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Analysis of the clustering of inertial particles in turbulent flows
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An asymptotic solution is derived for the motion of inertial particles exposed to Stokes
drag in an unsteady random flow. This solution provides an estimate for the sum of Lyapunov
exponents as a function of the Stokes number and Lagrangian strain- and rotation-rate
autocovariance functions. The sum of exponents in a Lagrangian framework is the rate of
contraction of clouds of particles, and in an Eulerian framework, it is the concentration-
weighted divergence of the particle velocity field. Previous literature offers an estimate of the
divergence of the particle velocity field, which is applicable only in the limit of small Stokes
numbers [Robinson, Comm. Pure Appl. Math. 9, 69 (1956) and Maxey, J. Fluid Mech. 174,
441 (1987)] (R-M). In addition to reproducing R-M at this limit, our analysis provides a
first-order correction to R-M at larger Stokes numbers. Our analysis is validated by a directly
computed rate of contraction of clouds of particles from simulations of particles in homo-
geneous isotropic turbulence over a broad range of Stokes numbers. Our analysis and R-M
predictions agree well with the direct computations at the limit of small Stokes numbers. At
large Stokes numbers, in contrast to R-M, our model predictions remain bounded. In spite of
an improvement over R-M, our analysis fails to predict the expansion of high Stokes clouds
observed in the direct computations. Consistent with the general trend of particle segregation
versus Stokes number, our analysis shows a maximum rate of contraction at an intermediate
Stokes number of O(1) and minimal rates of contraction at small and large Stokes numbers.

DOI: 10.1103/PhysRevFluids.1.084202

I. INTRODUCTION

Inertial particles interacting with a spatially varying flow form regions of high concentration. This
is known as particle clustering [1], segregation [2], or preferential concentration [3]. The prevalence
of particle-laden flow in areas of physics and engineering has inspired decades of research with
applications ranging from planet and cloud formation to combustion and pharmaceutical applications
[4,5].

These studies have established that clustering occurs when particles, characterized by their Stokes
numbers (St), have a response time of order unity. At significantly higher Stokes numbers particles
follow a ballistic trajectory that is independent of the flow. Particles with St � 1 follow the fluid as
tracers with a minimal relative motion that is essential to the formation of clusters. Various approaches
have been adopted to relate clustering to the background flow and Stokes number. Experimental
studies [4,6–9] and numerical simulations [2,10–16] have shown that Stokes numbers of order unity
based on the Kolmogorov time scale are associated with the strongest clustering regime.

Under a particular set of conditions, such as low particle Reynolds and Knudsen numbers,
high particle-to-fluid density ratio, absence of body force, negligible finite size effects, negligible
particle-particle and particle-wall interactions, and low mass loading ratio, particle motion is well
described in these systems by the Stokes equation

Ẍi = τ−1(ui − Ẋi), (1)

in which X(t) is the position of a particle, t is time, ˙(•) ≡ d(•)/dt , u(X,t) is the fluid velocity, and
τ is the particle relaxation time. Although Eq. (1) seems a simple ordinary differential equation, it
exhibits a nonlinear chaotic behavior due to the dependence of its source term on X [17]. For systems
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in which the assumptions associated with Eq. (1) are not completely valid, the Stokes number retains
a large influence on clustering with a trend that is similar to the dynamics predicted by this simplified
equation. Therefore, we consider Eq. (1) as the starting point to investigate the underlying physics
of clustering at a more fundamental level and explicate the role of Stokes number in this process.

Multiple indices have been introduced in the literature for characterization of particle clustering
[18]. Here we consider two classes of indices and describe their relationship. The first index is defined
based on the rate at which nearby particles separate or approach each other. In other words, provided
two particles at an initial infinitesimal distance ‖r(0)‖, they converge or diverge exponentially as

‖r(t)‖ = ‖r(0)‖eλt . (2)

λ is called the finite-time Lyapunov exponent and converges to the Lyapunov exponent in an ergodic
system as t → ∞ [19]. Exponents much smaller than zero are indicative of a strong clustering
regime. As discussed in detail in the following section, there are three exponents (λ1, λ2, and λ3) in
a three-dimensional flow that determine the rate of expansion and contraction of a cloud of particles
in three orthogonal directions. Hence, these exponents are directly related to the rate of contraction
of a cloud, which as discussed in Ref. [20] is connected to the particle number density and provide
a measure of clustering.

The second index for characterization of clustering is based on the statistics of particle
concentration field, which is experimentally measurable and less mathematically abstract. At the limit
of small Stokes numbers, the particle concentration field is a fractal [1]. Analytical relationships are
established for different order statistics of a fractal and employed in this context for characterization
of clustering [21]. For instance, the scaling exponent ζ (n) obtained from mn = Dζ , in which m(D)
is the average mass of particles inside an infinitesimal sphere with diameter D, varies depending on
the level of clustering. For example, clustering of randomly distributed particles in three dimensions
toward a two-dimensional (2D) manifold reduces ζ from 3n to 2n. For a fractal concentration field,
ζ is directly related to the Lyapunov exponents and as a result to the first index described above
[22,23]. Hence, the Lyapunov exponents provide an estimate for a more experimentally accessible
clustering index and are of prime importance for characterization of particle clustering.

The divergence of the particle velocity field is equal to the sum of the Lyapunov exponents (i.e.
λ1 + λ2 + λ3), and computing it relates both indices described above to the background flow. At the
limit of small Stokes numbers, an expression has been derived by Robinson [24] and Maxey [25] for
the divergence of particle velocity field by taking the divergence of Eq. (1) under the assumptions
Ẍ ≈ Du/Dt and ∇ · u = 0. This expression, which we consider for benchmarking our analysis and
denote by R-M, is

∇ · Ẋ ≈ −τ∇ · (u · ∇u) = τ (‖�‖2 − ‖S‖2) ≡ τQ, (3)

in which � and S are the fluid rotation- and strain-rate tensors, respectively, and the overline denotes
averaging in time over the trajectory of a particle. Note that the difference between the norm of these
two tensors (here defined as Q) corresponds to the second invariant of the velocity gradient tensor and
half of the Q criterion, which is a scalar function employed for identification of vortices in turbulent
flows [26,27]. The R-M expression explains that the most hospitable zones for clustering are those
with high strain and low rotation rate that are conducive to the highest rate of contraction. Although
this relation provides information about both indices through the sum of Lyapunov exponents, it is
linearly proportional to τ and fails to predict the nonmonotonic behavior of particle clustering versus
the Stokes number.

