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Linear models for sound from supersonic reacting mixing layers
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We perform a linearized reduced-order modeling of the aeroacoustic sound sources
in supersonic reacting mixing layers to explore their sensitivities to some of the flow
parameters in radiating sound. Specifically, we investigate the role of outer modes as the
effective flow compressibility is raised, when some of these are expected to dominate over
the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are
known to be of lesser importance in the near-field mixing, how these radiate to the far-field
is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer
modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow
(fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible
boundary layers with an imposed composite (turbulent) spreading rate, which we show to
significantly alter the growth of instability waves by saturating them earlier, similar to in
nonlinear calculations, achieved here via solving the linear parabolized stability equations.
As the flow parameters are varied, instability of the slow modes is shown to be more
sensitive to heat release, potentially exceeding equivalent central modes, as these modes
yield relatively compact sound sources with lesser spreading of the mixing layer, when
compared to the corresponding fast modes. In contrast, the radiated sound seems to be
relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture
which is shown to yield a pronounced effect on the slow mode radiation by reducing its
modal growth.
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I. INTRODUCTION

Combustion noise, as a component of overall sound from turbofan engines [1], typically assumes
prominence over the fan and jet noise sources at broad levels of moderate frequencies (e.g.,
∼300–1000 Hz during an aircraft approach) [2,3]. The recent shift to newer combustion technologies,
e.g., lean premixed prevaporized combustion in commercial gas turbines, has further increased its
importance due to such processes being inherently more unsteady, resulting in a greater probability
of increased combustion noise [4]. Such combustor designs are also susceptible to self-sustained
oscillations, possibly leading to combustion instability, where these same acoustic waves are crucial
in establishing a feedback loop with the unsteady combustion heat release [5]. Better understanding
of the sources and propagation of acoustic waves directly or indirectly linked to the combustion
process is therefore important in more efficient modern combustor designs.

In this work, we model combustion in nonpremixed open flames via a set of two-dimensional
reacting mixing layers with infinitely fast, single-step chemistry. Practical combustors may encounter
thermoacoustic instabilities [5], but the basic mechanism of aerodynamic sound generation remains
unaltered, which still hinges on an accurate description of flow dynamics dominated by large-scale
coherent structures, known to be the main contributor to peak radiated sound even for reacting flows
[6–8]. In general, for nonpremixed flames this sound field seems to be less well understood, perhaps
because of the difficulty in setting up reliable experimental measurements [9], whereas the associated
complexity involved in numerical modeling has also restricted it to fewer studies [6–8,10,11].

Supersonic combustion presents additional challenges, where none of the traditional low-Mach
number simplifications used in combustion modeling hold, including that for the chemical source
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terms. However, with our primary interest being quantifying the radiated sound, we instead focus
on advanced modeling of the hydrodynamic sound sources, which has not been attempted in any
great detail for supersonic diffusion flames. Previously, sound sources in turbulent flames have
been modeled as uncorrelated monopoles [12], generalized later as inputs to a Lighthill’s acoustic
analogy-type formulation [7,8,11,13,14], with the mean flow fields usually obtained from direct [14]
or large eddy simulations [7,8,11]. In this work, without using any acoustic analogy, we follow a
direct approach where sound sources are modeled using physics-based reduced-order models, viz.,
the parabolized stability equation (PSE) [15,16], which additionally provides reliable predictions
for the radiated sound at supersonic wave speeds, as discussed below.

The primary radiated sound from nonreacting mixing layers have long been associated with the
linear and nonlinear instabilities of the large-scale coherent structures [17–23], depending in turn on
the factors that affect their growth, which include but are not limited to the flow compressibility [24–
29]. The mixing layer spread rate is defined to be a function of the convective Mach number
Mc [see (1) for a definition], which loosely translates to the convection speed of large turbulent
structures in the flow. However, nonisothermal mixing layers, especially the reacting ones, are more
complicated by the fact that they include additional parameters that may have influence on their
growth rates, including density ratio, mixture equivalence ratio, and chemical heat release, with
all of these potentially having bearing on the nature of their acoustic spectra, as has been shown
before for premixed flames [30]. In this work, we aim to systematically investigate the role of these
additional parameters on the radiated sound from supersonic reacting mixing layers, intended as a
model for supersonic diffusion flames.

