitude of oscillations in Nu from the peak-to-peak amplitude of the response. Instead, we
use the standard deviation σ (Nu) as a measure of the fluctuations in Nu. [Alternatively, one could
approximate the amplitude from the mean values of Nu during different phases of one modulation
cycle. We find that the resulting trend is identical to that of σ (Nu) in Fig. 23, except that we cannot
define the value at ω/�0 = 0 in this way.] We see that 〈Nu〉 decreases with ω/�0 in the investigated
range; its relative change is about 2%–3%. This change is comparable to what we expect from the
trend of Nu with 1/Ro as given in Fig. 20. We also see that σ (Nu) initially increases with ω/�0, but
seems to peak around ω/�0 = 1/10.

A possible qualitative explanation of these phenomena could be as follows. As mentioned, in the
investigated regime of modulation, there are no traces of a large-scale circulation in the fluid. Heat
transfer is therefore accounted for by turbulent heat transfer through thermal plumes emitted from
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FIG. 23. The mean (a) and standard deviation (b) of Nu, normalized by the mean of Nu at zero modulation,
versus ω/�0.
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the thermal boundary layers. When constant rates of rotation are applied such that the inverse Rossby
number falls into the studied range 0.85 < 1/Ro < 1.70, these thermal plumes are organized into
columnar vortices stretched out into the bulk fluid, which enhance the momentum and heat transport
through the boundary layers. When modulation of the rotating velocity � is applied, however, the
variation in � produces a time-dependent Coriolis force that may disintegrate the columnar vortical
plumes into interspersed thermal fluid parcels and suppress the effect of Ekman pumping. Thus the
applied modulation decreases the overall heat transport, and the higher the modulation frequency,
the stronger will be the influence of the weakening of the coherent plume structures. In that case,
the decrease factor of Nu (about 2%–3% decrease between ω/�0 = 0 and ω/�0 = 1/6) could
perhaps give quantitative clues on how the strength of Ekman-pumping suppression depends on the
frequency of modulation.

The observed peak in standard deviation is then explained as follows. The standard deviation of
the oscillating quantity Nu serves as a proxy for its amplitude, which initially increases with ω, since
the additional variation in how the thermal plumes are organized (due to the partial disintegration
of the columnar vortices they constitute at zero modulation) increases the temporal variation in heat
transfer in the fluid. However, in the limit of high ω, the modulation becomes so fast that the effect
of Ekman pumping is maximally suppressed, limiting the temporal variation of Nu again. There will
thus be a maximum variability in heat transport at finite ω/�0.

The trends of 〈Nu〉 and σ (Nu), taken together, imply that the maximum values of heat transfer
are quite insensitive to changes in the modulation amplitude, but the minimum values are not, up
to at least ω/�0 = 1/6 in this particular parameter range. This can be more clearly illustrated by
plotting the PDFs of Nu for each ω/�0, as has been done in Fig. 24. The right (high-Nu) tails of all
five PDFs overlap roughly, whereas the left tails move to ever lower values of Nu with increasing
ω/�0.

Last, we have investigated the phase shift of Nu with respect to �(t). This phase shift has been
calculated using the same algorithm as used for the phase shifts φθ̇ and φδ (described in Sec. III and
Appendix C). In Fig. 25 we plot the phase φNu versus ω/�0. Here φNu has been defined as zero when
Nu oscillates in phase with �(t), since Nu increases with 1/Ro in the investigated range 0.85 <

1/Ro < 1.70, and its adiabatic response is thus in phase with �(t) (see Fig. 20). The oscillations in
Nu are seen to increasingly lag the rotation of the sample as ω/�0 increases. The largest lag recorded
here is three-quarters of a cycle, at ω/�0 = 1/6. At modulation rates faster than ω/�0 = 1/6, the
oscillatory signals got mostly lost in the fluctuations and could therefore not be analyzed.
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FIG. 24. The PDFs of Nu for different ω/�0. The right (high-Nu) tails are seen to be near-invariant with
ω/�0. The left (low-Nu) tails, on the other hand, seem to move to lower and lower values as ω/�0 is increased.
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FIG. 25. The phase lag of the oscillations in Nu versus ω/�0.