The primary objective of this study is finding a correction to R-M that not only reproduces it at
the limit of small Stokes number [the regime that Eq. (3) applies to] but also is applicable to a wider
range of Stokes numbers. With this motivation in mind, in what follows, an asymptotic solution is
derived from Eq. (1) that quantifies the sum of Lyapunov exponents associated with inertial particle
pairs. This solution expresses the sum of exponents as a function of Stokes number and background
flow statistics and hence can be related to both indices described above.

084202-2



ANALYSIS OF THE CLUSTERING OF INERTIAL . . .

FIG. 1. Schematic of a cloud of particles, �t , defined as an infinitesimal 3D manifold occupied by a
collection of particles. This cloud, which undergoes deformation characterized by �, may expand or contract
toward a central point ξ .

In what follows, we consider a general representation of flow with oscillatory modes of strain and
rotation acting simultaneously over all possible frequencies. We derive an eigenvalue problem with
its eigenvalues and eigenvectors representing magnitude and directions of contractions, respectively.
We show the dependence of this eigenvalue problem on the Stokes number, explaining how a particle
may filter or resonate with different frequencies. We perform a detailed analysis of the Lagrangian
autocovariance functions, which are the input to our analysis, and benchmark their response with
a set of canonical flows. Finally, we present a validation of our analysis through a quantitative
comparison against direct numerical simulation (DNS) of particle-laden homogeneous isotropic
turbulent (HIT) flow.

II. ANALYTICAL DERIVATION

As the starting point, we consider a volume occupied by a collection of nearby particles, which
we call a cloud. This cloud is initially denoted by �0 and evolves over time with � : �0 → �t

(Fig. 1). By taking function � to satisfy Eq. (1), �t = {X(t) | X(t) = �(X(0),t),X(0) ∈ �0}. By
following �t , the problem is formulated on a reference frame that moves with the cloud.

Denoting the central point of the cloud by ξ , relative motion of a particle located at X ∈ �t to
the central point is r(t) = X(t) − ξ (t) (Fig. 1). Substituting this relation in Eq. (1) gives

τ (ξ̈i + r̈i) + ξ̇i + ṙi = ui(ξ + r,t). (4)

By bounding the size of the cloud to be much less than the Kolmogorov length scale η, we ensure
that the size of the cloud is always less than the inertial length, and as a result particles within the
cloud experience a smooth linear velocity field. Hence, from the Taylor series expansion,

ui(ξ + r,t) = ui(ξ ,t) + ui,j (ξ ,t)rj + O(‖r‖2), (5)

in which (•),i ≡ ∂(•)/∂xi . Neglecting the higher order terms in Eq. (5) and using τ ξ̈i + ξ̇i = ui(ξ ,t)
to simplify Eq. (4) leads to

τ r̈i + ṙi = ui,j (ξ ,t)rj , (6)

which is an exact linearized form of Eq. (1), provided ‖r‖ is sufficiently small. Here we have derived
Eq. (6) from Eq. (1) in several steps to build physical intuition. This equation can also be obtained
by taking the derivative of Eq. (1) with respect to X(0) as shown in Ref. [16].

Next, we express fluid velocity in a continuous Lagrangian Fourier space that follows the cloud:

ui(ξ ,t) =
∑

ω

ũi(ω)eîωt , (7)
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in which ω = (−∞,∞). Since finding r for an individual cloud is of interest, dependence of ũ on ξ

is dropped from Eq. (7). From Eqs. (7) and (6),

τ r̈i + ṙi =
∑

ω

ũi,j (ω)rj e
îωt . (8)

These three ordinary differential equations relate particle motion to the harmonics of the velocity
gradient tensor sampled along the trajectory of the cloud. One significance of this relation is that the
fluid velocity gradient is characterized by the Kolmogorov scale and thus explains our earlier use of
Kolmogorov units. The appearance of the velocity gradient tensor in Eq. (8) does not imply that it
captures only a subset of existing scales of the flow. ui,j is a general function of time and accounts
for the full turbulent spectrum, including the longer time scales of the inertial range. Additionally,
due to the turbulence intermittency ũi,j cannot be represented as a unique set of harmonic functions.
However, as shown later in this section, it is still possible to derive a generic solution for the rate of
contraction that converges statistically with sufficient sampling.

Denoting the volume of the cloud �t by V (�t ), the finite-time rate of contraction Ct is defined
such that

V (�t ) = V (�0) exp(Ct t). (9)

Based on Eq. (9), we define a time-independent rate of contraction as

C ≡ lim
t→∞ C t . (10)

With these definitions the cloud might rotate or even expand in a particular direction, but it contracts
as long as the number density within the cloud increases. To quantify C, we search for an asymptotic
solution to Eq. (8) with a form of

ri = eλt
∑

ω

Ai(ω)eîωt , (11)

in which λ and Ai are the free eigenvalues and eigenfunctions to be determined. Considering the
upper bound on ‖r‖, λ at t → ∞ is the Lyapunov exponent associated with particle pairs at ξ and
ξ + r . The form of the solution in Eq. (11) allows for oscillation over all possible frequencies,
ω, as well as contraction or expansion characterized by λ. Specifically, we seek contractions and
expansions that persist over time scales longer than particle relaxation time, and thus regimes with

|λτ | � 1 (12)

are of particular interest.
Next, we expand our formulation at |ω| < |λ| and |ω| > |λ| and simplify it using Eq. (12) to

obtain a 3 × 3 eigenvalue problem. For the sake of brevity, we use short-hand notations Am ≡ A(ωm)
and ũm−n ≡ ũ(ωm − ωn). Substituting Eq. (11) in Eq. (8) yields∑

ωm

[τ (îωm + λ)2 + îωm + λ]Am
i eîωmt =

∑
ωl

∑
ωn

ũl
i,jA

n
j e

î(ωl+ωn)t . (13)

Since summations are calculated over infinite intervals, we take ωl = ωm − ωn to simplify
Eq. (13) to ∑

ωm

[τ (îωm + λ)2 + îωm + λ]Am
i eîωmt =

∑
ωm

∑
ωn

ũm−n
i,j An

j e
îωmt , (14)

which must hold at any t . This is achieved by ensuring

[τ (îωm + λ)2 + îωm + λ]Am
i =

∑
ωn

ũm−n
i,j An

j (15)

is satisfied for any ωm. In the following, we enforce this condition separately for small and large ωm.
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Approximating Eq. (15) for |ωm| < |λ| yields