The large-scale coherent structures observed in the shear layers of canonical flows may be
mathematically modeled via wave packets whose evolution is conveniently tracked using a linear
stability analysis [31–36]. Although fast and convenient, the accuracy of traditional linear stability
theory in predicting the near-field wave packets may be significantly improved by opting for a
system of equations that offer slow streamwise divergence of flow, e.g., the PSE [15,16,23,37–42].
However, in the context of sound generation, the PSE-modeled wave packets are known to severely
underpredict the far-field sound, which has led to hypotheses where nonlinearity and intermittency
are believed to be important factors [43,44], providing impetus to the development of nonlinear
PSE-based models [19,21–23]. Interestingly, coherent structures convected at supersonic speeds,
like we investigate here, are less likely to be affected by the nonlinearities of the model [23,42,45],
which has motivated us to continue with a linearized PSE approach. Later, we demonstrate the
effectiveness of our linear model in simulating supersonic mixing layers by comparing it with
calculations that include nonlinearity (see Appendix A). In using a PSE-based reduced-order model
of compressible, reacting mixing layers with fast chemistry, our work follows Day et al. [38] except
it differs in the important aspect of using a composite spread rate for the mean mixing layer, as we
discuss next. Note that sound radiation from subsonic and supersonic cold mixing layers have been
studied in detail by Cheung and Lele [23], who used nonlinear PSE to model the near field sources.

The nature of mixing layer spreading plays an important role in the evolution of large scale
structures. For example, normal mode studies of shear flows that include a laminar (or transitional)
spread rate [23,38,46] require a mean-flow correction to correctly capture the growth and eventual
saturation of the most energetic modes, which otherwise are grossly overestimated by a linear
theory [23]. In essence, this procedure introduces the nonlinear modal interactions into a laminar
base flow, which for a turbulent base flow is presumed to be already present. Indeed, for practical flows
with turbulent means it is the linear instability waves which are expected to play the dominant role in
their instability [47], perhaps making the nonlinear processes in fluctuations less relevant [41]. In this
work, laminar, compressible boundary layer equations are used for the base flow, where nonlinear
interactions are indirectly introduced via the following procedure. In this process, a composite
spreading curve for the initially laminar mean mixing layer is employed that smoothly varies from
a laminar to turbulent spreading as described in Sec. II B, using data available from the evolution of
similar compressible mixing layers. This directly inducts a transitional zone, which we show to be
critical in correct estimation of Mach radiation from supersonic mixing layers. Such a spread rate
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saturates the growing linear instabilities, in a manner similar to nonlinear evolution of mixing layers,
without actually solving for any of the nonlinear terms.

The instabilities of incompressible shear flows usually refer to the K-H instability, which at
increased levels of compressibility (i.e., higher Mc), as is the interest here, may be augmented by
two additional modes, corresponding to each of the two streams [38,48,49]. The appearance of
these new modes, referred to as the “outer” modes (when compared to the “central” K-H mode),
is attributed to the extra peaks in the corresponding density-weighted vorticity profiles for high
Mc mixing layers [38,49], whose dominance is expected to be further enhanced for reacting layers
with sufficiently high heat release [50–52]. Once the phase speeds of any of these outer modes are
supersonic with respect to the local speed of sound they are expected to radiate efficiently as Mach
waves [53,54]. Although the effect of increased compressibility on the growth rate of the K-H mode
(and hence the radiated sound) is known to be stabilizing [55], increased heat release sometimes has
a less than pronounced effect [56]. Moreover, as will be shown, the criticality of outer modes depends
largely on the location of flame surface and the associated shear, phenomena that are dynamically
different from the central mode, so that their evolution as heating and other parameters are varied is
not easy to anticipate. For example, incompressible reacting mixing layers at higher levels of heat
release show a jump in growth rates after being initially attenuated [57], perhaps due to increased
dominance of outer modes. On the other hand, a recent study on subsonic mixing layers found
increased heating of the fast side to actually reduce the far-field sound at the slower side, attributed
to cancellations in the source terms [58]. In this work, we restrict ourselves to cases when at least
one of the outer modes is supersonic relative to the corresponding stream but investigate in detail
their role in Mach radiation as the basic properties of reacting mixing layers are varied.