VIII. CONCLUSION AND DISCUSSION

This paper presents comprehensive experimental and modeling results on the effects of modulated
rotations on the dynamical and statistical responses of convective circulations and heat transfer in
Rayleigh-Bénard convection with Pr = 4.38, 	 = 1, and Ra ∼ 109. Here we summarize the results
and provide recommendations for future research.

We have measured the response of the azimuthal velocity θ̇(t) and thermal amplitude δ(t) of
the large-scale circulation (LSC) under external modulated (unidirectional) rotations of the RB cell.
We have found that in the limit of very slow modulation rates ω, the responses of θ̇ (t) and δ(t) are
modulated adiabatically, i.e., following the dependence of 〈θ̇〉 and 〈δ〉 on modulation speed � without
phase delay and with the same amplitude response, as should be expected. However, increasing the
modulation rate ω results in a variety of dependencies. Both θ̇ (t) and δ(t) exhibit increasing phase
delays (φθ̇ and φδ) with respect to �(t) as ω increases; φθ̇ approaches −π/2 for high ω, whereas
φδ does not seem to have an asymptotic limit for high ω. The amplitude responses of θ̇ (t) and δ(t)
(respectively, Aθ̇ and Aδ) both approach zero for very high ω, but the former has a peak at finite ω

whereas the latter decreases monotonically. Beyond a critical modulation rate ω = ωc, the oscillatory
signals become too weak to be discernible in the noisy background of the measured time series.

We have formulated a modeling approach that is an extension of earlier work [16,18] to include
the effects of modulated rotations. This simple approach consists of Langevin-type equations for θ̇ (t)
and δ(t), and takes into account the effects of a modulated Coriolis force as well as the dependence
of momentum BL thickness on rotation rate. The model is successful in predicting each of the
qualitative trends described above, including the peak in Aθ̇ , which is explained as an optimal
coupling between the rotation rate �(t) and the thermal amplitude δ(t) in the Coriolis acceleration
term in the dynamical equation for θ̇ (t).

As described in previous studies, the occurrence of stochastic cessation or reorientation events
of an LSC is sensitive to external factors such as the rotation rate. In this study, we have extensively
studied the dependence of frequency of cessation events η on the modulation rate, and identified a
sharp maximum in η at finite ω. Experimental runs with ω set very close to this value allowed us
to collect enough data to statistically analyze cessation events under external modulation (at zero
rotation, they roughly occur only once every 3 hr; at this finite ω/�0, they occur 10–20 times as
often). We identify a very clear dependence of the probability of cessation on the specific phase (�)
within one period of modulation, with most cessation events occurring in the phase of modulation
during which δ(t) reaches its minimum values anyway.

We have extended previous modeling approaches [26,27] in a consistent manner with our
modeling of the dynamical responses of δ(t) with an adiabatic approach to estimate the frequency of
cessation and its dependence on � numerically. Besides the ω dependency present in the dynamical
equation for δ(t), the cessation model includes an estimation of the effective diffusivity of δ(t)
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during different phases of a modulation cycle. The model reproduces well the experimentally found
dependency of η on �, with the timing of the maximum in η and the increase in the peak width of η

with increasing ω being replicated closely.
We furthermore find that the shapes of the probability distributions of θ̇(t) and δ(t) change

significantly with �, with their standard deviations and skewnesses being strongly dependent on,
among other things, the probability of cessations occurring in each phase �. We have extended
modeling approaches for the PDFs of θ̇(t) and δ(t) [26,27] using the same adiabatic approach
mentioned above to include the effects of modulation, which works well in describing most
characteristics of the PDFs that depend on �. However, more research is needed to include the
effects of cessations on these PDFs more explicitly, as the current approach has its shortcomings
especially in those phases where very high numbers of cessations occur.