(τλ + 1)λAm
i ≈

∑
ωn

ũm−n
i,j An

j , (16)

and for |ωm| > |λ|
[−τ (ωm)2 + îωm]Am

i ≈
∑
ωn

ũm−n
i,j An

j . (17)

Note that ωn inside the summation in Eqs. (16) and (17) is not limited to small or large frequencies
and covers the full spectrum of ũi,j . Rearranging Eq. (17) gives

An
k = −

∑
ωl

τ + î/ωn

1 + (τωn)2
ũn−l

k,j Al
j (18)

for |ωn| > |λ|. The first term in Eq. (16) can be neglected since |τλ| � 1 [see Eq. (12)]. Therefore,
substituting Eq. (18) in Eq. (16) yields

λAm
i = −

∑
|ωn|>|λ|

∑
ωl

τ + î/ωn

1 + (τωn)2
ũm−n

i,k ũn−l
k,j Al

j +
∑

|ωn|<|λ|

∑
ωl

1

λ
ũm−n

i,k ũn−l
k,j Al

j (19)

for |ωm| < |λ|. Since the aim of this analysis is obtaining ensemble-averaged quantities over long
periods, we neglect the terms with l 	= m in Eq. (19) (ũm−n

i,k and ũn−l
i,k are uncorrelated for l 	= m).

Hence

λAm
i = −

∑
|ωn|>|λ|

τ + î/ωn

1 + (τωn)2
ũm−n

i,k ũn−m
k,j Am

j +
∑

|ωn|<|λ|

1

λ
ũm−n

i,k ũn−m
k,j Am

j (20)

for |ωm| < |λ|. The velocity gradients in Eq. (20) are a function of |ωn − ωm|. Since in the first
summation |ωn| > |λ| and |ωm| < |λ|, we neglect ωm in this summation. Additionally, the second
summation is summed over a short range compared to the physical infinity, viz., of order τ−1

η . Hence,
we neglect this term in comparison with the first summation, which is summed over a much wider
range of frequencies. Our numerical results show |τηλ| � 1. As a result Eq. (20) reduces to

λAm
i = −

∑
|ωn|>|λ|

τ + î/ωn

1 + (τωn)2
ũ−n

i,k ũn
k,jA

m
j (21)

for |ωm| < |λ|. In Eq. (21), the term with î/ωn is an odd function of ωn and is canceled. Additionally,
taking ω = ωn yields

λAm
i = −

⎡
⎣ ∑

|ω|>|λ|

τ

1 + (τω)2
ũ∗

i,kũk,j

⎤
⎦Am

j (22)

for |ωm| < |λ|, in which ũ∗ is the complex conjugate of ũ and is equal to ũ(−ω), since u ∈ R3.
The summation in Eq. (22) includes only |ω| > |λ|, and hence its computation requires a prior

knowledge of λ. To remove this dependence, we extend the summation to all frequencies by
including |ω| < |λ| in this summation. This change in summation bounds is in accordance with
our earlier assumption in which the contribution of |ω| < |λ| is negligible compared to |ω| > |λ|.
The contribution of these small frequencies is of the same order as the second summation in Eq. (20)
that was neglected earlier. Therefore, this approximation remains within the leading order of accuracy
of this analysis. Including |ω| < |λ| in Eq. (22) leads to

λAm
i = −

[∑
ω

τ

1 + (τω)2
ũ∗

i,kũk,j

]
Am

j (23)
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for |ωm| < |λ|. Note that the expression inside the bracket is not a function of ωm, indicating that λ

is the same at small frequencies. Therefore, Eq. (23) can be written as

ψ A0 = λA0, (24)

in which A0 is the displacement vector associated with the low-frequency oscillations, i.e., |ωm| <

|λ|, and

ψij ≡ −
∑

ω

τ

1 + (τω)2
ũ∗

i,kũk,j . (25)

The three eigenvectors of ψ represent the principal directions at which the cloud experiences pure
contraction or expansion. The eigenvalues associated with each direction represent the rate of
contraction [real(λ) < 0] or expansion [real(λ) > 0]. Numerical investigation shows that generally
one of the eigenvalues has a positive and one has a negative real part, hence most clouds expand and
contract at the same time, which is consistent with previous reports [13]. The imaginary part of each
eigenvalue accounts for the mean rotation.

While the instantaneous rate of expansion or contraction of a cloud is subject to oscillations due
to the turbulence intermittency, the long-term change of V (�t ) is solely controlled by λ and can be
computed from the product of contraction or expansion factors in the principal directions as

V (�t ) = V (�0) exp(�iit) | t → ∞. (26)

In this relation, � is the eigenvalue matrix of ψ , hence �ii is the sum of three Lyapunov exponents
λ. Considering our earlier definition of clustering index, Eq. (26) provides �ii as the measure of
contraction rate for a single cloud of particles. Given that the trace is invariant, �ii can be directly
computed from ψii . Hence from Eqs. (10) and (26),

C ≈ �ii = ψii = −
∑

ω

τ

1 + (τω)2
ũ∗

i,j ũj,i . (27)

Using the convolution theorem and ũ∗
i,j ũj,i = S̃∗

ij S̃ij − �̃∗
ij �̃ij , Eq. (27) can be expressed in terms

of a continuous integral as

C(τ ) =
∫ ∞

−∞

τ ρ̃Q(ω)

1 + (τω)2
dω, (28)

in which ρ̃Q represents the Fourier transform of the autocovariance function ρQ defined as

ρQ(t) ≡ ρ� − ρS ≡ �ij (t ′)�ij (t ′ + t) − Sij (t ′)Sij (t ′ + t) (29)

with overlines denoting Lagrangian averaging over t ′. Defining⎡
⎢⎣

ρI(t)

ρII(t)

ρIII(t)

⎤
⎥⎦ ≡

⎡
⎢⎣

u1,1(t ′)u1,1(t ′ + t)

u1,2(t ′)u1,2(t ′ + t)

u1,2(t ′)u2,1(t ′ + t)

⎤
⎥⎦ (30)

for homogeneous and isotropic turbulence, it can be shown that⎡
⎢⎣

ρ�(t)

ρS(t)

ρQ(t)

⎤
⎥⎦ = 3

⎡
⎢⎣

ρII − ρIII

ρI + ρII + ρIII

−ρI − 2ρIII

⎤
⎥⎦. (31)

We will analyze the behavior of these functions in the next section for HIT flow. Since these
autocovariance functions are computed along the trajectory of a cloud, they are different from the
Eulerian quantities and thus dependent on τ .
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Interestingly in the limit of St = τ/τη � 1, in which τη is the Kolmogorov time scale of the flow,
Eq. (28) reduces to

C = τ

∫ ∞

−∞
ρ̃Q dω = τρQ(0) = τ (‖�‖2 − ‖S‖2) = τQ, (32)

which is identical to R-M expression in Eq. (3). Note that R-M is validated in the limit of St <

O(1), showing its close connection with particle clustering [28,29]. Here using an entirely different
approach, we derived a more general expression that targets a wider range of Stokes numbers. Among
all flow parameters, this relation depends only on the second invariant of the velocity gradient tensor,
confirming the dominant role of viscous scales on producing fluctuation in the particle concentration
field [30].

Equation (28) is the most important result of this analysis, which at first glance predicts the
maximum rate of contraction C at intermediate τ when ρ̃Q < 0. Additionally, neglecting the
dependence of ρ̃Q on τ , it predicts the decay of C for τ → 0 or τ → ∞ proportional and inversely
proportional to τ , respectively. Furthermore, the fact that the product of τ and ω appeared in the
denominator of Eq. (28) explains the unresponsiveness of larger particles to the fast oscillations of
small flow features.

III. DIRECT NUMERICAL SIMULATIONS

In this section, we describe the direct numerical simulations that were performed to quantify and
verify the analytical results of Sec. II. In particular, we discuss two aspects of these simulations that
are critical for a correct assessment of those results. These aspects, although generic and not specific
to the present analysis, are essential for reproduction of the reported results and, thus, are discussed
for the sake of completeness.

We consider a triply periodic homogeneous isotropic turbulence as the background flow.
To simplify collecting statistics over extended periods, we generate a stationary turbulence by
continuously injecting energy into the flow via a linear forcing term that is proportional to the
velocity [31]. Hence, the momentum equation is modified as

ρ
Du
Dt

= ∇ · T + Au, (33)

in which T is the stress tensor and A is the linear forcing term. The difficulty of this formulation
is that the rate of energy supply, and dissipation will not be steady variables for a constant A. As a
result, implementation of Eq. (33) with a constant A produces a time-dependent τη with fluctuations
persisting over long periods. These fluctuations have a slow dynamics with an integral time scale
that is in the order of hundreds of τη. Since τη is directly related to the Stokes number of particles,
a correct estimate of St relies on computing τη such that conditions are statistically converged.
However, the long integral time scale of τη inhibits its accurate computation through a reasonable
period of ensemble averaging.

To prevent variation of global turbulence statistics several remedies have been explored [32].
Here we developed a method that dynamically changes the linear forcing term A at each time step
using

At = A

{
1 + tanh

[
k

(
τ t
η

τη

− 1

)]}
, (34)

in which A is a baseline estimate that is computed from the target Kolmogorov time scale τη,
At is dynamically changed forcing term that is implemented in the right-hand-side of Eq. (33),
τ t
η is the instantaneously measured Kolmogorov time scale throughout the simulation, and k is a

dimensionless control gain. This method is specifically designed to prevent variation of τη throughout
the simulation. As shown in Fig. 2, depending on the deviation of τ t

η from the target value, At is
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FIG. 2. The dynamic adjustment of the linear forcing coefficient At based on the measured τ t
η using Eq. (34).

increased or decreased with a slope of kA/τη. For a given box size L and fluid kinematic viscosity
ν, we choose A = ν1/3L−2/3τ

−2/3
η . This choice produces Reλ ≈ √

15/(3Aτη).
Implementation of Eq. (34) limits the relative error in controlled τ t

η to a value that scales as
k−1. As shown in Fig. 3, which is obtained from a simulation at Reλ = 26, controlling At reduces√

(τ t
η/τη − 1)2 from 10% to less than 0.2%. The simulation reported in the following sections is

performed at Reλ = 100 with k = 100. In this simulation, the maximum deviation of τ t
η from the

target Kolmogorov time scale is 0.3%.
The second aspect of these simulations that requires close attention is the interpolation scheme for

computing quantities at the location of particles from the Eulerian grid. To accurately compute the
compressibility of particle velocity field, it is essential to have an interpolation scheme that translates
the incompressibility condition that is imposed on the Eulerian field to the Lagrangian field. In the

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

t/τη

10
0(

τ
t η
/τ

η
−

1)

k = 100

k = 0

FIG. 3. Deviation of the instantaneous Kolmogorov time scale τ t
η from the target τη in percent over the

entire simulation history for controlled At with k = 100 (solid line) and uncontrolled At with k = 0 (dashed
line).
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0 1 2 3 4 5
−0.6

−0.4

−0.2

0

0.2

0.4

t/τη

τηu1,2

τηui,i

τηu1,1

FIG. 4. The Lagrangian velocity gradients as a function of time for an arbitrary particle interpolated from
an Eulerian velocity field. As a particle crosses a cell boundary, a jump is observed in the velocity gradients
due to the finite support of the interpolation scheme (dashed lines). This issue, originally caused by performing
interpolation and then differentiation, is resolved by first creating a spatially consistent C0 continuous field for
the velocity gradient and then performing the Lagrangian interpolation (solid lines).

other words, ui,i(X(t); t) evaluated at the location of particles must be zero for incompressible flows.
An interpolation scheme with an improper design will not satisfy this condition. The second issue that
may arise in this context is a discontinuity in the interpolated velocity gradients along the trajectory
of a particle as it crosses over Eulerian cell boundaries (Fig. 4). For example, this issue becomes
apparent in the case of constructing velocity gradients from the interpolated velocities through finite
differencing. Note that increasing the order of interpolation scheme (for a finite interpolation stencil)
does not resolve this problem.

To prevent these two issues, we compute the velocity gradient on the Eulerian grid prior to the
Eulerian-to-Lagrangian interpolation. More specifically, for a staggered uniform grid and a second
order central differencing, ui,i is computed on the cell center based on the velocities on the faces
of the cell. For ui,j and i 	= j , gradients are computed on the cell faces from the adjacent cells
velocities (e.g., cell I + 1 is computed based on the cells I and I + 2). This Eulerian representation
of ui,j is then fed into a trilinear interpolation scheme that respects the location of Eulerian quantities
on the grid while computing ui,j at the location of particles. The combination of these two steps
produces a C0 continuous velocity gradient as a function of time that automatically satisfies the
incompressibility condition (Fig. 4).