We have, furthermore, investigated the reasons for the maximum in η at finite ω. We find that,
at this ω, a resonance of sorts seems to occur between the “clean” modulated response of θd (t)
(the angular orientation as seen from the rotating frame of reference) and the periods of θd (t)
affected by cessations. The sudden azimuthal reorientations of the LSC as a result of cessations of
δ(t) coincidentally synchronize closely in amplitude as well as phase with the clean response, thus
reinforcing the modulations instead of interrupting them, as would happen at other ω. This could
result in a resonance whereby cessations, instead of interrupting the modulated response, strengthen
it continuously, which in its turn increases the probability of further cessation events.

Last, we have investigated the effect of modulated rotation rates on heat transfer at lower Ra than
for the experiments described above, to explore the potential effects of modulation in absence of
an LSC, in a modulation range where the adiabatic response of Nu to changes in the rotation rate
is relatively strong. We find that external modulated rotations also result in a modulated response
in the Nusselt number Nu. Increased modulations turn out to slightly suppress the average Nu,
with maximum values remaining largely unaffected but minimum values being significantly reduced
under increasing modulation rates, as well as to increase its phase delay with respect to �(t). The
suppression of heat transfer under modulated rotation is an intriguing phenomenon that in our point
of view merits further experimental and numerical research.

Future research from the authors will work towards extending the ranges of experimental
parameters of RB convection in which the dynamical and statistical behavior of thermal convection
and heat transfer can be studied. For example, the current paper discusses the dynamical responses
of θ̇(t) and δ(t) in a range of rotation rates in which their responses are strong and roughly monotonic
with �(t), based on their adiabatic responses, which simplifies the analysis of amplitude and phase
responses. However, one could change the range of modulation such that θ̇ (t) and δ(t) might exhibit a
wealth of nonlinear behavior that goes beyond the current study in complexity. It would be worthwhile
to investigate whether the identified mechanisms of phase and amplitude response and statistical
behavior from the current study would still hold in such regimes. We also recommend to more closely
align this stream of research with the potential interests from the geophysical and astrophysical
communities, by focusing specifically on parameter ranges and/or adapted experimental geometries
with higher relevance in geo- and astrophysics.

Furthermore, we believe that the results found on heat transfer suppression are extremely
interesting and endeavour to further investigate this subject, as the current study did not include
a modeling approach to explain the physics behind this phenomenon. In particular, it would be worth
investigating whether the trends found will stand up to scrutiny in other parameter ranges of Ra and
ω/�0. Complementing experimental studies with, for instance, DNS could be highly valuable in
identifying the precise physical mechanisms responsible for the trends found in this study.
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APPENDIX A: FOURIER ANALYSIS OF THE AZIMUTHAL TEMPERATURE PROFILE

Following the approaches outlined in Refs. [22,52], in order to be certain that the temperature
fitting Ti = T0 + δ cos (iπ/4 − θ ), i = 1, . . . ,8, to the eight temperatures measured in each
azimuthal row is adequate, one should do a complete Fourier analysis of the azimuthal temperature
profile and verify that the first Fourier mode is indeed dominant. As shown in [22], the power of the
first Fourier mode can, for instance, decrease significantly at relatively high values of 1/Ro, where
Ekman vortices complicate the convection dynamics.

The Fourier analysis of the azimuthal temperature profile is done here as follows. From each
time series recorded at a certain modulation value ω/�0, we have for each time t an azimuthal
temperature profile consisting of NT = 8 data points. We calculate the eight Fourier coefficients Aj

and Bj (j = 1 . . . NT /2), with Aj (Bj ) the sine (cosine) coefficients. The energy of each Fourier mode
is then given by Ej (t) = Aj (t)2 + Bj (t)2, and the total energy is given by Etot(t) = ∑NT /2

j=1 Ej (t).
In Fig. 26 we show the time traces of Ej (t)/Etot(t) during one period of a modulation experiment

with ω/�0 = 1/10. It can be clearly seen that the first mode (j = 1) is dominant throughout this
period. While momentary dips in E1 accompanied by corresponding rises in the energy of the other
modes can be observed occasionally in the time series, the instances where E1 is not the highest of
the four energies (not shown here) are rather rare, and likely correspond to events that can be typified
as cessations. Results for other ω/�0 are qualitatively the same.