IV. ANALYSIS OF THE LAGRANGIAN AUTOCOVARIANCE FUNCTIONS

In this section the autocovariance functions, defined in Eqs. (30) and (31), are computed for a
HIT flow. DNS of a triply periodic incompressible flow at Reλ = 100 was performed using a 2563

numerical grid. Turbulence was maintained using a time-varying linear forcing term [Eq. (34)].
Equation (1) was solved for particles with St = 2p, p ∈ {−4, . . . ,4}. At each Stokes number, 105

randomly seeded particles were simulated for several large eddy turnover time to allow development
of clusters. Starting from this time-evolved distribution, the velocity gradient tensor was recorded
at the position of each particle for 200τη with 0.1τη intervals. The scheme described in Sec. III was
employed for proper interpolation of the velocity gradients from the Eulerian grid to the location of
particles. Having ui,j as a function of time, the autocovariance functions were computed based on
Eq. (30) at each St. For ensemble averaging, denoted by 〈•〉 hereafter, this process is repeated for all
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FIG. 5. The ensemble-averaged Lagrangian autocovariance functions (a) 〈ρI〉, (b) 〈ρII〉, and (c) 〈ρIII〉 defined
in Eq. (30) at different Stokes numbers.

particles (105 samples at each St). The number of particles and integration period are verified to be
sufficient for achieving statistical convergence. The results of these calculations are shown in Fig. 5.

To analyze the trends observed in Fig. 5, we investigate the behavior of each autocovariance
function on a set of canonical flows. For this purpose, we consider a flow through a corner, a shear
flow, a forced vortex, and a free vortex (Fig. 6). The simple form of the velocity gradient in these
flows allows analytical computation of their corresponding autocovariance functions. Employing
these analytical forms to explain the behavior of the autocovariance functions in the HIT flow is by
no means conclusive and solely conducted for a qualitative understanding of the observed trends. A
more conclusive study would require assessment of the likelihood of exposure of particles to different
flow features, which must incorporate the dependence on St, as well as a more comprehensive range
of canonical flows that may occur in a three-dimensional flow [33].

We first consider flow through a corner or toward a stagnation point, in which u ≡ [x1,x2,−2x3]A.
In this case, ui,j is zero for i 	= j , A for i = j = 1 or 2, and −2A for i = j = 3. As a result, this
canonical flow contributes only to ρI. Although the trajectory of particles varies with the Stokes
number, the gradients are uniform in the entire domain, producing ρI = 2A2, which is independent
of St. The independence is relatively consistent with Fig. 5(a), in which ρI(t) remains unchanged

(I) (IV)(III)(II)

y /(2 r)r−Ay

ρI

ρS

ρ

ρQ

ρII

ρIII

FIG. 6. The schematic of four canonical flows and their effect on various autocovariance functions.
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FIG. 7. The ensemble-averaged velocity gradients u1,1u1,1 (dashed triangles), u1,2u1,2 (dashed squares),
u1,2u2,1 (dashed circles), rotation rate (solid dots), strain rate (solid stars), and Q criterion (solid plus) as a
function of St. Note Q = −ui,j uj,i = ‖�‖2 − ‖S‖2 is two times the traditional definition of the Q criterion
[26], here defined for inertial particles in a Lagrangian framework. Each point in this plot corresponds to an
autocorrelation function at zero-time separation, which is the intercept of individual curves in Figs. 5 and 8.

as St is increased from 1/16 to 16. For t → ∞, ui,j (t ′) becomes uncorrelated with ui,j (t + t ′), and
hence all functions decay to zero. ρI, however, has the fastest decay rate (shortest integral time scale)
among the three functions, indicating that particles travel relatively fast through straining regions of
the flow.

Next, we consider a pure shear flow with u ≡ [x2,0,0]γ . In this case, only u1,2 is nonzero,
producing ρII = γ 2/6 and ρI = ρIII = 0. The particle trajectories in this flow are straight lines in
the x1 direction and independent of St. However, ρII(t) in Fig. 5(b) varies as St changes. Apart from
the shear flow, ρII is affected by the forced and free vortex flows as well (Fig. 6). As discussed next,
the contribution of a forced vortex to ρII is St dependent. Attributing the dependence of ρII on St
to the forced vortex, the remaining portion of ρII may be attributed to the contribution of regions
that are analogous to the shear flow. Comparing the scales of the plots in Fig. 5, the St-independent
portion of ρII is notable, suggesting significant exposure of particles to shear in HIT.

The third canonical flow is a forced vortex with u ≡ [−x2,x1,0]ω. For this flow, ρI = 0, ρIII =
−ω2/3, and ρII = ω2/3. The trajectory of particles in this flow scales as r ∝ exp(ct), in which r is
the distance from the vortex core and c(τ,ω) is the solution to (τc + 1)2 = τc + τω. As a result,
the residence time of particles in the core of a forced vortex depends on St. This dependence and
also ρII = −ρIII may explain the trend of these two autocovariance functions versus St at t � τη

(reproduced in Fig. 7). As St is increased monotonically, ρII(0) = u1,2u1,2 is decreased and increased
while ρIII(t = 0) = u1,2u2,1 is increased and decreased with a similar amplitude. u1,2u1,2, which is
∝ω2 in a forced vortex, is minimized at St = O(1), confirming the notion that particles in strong
clustering regimes of St are repelled from the vortices.

Last, we consider a free vortex with u = [−x2,x1,0]�/(2πr2) in which r2 = x2
1 + x2

2 + x2
3 is the

distance from the center of the vortex. In this flow u1,2 = u2,1 = c cos(2ct) and u1,1 = c sin(2ct),
in which c = �/(2πr2), producing nonzero ρI, ρII, and ρIII. Computing the exact value of the
autocovariance functions requires finding r(t), a nonlinear function that depends on the dimensionless
parameter �τ/r(t = 0). However, r is almost constant for t � τ and r ∝ t1/4 for t � τ . Neglecting
the dependence of r on t , it can be shown ρI/2 = ρII = ρIII = c2/6 cos(2ct). This relationship
provides an explanation for the decrease and increase of ρIII in time for St � 1 [Fig. 5(c)]. Based on
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FIG. 8. The ensemble-averaged Lagrangian (a) rotation-rate and (b) strains-rate autocovariance functions
and (c) their difference versus time at different Stokes numbers.

this relationship, ρIII(0) − mint (ρIII(t)) ∝ c2 and argmint (ρ
III(t)) ∝ c−1. This relation is consistent

with the variation of ρIII for t < 5τη and St � 1 in which a larger change in amplitude is associated
with a shorter time at which the minimum of ρIII occurs [Fig. 5(c)]. As opposed to ρIII, ρI and ρII

are apparently unaffected by the free vortices and follow a monotonic trend. An explanation for
this behavior is the influence of other canonical flows with larger relative contributions on the latter
two functions. To obtain a scale for the relative magnitude of these contributions, note the larger
amplitude of ρI and ρII in comparison with ρIII (Fig. 5).

The calculated autocovariance functions can be combined to obtain strain- and rotation-rate
autocovariance functions according to Eq. (31) (Figs. 7 and 8). The effect of aforementioned
canonical flows on these functions can also be examined by summing their corresponding
contribution on ρI, ρII, and ρIII (Fig. 6). In Fig. 8(b) ρS is relatively independent of St despite
the fact that ρII and ρIII vary significantly as St changes. This independence shows that the variation
of ρII and ρIII versus St are opposite, a behavior that specifically holds in a forced vortex as was
shown earlier. These opposite variations, on the other hand, are amplified in ρ�, producing a marked
dependence on St [Fig. 8(a)]. Among those considered, ρ� is interestingly the only function that is
not sensitive to a free vortex (Fig. 6). ρQ captures the effect of all the considered canonical flows
but the shear flow. Having ρQ = 0 for a shear flow is an expected outcome because C, which is a
function of ρ̃Q, must be zero in a pure shear flow (no particle clustering is expected in a pure shear
flow).

At the limit of very large Stokes numbers, particles are not responsive to the velocity fluctuations
and follow a trajectory that is uncorrelated with the flow. As a result, the Lagrangian statistics at
this limit converge to the Eulerian statistics, which are by definition obtained from a fixed location
in space that is uncorrelated with the flow. Additionally, the Eulerian strain- and rotation-rate
autocovariance functions are equal on a periodic domain. Therefore, the Lagrangian strain- and
rotation-rate autocovariance functions, i.e., ρS and ρ�, converge to the same value at the limit of
large St (Fig. 8). This leads to ρQ → 0 at the limit of large St. Moreover, since ρS is relatively
independent of the Stokes number, one may conclude that the trajectory of inertial particles is poorly
correlated with the flow strain-rate field. This is not the case, however, with the flow rotation-rate field
as ρ� varies significantly versus St [Fig. 8(a)]. ρQ for St � O(1) undergoes an increasing-decreasing
trend in time, which is a consequence of the similar behavior in ρIII. Attributing this trend to the flow
regions that behave similar to a free vortex, one can explain the change in the amplitude and phase
of this oscillation as a function of St by using the expression derived above along with an estimate
of the residence time of particles in a free vortex.

Some of the results of this section, specifically those included in Fig. 7, are discussed in more detail
in Refs. [29,34]. From Fig. 7, the extremum of τ 2

η Q is approximately −0.2, which is consistent with

the previously reported 0.2 for the maximum of τ 2
η (‖S‖2 − ‖�‖2) = −τ 2

η Q [34]. The agreement
between the two studies indicates that Q is fairly insensitive to Reynolds number, as the two studies
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FIG. 9. The Fourier transformation of the autocovariance of the second invariant of the velocity gradient
tensor, 〈ρ̃Q〉, computed along the trajectory of particles with different Stokes number. Note τη〈ρ̃Q(τηω � 1)〉 ∝
1/St as St → ∞. Error bars (not shown) are of O(10−4).

consider simulations at Reλ = 100 and 60.5. Based on the discrete set of investigated Stokes numbers
in these two studies, the Stokes number at which the extremum of Q occurs is 0.5 (present) and 0.64
[34]. A precise assessment of the location of the extremum would require a more refined parameter
space.

Taking the Fourier transformation of ρQ in Fig. 8(c), ρ̃Q is computed and shown in Fig. 9. A
biased sampling of strain- and rotation-rate-rich regions of the flow by inertial particles produces a
nonzero ρ̃Q. This figure also confirms that particles with St < 1 tend to follow slow vortical features
(ρ̃Q > 0 at τηω � 1 and St < 1), while particles with St � 1 experience strain and rotation rates
equally (τηρ̃

Q → 0 as St → ∞). Most notably ρ̃Q is negative across all frequencies for St � O(1).
Computed ρ̃Q is employed in the next section to evaluate and validate the present analysis.

V. NUMERICAL VALIDATION

The objective of this section is to compute the rate of contraction from the analysis that was
proposed in Sec. II and validate it using a direct approach. Hence, we first describe a direct method
that provides an accurate estimate of the actual rate of contraction. Additionally, we compute the
rate of contraction using present [Eq. (28)] and R-M [Eq. (3)] expressions. Finally, we compare the
prediction of these two formulations to the direct computations in terms of C statistics.

A numerical procedure is devised for direct computation of the contraction rate from the DNS.
The direct calculation of C sets a baseline, allowing to validate our analysis in a HIT flow. Visually,
the direct calculation of C involves constructing a cloud by seeding particles randomly distributed
on a spherical shell with an infinitesimal diameter. In practice, as clarified below, a cloud can be
represented by computing the Lagrangian velocity gradient along the trajectory of a single particle.
Computing the exponential rate of change of volume of the cloud over time provides a direct estimate
of the rate of contraction. Therefore, an ensemble of clouds provides an estimate for 〈C〉.

Individual particles in the cloud experience an infinitesimally different fluid velocity and as a
result follow an infinitesimally different path. This differential change leads to the deformation
of the cloud over time. Due to the linear spatial variation of the velocities within the cloud, the
deformation is linear and can be represented by a 3 × 3 tensor in three dimensions. Applying the
deformation tensor to a spherical cloud of particles produces an ellipsoid (Fig. 10). The dimensions
and directions of the axis of this ellipsoid are directly related to the eigenvalues and eigenvectors of
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FIG. 10. Deformation of three arbitrary spherical clouds in a HIT flow (particles are not shown). These
clouds are constructed using a set of inertial particles initially seeded on a spherical shell. From top to bottom:
St = 16−1, 1, and 16. While the cloud with St = 16−1 deforms significantly, its volume remains within 30% of
the initial volume. The St = 1 cloud contracts with a twofold decrease in volume. The St = 16 cloud remains
almost spherical with a 30% change in volume at t = 8τη.

the deformation tensor, respectively. For visualization purposes, the deformation of three arbitrary
clouds at St = {1/16,1,16} that undergo a linear deformation is shown in Fig. 10.