Whether or not the first mode can be said to be dominant in general is shown by the time averages
〈Ej 〉/〈Etot〉, which are plotted in the inset to Fig. 26. It is seen here that on average, close to 90%
of the total energy is contained in the first mode for all applied modulation speeds ω/�0. For this
reason, we infer that the first mode is dominant and that the sinusoidal temperature fitting approach
is suitable for our modulated-rotation experiments.

We note that another way of determining the dominance of the first mode [22,52] is through the
parameter S defined as follows:

S = max

({ 〈E1〉/〈Etot〉 − 1/(NT /2)

1 − 1/(NT /2)

}
,0

)
. (A1)

When S is unity, all Fourier energy is contained in the first mode, and when S = 0, the energy is
distributed evenly over all Fourier modes. In our experiments, S = 0.860 ± 0.003 across the range
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FIG. 26. The time trace of Ej (t)/Etot(t) during one period of a modulation experiment with ω/�0 = 1/10.
Inset: The time averages 〈Ej 〉/〈Etot〉, showing the first mode to be dominant for all investigated ω/�0. The
dashed sinusoidal curve represents the rotation �(t) in arbitrary units, to clarify the timing of this particular
section of Ej (t)/Etot(t) with respect to �(t).
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of ω/�0 investigated. This again indicates the dominance of the first mode for all investigated
modulation speeds.

APPENDIX B: CONTROL OF MODULATED ROTATION

The rotating table used in our setup could only switch frequencies in a discrete manner, with
increments of 0.06◦/s. In order to perform libration, therefore, we needed to approximate a sinusoidal
modulation �(t) by a discrete modulation, consisting of a number of discrete frequencies, denoted
Fn = n×0.06π/180 rad/s.

As an example, in our experiments on LSC dynamics and statistics, the librational range was
0.33 < 1/Ro < 0.51, corresponding (at �T = 16 K) to Fn, max = F120 and Fn, min = F78. Thus, a
sinusoidal modulation for this run was modeled by tuning the frequency down from F120 to F78

(in 43 steps), then tuning the frequency back to F120 (in the same 43 steps in reverse order), and
repeating this cycle.

The angle �n that the table should cover while rotating at each frequency level Fn between F120

and F78 was determined as follows. Assuming the modulation frequency ω is known, the exact,
smooth librational frequency �(t) corresponding to the desired range of 1/Ro and the desired ω

is of course given by �(t) = �0[1 + β cos (ωt)]. We start out at the maximum level, F120. At this
level, we let the table cover half the angle that would be covered at rotation rate �(t) while the latter
is larger than F119.5 (this “halfway level” is imaginary, in the sense that the table could not actually
rotate at this value). Thus,

�120 =
∫ t(�(t)=F119.5)

0
�(t) dt. (B1)

After an angle �120 has been covered, we switch to F119 and let the table cover the same angle as
would be covered at rotation rate �(t) between the values F119.5 and F118.5:

�119 =
∫ t(�(t)=F118.5)

t(�(t)=F119.5)
�(t) dt. (B2)

Subsequently, we switch to F118, and let the table cover the same angle as would be covered at
rotation rate �(t) between the two frequency levels F118.5 and F117.5 and so on, down to (and
including) frequency level F79. Finally, we switch to the lowest level F78, and let the table cover half
the angle that would be covered at rate �(t) below the value corresponding to frequency level F78.5.

In Fig. 27(a) we illustrate this procedure by showing the smooth �(t) and its intersections with
a number of halfway levels. In this figure, the angles �n correspond to the areas underneath the red
curve and sandwiched between neighboring vertical lines. The spin-up part of the cycle is performed
by reversing the spin-down part.

Figure 27(b) shows the discrete frequencies (expressed as discrete 1/Ro values) during an example
librational cycle against dimensionless time. Since our approach is based on setting the angle of
rotation �n, not the time of rotation at each level Fn, the actual period of modulation resulting from
this method is slightly different from the theoretical value 2π/ω (by less than �0.15% in all cases).
However, since the small, but finite switching time between different Fn already introduced an error
of at least the same order by itself, this small discrepancy had to be accounted for in any case, i.e., for
constructing ensemble responses, and the subsequent analysis. Thus, our method described above,
which constructs the stepped libration by requiring that the total angle

∑
n �n covered during one

modulation period is equal to the net theoretical angle
∫ 2π/ω

0 �(t) dt , was deemed by us to be more
useful than trying to keep the modulation period equal to its theoretical value 2π/ω, when this value
would contain an error in any case due to the switching time between discrete frequency levels.
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FIG. 27. (a) An illustration of the calculation of appropriate timings to model a smooth spin-down with a
discrete set of frequencies. The blue lines indicate these discrete frequencies, whereas the red smooth curve is
the exact �(t). Sets of “halfway frequencies” between two F values are used to calculate the time that �(t)
spends between those two halfway levels, and from that, the net angle �n is calculated that should be covered
at each discrete frequency. This, in turn, determines the time spent rotating at each discrete level Fn. (b) The
complete librational cycle, with the red box indicating the section shown in (a).

APPENDIX C: CALCULATION OF PHASE RESPONSES

In this appendix, we explain how we calculate the mean and standard deviation of the phase
shifts φθ̇ and φδ . First, the cross-covariances of θ̇(t) and δ(t) with �(t) were computed separately for
each eventless period in each experiment. This was done as follows. Each response of θ̇ (t) and δ(t)
between two maxima in �(t) was copied and repeated N times (we used N = 10); subsequently, the
cross-covariance between such a repeated period and N periods of �(t) was calculated. The peak
therein was identified, and the location of this peak was translated to a phase shift. In this way, every
period of �(t) that did not contain an event, yielded a value for φθ̇ and φδ . Two additional criteria
were applied to filter out noise and unidentified events, respectively:

(1) We found that the normalized cross-covariance of �(t) with a stochastic vector (consisting
of random numbers from a normal distribution) could show peaks with a magnitude of close to 0.1
at the 99% confidence level. When the magnitude of the peak in a cross-covariance vector was lower
than 0.1, therefore, we did not use it.

(2) The ensemble behavior is characterized by a certain phase bandwidth. Individual responses
that fall far outside of this band, even if they pass the significance test, do not represent a response
to the sinusoidal forcing, but rather a strong deviation caused by a cessation of the LSC that went
undetected by the criterion δ < δc. We therefore do not use those periods in which the phase shift
deviates by more than ±π/2 from the modal value of the phase shift. This is based on the empirical
observation that the phase bandwidth is less than π .

Clearly, these criteria (as well as those mentioned before for taking out events) can overlap, since,
for example, a response affected by a cessation can easily show a high deviation in the calculated
phase shift. We illustrate the effect of our filtering methods here with a visual example.

The most straightforward way to visualize this is by a scatterplot of the normalized value of
maximum cross-covariance (denoted C/C0) of either θ̇ (t) or δ(t) with �(t), against the associated
phase shift φθ̇ or φδ (calculated from the location of this maximum). We give such a plot in Fig. 28
for φ

p

θ̇
(here the p stands for “probe”, representing the fact that this value has not yet been corrected

for the thermal diffusion time between probe and fluid) corresponding to the midthermistor data
from an experiment with ω/�0 = 1/8. In this plot, the data points left out of the analysis by the
event-based criteria are plotted as diamonds. The phases of these data points show a lot of scatter, as
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FIG. 28. The values of C/C0 of the peak in the cross-covariance of θ̇ with �(t) in the experiment with
ω/�0 = 1/8, plotted against the corresponding value of φ
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can be expected. In total, 44 out of 155 periods (28%) are affected by events and therefore not used
in the calculation of the phase and amplitude responses.