In practice, we compute the time evolution of the deformation tensor from direct integration
of Eq. (6) along the trajectory of a single particle. The deformation tensor is formed based on
the relative position of three virtual particles to a reference particle. Since r represents the relative
position, three columns of the deformation tensor are formed using r associated with the three virtual
nonoverlapping particles. The time evolution of the deformation tensor is governed by the motion of
these particles and thus by Eq. (6). Integrating this equation requires ui,j (X(t); t) along the trajectory
of the cloud, which is extracted from Sec. IV in which the Lagrangian autocovariance functions were
computed using the same velocity gradients. Provided that the volume of an infinitesimal cloud is
equal to the determinant of its corresponding deformation tensor, the time history of the volume of
the cloud is calculated, allowing us to compute the finite-time rate of contraction Ct based on Eq. (9)
(Fig. 11).

Obtaining an accurate estimate of C, defined in Eq. (10), requires integrating Eq. (6) till t � τη.
However, due to the exponential rate of contraction or expansion, the system of equations becomes
very stiff at a longer time, producing a nearly singular deformation tensor. Having a stiff system
prevents an accurate computation of C by limiting t . To circumvent this issue, we integrate an
equivalent system of equations for the normalized rate of change of volume, computed as the ratio
of the rate of change of volume by the volume, which remains well-conditioned regardless of the
integration period. With this change of variables, Ct is computed for the entire sampling period of
ui,j , i.e., 200τη. Additionally, the initial condition on the deformation tensor, which is an identity
matrix in our computations, affects Ct at t = 200τη. To reduce this effect, we repeat the integration
for 10 cycles, using the solution at the end of each cycle as the initial condition for the next. Hence,
integration is continued for 2000τη and C is set to C t at t = 2000τη. This procedure ensures that
reported C is minimally influenced by the initial condition and is time-independent. By repeating
these computations for all the available particles (105 samples that corresponds to 105 clouds at each
St), the PDF of C is constructed and shown in Fig. 12.

The results of the direct computation of C, described above, along with the theoretically predicted
C are shown in Fig. 12. The numerical procedure for computing PDFs of the theoretically computed
C starts from the same data set as the direct computation. ρQ is computed from Eq. (29) for every
individual particle, representing a cloud or a sample, using the time history of ui,j along the particle
trajectory. Q = ρQ(0) and ρ̃Q is then computed and substituted in Eqs. (3) and (28), respectively, to
obtain one sample point of the corresponding PDFs in Fig. 12. Note the linearity of Eqs. (3) and (28)
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FIG. 11. The ensemble-averaged finite-time contraction rate 〈C t 〉 at different St. To ensure a fully stationary
condition when computing C from C t , integration is continued to 2000τη (only t � 100τη is shown here). For
symbols, see Fig. 9.
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FIG. 13. The theoretically predicted ensemble-averaged rate of contraction 〈C〉 using the present analysis
that is Eq. (28) (solid dot) and R-M that is Eq. (3) (dashed) at different St. The reference quantities (solid circle)
are obtained from the direct computation of 〈C〉. Inset: log2(−C) versus log2(St) for St � 1. Lines with a slope of
1 and 2 are shown for reference. To visualize clustering, particles are shown in a slab of size 300η × 300η × 10η

for St = 16−1 (a), 4−1 (b), 1 (c), 4 (d), 16 (e).

with respect to Q and ρ̃Q allows one to directly compute the mean of these PDFs from the results of
Sec. IV.

Taking the direct calculation of C as the reference, the present analysis offers an improvement
over R-M. As we discussed in the derivation of Eq. (32) and now is confirmed by this figure, the
prediction of the present analysis converges to that of R-M at the limit of small St. Additionally, the
PDF of both analyses collapses with that of the direct calculations, confirming the accuracy of both
formulas in the limit of small St. The accuracy of R-M at this limit has also been shown previously
by comparing it against the exact solution of Eq. (6) in straining and vortical flows [34]. In general,
the prediction of the present analysis is closer to R-M than the reference values. While both analyses
are erroneous at large St, the error of the present analysis is smaller than that of R-M. For a closer
comparison, the mean of these PDFs is plotted in Fig. 13.

The analytically computed 〈C〉 can be compared to the direct computations at two limits of St < 1
and St > 1. For St < 1, 〈C〉 < 0 and contraction dominates expansion. The rate of contraction increase
as St increases, explaining the stronger clustering of particles with St = O(1). τηminSt�1〈C〉 ≈ −1/8,
which occurs at St = 1/2 on the discrete set of investigated St. In the regime of St � 1, 〈C〉 follows a
power law with −τη〈C〉 ∝ Stα , in which α ≈ 1.7 (inset of Fig. 13). This power-law behavior is well
established in the literature for the low Stokes numbers. For a synthetic flow generated from random
Fourier modes, α has been reported to be 2 [16]. This minor difference can be ascribed to the use of
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a synthetic flow as opposed to HIT in the previous study. The slope of 1.7 in our computation is a
result of limSt→0 − τ 2

η Q ∝ St0.7 (Fig. 7).
For St > 1, 〈C〉 increases and becomes positive, indicating the dominance of expansion over

contraction [1,16]. At a Stokes number between 1 and 2, the mean rates of expansion and contraction
become equal. Although 〈C〉 = 0 at this St, individual clouds still experience a significant change
in volume over time and particles form distinct clusters [see Figs. 13(c) and 13(d)]. Neither of
two analyses captures the positive value of 〈C〉 at large St. However, the present analysis remains
bounded by predicting an extremum for 〈C〉 at St = O(1) as opposed to the prediction of R-M
that grows linearly within the investigated range of St. For St � 1, the present analysis predicts
〈C〉 ∝ St−1, which is a result of 〈ρ̃Q(τηω � 1)〉 ∝ St−1 (Fig. 9). The error in the predictions of the
present analysis can be primarily attributed to the assumption |λτ | � 1 in Eq. (12), which is not
satisfied well at larger St (|λτ | > 0.1 for St � 4). The effect of this assumption on the accuracy of
the predictions can be observed even at St = 1/4. Considering St = 1/4 case in Fig. 12, the largest
deviation from the reference values occurs on the left tail, where |Ct | and consequently |λτ | is the
largest. The location of this discrepancy underscores the importance of the |λτ | � 1 assumption in
the validity of the present analysis. This assumption must be relaxed in future studies to improve
predictions at large St. Despite this discrepancy, Eq. (28) captures the nonmonotonic behavior of
〈C〉 with a maximum rate of contraction 40% larger than that of the direct computations.