It can be seen that there is a large “point cloud” near φ
p

θ̇
≈ −0.5 and with C/C0 ≈ 1. These

points correspond to responses in θ̇ that are excellently correlated with �(t); they constitute the bulk
of the points in this figure, confirming that there is an “ensemble phase” of rather limited bandwidth.

The vertical black lines indicate a bandwidth (BW) of π centered around the most commonly
found value of φθ̇ , which lies somewhere in the point cloud. Points outside of this BW (and not yet
discarded by the event-based criterion), plotted as triangles, are left out of the analysis as well, as they
are likely to have little to do with the ensemble response; in fact they are likely to be event-affected, but
simply not captured by the (somewhat arbitrary) criteria for identifying events. In this particular run,
this applies only to 3 points out of 111, less than 3% (not counting the points already discarded from
the event-based criterion); however, leaving them out decreases the standard deviation of φθ̇ by 25%.

The horizontal black line indicates the threshold of significance of C/C0; in this particular
experiment, every response in θ̇ passed this significance test. The points plotted as circles pass each
criterion, and so are used in the calculation of the mean and the standard deviation of φ

p

θ̇
. In this

case, φ
p

θ̇
= −0.42 ± 0.42, with roughly 30% of the points being left out of the analysis.

The effect of thermal diffusion time between thermistor and fluid could account for a slight
additional time delay. For proper analysis, this effect needed to be accounted for as well. Here we
explain in more detail how this has been done. There were 24 blind holes in the sample sidewall
that had been carefully machined into it from the outside. The ends of these holes had a distance of
d = 0.8 ± 0.1 mm from the fluid surface, as indicated in Fig. 29(a). The sidewall of the sample was
made of a cylindrical Lexan plastic tube, with a wall thickness of 4.0 mm and thermal diffusivity
κ = 0.144 mm2/s at 25 ◦C [54]. The temperature probes we used consisted of a thermistor bead
(BetaTHERM, type G22K7MCD419) welded to insulated extension leads. The probes had a diameter
of 0.38 mm, and the bead was located within 0.2 mm of the end of the probe. The thermal response
time of these thermistors was 30 ms. The thermistors were placed into the blind holes in the sample
sidewall until they touched the inner ends. To ensure good thermal contact, a thin layer of thermally
conductive paste was spread around the surface of the thermistors and filled the leftover empty
volume in the holes.

We estimate the time delay in our temperature measurement to be caused by the finite thermal
diffusivity of the sidewall and by the aforementioned response time of the thermistors. Based on the
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FIG. 29. (a) Schematic of the convection cell and positions of the 24 thermistors embedded in the sidewall.
(b) Side-view photo of the sidewall with the thermistors installed. (c) Photo of a thermistor (indicated by the
black arrow) next to a portion of the sidewall (top view). A stainless steel screw size with 6 mm diameter
indicates the scale.

data provided above, we determine that the time delay τsw is mainly due to the thermal diffusion
time in the sidewall:

τsw = d2/κ ≈ 4.6 s. (C1)

Thus, we correct our inferred phase responses φ
p

θ̇
and φ

p

δ as follows to obtain the actual phase shifts
φθ̇ and φδ:

φθ̇ = φ
p

θ̇
+ ωτsw; φδ = φ

p

δ + ωτsw. (C2)

We find that the time lag τsw due to the thermal diffusion of the sidewall is smaller than the standard
deviation in φ

p

θ̇
/ω and φ

p

δ /ω. These results suggest that the time delay caused by thermal diffusion
within the sidewall produces a noticeable phase lag only in a very high regime of ω and has
insignificant effects on the phase response data at low modulation frequencies.
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[8] F. Chillá and J. Schumacher, New perspectives in turbulent Rayleigh-Bénard convection, Eur. Phys. J. E
35, 1 (2012).

[9] R. Krishnamurti and L. N. Howard, Large scale flow generation in turbulent convection, Proc. Natl. Acad.
Sci. USA 78, 1981 (1981).

[10] K. R. Sreenivasan, A. Bershadskii, and J. J. Niemela, Mean wind and its reversal in thermal convection,
Phys. Rev. E 65, 056306 (2002).

[11] E. Brown, A. Nikolaenko, and G. Ahlers, Reorientation of the Large-Scale Circulation in Turbulent
Rayleigh-Bénard Convection, Phys. Rev. Lett. 95, 084503 (2005).

[12] H.-D. Xi, S.-Q. Zhou, Q. Zhou, T.-S. Chan, and K.-Q. Xia, Origin of the Temperature Oscillation in
Turbulent Thermal Convection, Phys. Rev. Lett. 102, 044503 (2009).

[13] Z. Svestka and H. J. Harvey, in Helioseismic Diagnostics of Solar Convection and Activity (Kluwer
Academic Publishers, Amsterdam, 2000), p. 584.

[14] W. B. Hubbard, A. Burrows, and J. L. Lunine, Theory of giant planets, Annu. Rev. Astron. Astrophys. 40,
103 (2000).

[15] J. E. Hart, S. Kittelman, and D. R. Ohlsen, Mean flow precession and temperature probability density
functions in turbulent rotating convection, Phys. Fluids 14, 955 (2002).

[16] E. Brown and G. Ahlers, Effect of the Earth’s Coriolis force on the large-scale circulation of turbulent
Rayleigh-Bénard convection, Phys. Fluids 18, 125108 (2006).

[17] E. Brown and G. Ahlers, Rotations and cessations of the large-scale circulation in turbulent Rayleigh-
Bénard convection, J. Fluid Mech. 568, 351 (2006).

[18] E. Brown and G. Ahlers, Large-Scale Circulation Model for Turbulent Rayleigh-Bénard Convection,
Phys. Rev. Lett. 98, 134501 (2007).

[19] H.-D. Xi, Q. Zhou, and K.-Q. Xia, Azimuthal motion of the mean wind in turbulent thermal convection,
Phys. Rev. E 73, 056312 (2006).

[20] R. P. J. Kunnen, H. J. H. Clercx, and B. J. Geurts, Breakdown of large-scale circulation in turbulent rotating
convection, Europhys. Lett. 84, 24001 (2008).

[21] J.-Q. Zhong and G. Ahlers, Heat transport and the large-scale circulation in rotating turbulent Rayleigh-
Bénard convection, J. Fluid Mech. 665, 300 (2010).

[22] S. Weiss and G. Ahlers, The large-scale flow structure in turbulent rotating Rayleigh-Bénard convection,
J. Fluid Mech. 688, 461 (2011).

[23] R. J. A. M. Stevens, H. J. H. Clercx, and D. Lohse, Boundary layers in rotating weakly turbulent
Rayleigh-Bénard convection, Phys. Fluids 22, 085103 (2010).

[24] R. P. J. Kunnen, R. J. A. M. Stevens, J. Overkamp, C. Sun, G. F. van Heijst, and H. J. H. Clercx, The role
of Stewartson and Ekman layers in turbulent rotating Rayleigh-Bénard convection, J. Fluid Mech. 688,
422 (2011).

[25] R. P. J. Kunnen, H. J. H. Clercx, and G. J. F. van Heijst, The structure of sidewall boundary layers in
confined rotating Rayleigh-Bénard convection, J. Fluid Mech. 727, 509 (2013).

[26] M. Assaf, L. Angheluta, and N. Goldenfeld, Rare Fluctuations and Large-Scale Circulation Cessations in
Turbulent Convection, Phys. Rev. Lett. 107, 044502 (2011).

[27] M. Assaf, L. Angheluta, and N. Goldenfeld, Effect of Weak Rotation on Large-Scale Circulation Cessations
in Turbulent Convection, Phys. Rev. Lett. 109, 074502 (2012).

[28] D. L. T. Anderson and A. E. Gill, Spin-up of a stratified ocean, with applications to upwelling,
Deep-Sea Res. 22, 583 (1975).

[29] P. F. Linden and G. J. F. van Heijst, Two-layer spin-up and frontogenesis, J. Fluid Mech. 143, 69 (1984).
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