As confirmed by the patterns observed in Figs. 13(a) and 13(e), particles in the regimes at which
C < 0 and C > 0 behave differently. In mathematical terms, the volume of the region occupied by
particles would increase or decrease in time depending on the sign of C. In physical terms, this
change of volume has been described as mixing (C > 0) and demixing (C < 0) [16]. For particles
that undergo demixing, ridges with high particle concentration is formed from a distribution that is
initially homogeneous [Fig. 13(c)]. In a reversed time frame this behavior is the same as injecting
a dye in the ridges and observing its diffusion to a homogeneous mixture as time passes. On the
other hand, particles with high St undergo mixing with C > 0. For an observer who is unable to
discern fine-scale features of the flow, particle mixing at this limit is similar to mixing of a dye in
a turbulent flow as they both appear to lead to a homogenized mixture. However, in the absence of
molecular diffusion, there is an important difference between the two processes. While C > 0 for
large St particles, C = 0 for a dye. When a drop of dye is injected into a turbulent flow with no
molecular diffusion, the interface deforms to a very complex and twisted geometry. Nevertheless,
the interface remains sharp, and the volume occupied by the dye remains constant in time. This is
not the case, however, with the large St particles. If a set of large St particles are introduced into
a small enclosed region of a turbulent flow, the volume associated with that region will increase
exponentially as the time progresses. In this case, an initially sharp interface will diffuse over time
due to the nonuniqueness of particle velocities at a given point in space.

It is important to note that the above description is given for the average behavior of the particles.
The clouds of particles with large St experience Ct < 0 intermittently as they travel through different
regions of the flow. The opposite is also true for small St particles. The PDF of Ct crosses zero at
all Stokes numbers, although not observed clearly in Fig. 12 due to the long sampling period that
has reduced the spread of PDFs. Intermittent demixing of large St particles is also confirmed by
Fig. 13(e), which shows regions of higher concentration that are significantly diffused.

The PDFs of Ct appears to be Gaussian in Fig. 12. To closely examine this observation, all the
PDFs obtained from the direct computations are shifted by their mean, normalized by their standard
deviation, and plotted in Fig. 14. The standardized PDFs at large St match well with the parabolic
function that represents a Gaussian distribution. For the Stokes numbers close to 1/4, a negative
skewness is observed, showing higher incidents of strong contraction events as compared to strong
expansion events (Fig. 14). At the smallest St, the right tail of the PDF is approximately linear,
indicative of biased exposure of neutral particles to strong expansion events in HIT. With slight
variations, this observation is compatible with the corresponding results obtained from HIT and
synthetic flows [16,20,35].
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FIG. 14. Standardized PDF of the finite-time rate of contraction C t obtained from the direct integration of
Eq. (6) at different St. The solid line is a Gaussian distribution, shown as a reference.

The second order statistics of Ct , defined as

Ct
rms =

√
〈(C t − 〈C t 〉)2〉, (35)

is a function that depends on the sampling period t . For t larger than the integral time scale of C,
C t

rms scales as t−1/2 [20]. Thus,
√

τηtCt
rms is computed as a time-independent quantity and plotted

in Fig. 15. This quantity is directly related to the compression diffusion coefficient D(∞), defined
in Ref. [20], via

√
τηtCt

rms = √
2τηD(∞) and is mainly governed by the turbulence intermittency.

Considering the directly computed quantities in Figs. 13 and 15, the extremum of Crms and 〈C〉 occurs
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at the same St. The prediction accuracy of the two analyses in terms of Crms is analogous to 〈C〉.
Both models agree well with the direct computations at the limit of small St and deviate from it as
St increases. The error associated with the present analysis, however, is slightly smaller than R-M
at large St. The prediction of R-M scales as

√
τηtCt

rms(St) ∝ St, while the present analysis produces
slightly smaller values for St � 1.

The nonmonotonic prediction of 〈C(St)〉 by our analysis is in agreement with previous
investigations that have characterized clustering via other indices, yet consistently finding maximum
clustering at St = O(1) [3,10,14,28]. The outcome of this study may have implications in
developing two-particle models for large-eddy simulation of particle-laden turbulent flows [36]
and an equilibrium Eulerian method for affordable computation of the particle velocity field [29,34].
Additionally, one may directly relate the contraction rate of clouds of particles C to

dL = 3 − (λ1 + λ2 + λ3)/λ3 = 3 − C/λ3, (36)

which is the Lyapunov dimension introduced by Kaplan and York [37]. In this equation, which is
valid for a three-dimensional flow, exponents follow a descending order such that λ3 < λ2 < λ1.
Since in three dimensions λ3 < 0 [35], dL is smaller than the number of spatial dimensions for
C < 0. At this limit in which particle clusters are fractals, dL represents the dimension of the space
that contains a homogeneous distribution of particles. By estimating λ3, one may employ the result
of this analysis to estimate dL. As we discussed in Sec. I, this dimension can also be related to the
particle concentration field statistics through ζ .

VI. CONCLUSIONS

In summary, we derived an asymptotic solution [Eq. (28)] for the rate of contraction of the cloud of
inertial particles, defined as the summation of the Lyapunov exponents in three principal directions,
in regimes relevant to particle-laden turbulent flows. The analytical model that we derived predicts
a maximum rate of contraction at St = O(1) and diminishing rates of contraction as St → 0 or
∞. No adjustable parameters were employed in our model to predict this nonmonotonic variation
versus the Stokes number. The developed model reproduces R-M, which is a previously established
result [25,29], at small St and offers a first order correction to it at large St. Similarly to R-M,
our analysis accounts for the background flow through ρ̃Q, which is the Fourier transformation of
the autocovariance of the second invariant of velocity gradient tensor. We showed that ρ̃Q, which
is computed along the trajectory of particles, varies significantly versus the Stokes number. The
Lagrangian autocovariance functions, which are closely related to ρ̃Q, were computed at different
St for a HIT flow and were analyzed by a set of canonical flows with established behavior. From
these results, the first and second order statistics of the rate of contraction was computed using
our analysis and a direct numerical approach. Comparing our analysis and the direct computations
showed a good agreement between the two at the limit of small St. For higher St, despite the fact
that the predictions of our analysis are not in full agreement with the direct computations, it still
offers an improvement over R-M. The inaccuracy of the present analysis is primarily attributed to the
assumption |λτ | � 1, which breaks down at this regime of St. Further studies are required to address
this discrepancy by analytically characterizing the behavior of particles with St � O(1) in turbulent
flows. The developed analysis reveals the contribution of different time scales in turbulence to the
clustering phenomenon via ρ̃Q(ω). Relaxing the underlying assumptions of the present analysis,
namely, those associated with the contribution of small frequencies in Eqs. (21) and (23) and the
slow contraction rate in Eq. (12), warrants future studies. Additionally, the extension of the present
formulation to compressible and anisotropic turbulent flows remains a subject of future studies.
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