The model problem and governing and reduced equations are briefly described in Sec. II A, and
the laminar mean flow equations and the composite spread models are discussed in Sec. II B. A short
description on the Lilley-Goldstein sound sources is in Sec. II C, used to quantify the aeroacoustic
sources as obtained from the PSE solutions. The boundary and initial conditions and some numerical
details are highlighted in Secs. II D and II E, respectively. The classification scheme used in this
work for the unstable modes is in Sec. III A, which also provides motivation for all the cases studied.
The fast and slow mode results are described in detail in Sec. III B, and the colayer cases, introduced
in Sec. III A, are briefly touched upon in Sec. III C. Section IV summarizes our work, Appendices A
and B detail validation results and mean flow computations, respectively, Appendix C describes a
brief sensitivity study on the proposed composite spread model, and the detailed PSE operators are
in Appendix D.

II. FORMULATION AND METHODOLOGY

A. Compressible stability equations

The model flow configuration of a two-dimensional reacting mixing layer is shown in Fig. 1. The
upper high-speed stream (henceforth denoted by subscript 1) has an oxidizer mass fraction of YO,∞
with density ρ∗

1 and velocity U ∗
1 . The lower slow-speed stream (denoted by subscript 2) carries fuel at

a mass fraction of YF,−∞, density ρ∗
2 , and velocity U ∗

2 , where ()∗ denote dimensional quantities. The
subscripts F and O identify the fuel and oxidizer, respectively. The density ratios and velocity ratios
between the two streams are denoted by the parameters κρ = ρ∗

2/ρ∗
1 and κU = U ∗

2 /U ∗
1 , respectively.

The convection speed and the convective Mach number of the mixing layer are defined as [23,55]

Uc = a∗
2U

∗
1 + a∗

1U ∗
2

a∗
1 + a∗

2

, Mc = U ∗
1 − U ∗

2

a∗
1 + a∗

2

, (1)

where a∗
1 and a∗

2 are the speed of sound in the upper and lower streams, respectively.
The flow is governed by the viscous, compressible-fluid equations and the equation of state

in two dimensions (x,y) under the assumption of infinitely fast chemistry that drops out the
chemical production terms from the species mass fraction (YF ,YO) equations, while the mass
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FIG. 1. Schematic of two-dimensional reacting mixing layer configuration showing typical mean profiles
for density ρ̄∗, conserved scalar Z̄, and streamwise velocity ū∗, with their corresponding free stream values
labeled (see text). The flame sheet is indicated by a thick horizontal line (here representative of a lean mixture).
The far-field sound is expressed in (r,θ ) coordinates fixed at the splitter edge.

fractions themselves may be coupled via a conserved passive scalar [38]
Z = YF − YO/n, (2)

where n is the ratio of stoichiometric coefficients between oxidizer and fuel as per the single-step,
single-product overall chemical reaction considered here [59]:

MF + nMO → (n + 1)MP , (3)

where, additionally, the subscript P identifies the product. Note that the form of conserved scalar
in Eq. (2) is different from the classical definition of mixture fraction [59], although it may be
readily derived from the latter. The present scalar variable varies from a positive constant at the
fuel stream to a negative constant in the oxidizer (see Fig. 1), their respective values depend upon
the chosen parameters, with Z = 0 at stoichiometric concentrations. In our calculations, a uniform
molecular mass assumption is used [also in Eq. (2)], simplifying the analysis greatly, practically
achieved by appropriately diluting the fuel and oxidizer streams with, say, nitrogen. The use of
fast chemistry over any detailed chemistry calculations is preferred, since apart from the known
difficulty in implementing the latter in time-periodic Fourier-space stability calculations, these extra
equations seem to have any role on the development of instabilities only at higher perturbation
frequencies [60], not so much at the lower frequencies considered in this work (see in Sec. III) that
are relevant to the large-scale coherent structures and their radiated sound. Now, assuming constant
specific heats and nondimensionalizing with respect to the fast-side quantities with the initial mean
vorticity thickness δ∗

w|0 as the length scale, where

δ∗
w = (U ∗

1 − U ∗
2 )

| dū∗/ dy∗|max
, (4)

with ū being the mean streamwise velocity, yields

∂ρ

∂t
+ ∂ρui

∂xi

= 0, (5a)

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − 1

γ M2
1

∂p

∂xi

+ 1

Re

∂τij

∂xj

, (5b)

ρ

(
∂T

∂t
+ ui

∂T

∂xi

)
= −p(γ − 1)

∂ui

∂xi

+ γ

PrRe

∂

∂xi

(
μ

∂T

∂xi

)
+ γ (γ − 1)

M2
1

Re
	, (5c)

ρ

(
∂Z

∂t
+ ui

∂Z

∂xi

)
= 1

LePrRe

∂

∂xi

(
μ

∂Z

∂xi

)
, (5d)

p = ρT , (5e)
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where ui ≡ (u,v), xi ≡ (x,y) with the following nondimensional numbers appearing: Mach number
Mk = U ∗

k /a∗
1 , corresponding to each of the streams k ≡ 1,2, Reynolds number Re = U ∗

1 δ∗
w|0/ν∗,

Prandtl number Pr = ν∗/α∗, and Lewis number Le = λ∗/D∗, the last two assumed unity in this
work. Further, ν = μ∗/ρ∗ is the kinematic viscosity, λ∗ is the thermal diffusivity, D

∗ is the
molecular diffusivity, and γ = 1.4 is the ratio of specific heats, whereas the viscous tensor τij and
viscous dissipation 	 satisfy

τij = μ

(
∂ui

∂xj

+ ∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)
, (6a)

	 = τij

∂ui

∂xj

, (6b)

with μ = T , amounting to a Chapman approximation. Of course, there are other more detailed
models of thermo-viscous properties available, but at the low perturbation frequencies of this work
such choices are not expected to matter [60].

Linear stability equations are obtained by splitting the flow variables q = [ρ u v T Z]T into
a mean q̄ and fluctuation q ′, with the product of fluctuations neglected. The mean pressure is
assumed to be unity throughout, which directly relates ρ̄ to T̄ via (5e). In the PSE, the fluctuations
are modeled via [15,16,61]

q ′(x,y,t) =
∑

n

q̂n(x,y) exp(−iωnt) =
∑

n

q̃n(x,y) exp
[
i
(∫ x

αn(ξ ) dξ − ωnt
)]

, (7)

where ωn = nω0, with ω0 being the base frequency, αn = �(αn) + i�(αn) is the complex wave
number and q̃n(x,y) is the shape function with a “slow” streamwise evolution. In a spatial stability
analysis, the quantities �(αn) and �(αn) are, respectively, the streamwise wave number and growth
rate, with the latter deciding on the stability. Here we mostly consider two-dimensional fluctuations
of the form (7), except in one central-mode-dominated case where the most unstable mode is
three-dimensional, which requires an exp(iβmz) factor to be introduced in Eq. (7), where βm is now
the spanwise wave number with βm = mβ0.

Substituting (7) into (5) yields

[A(q̄,ωn,αn) + B(q̄)]q̃ + C(q̄)
∂ q̃
∂x

+ D(q̄)
∂ q̃
∂y

= 1

Re
E(q̄)q̃, (8)

where it has been assumed that ∂2q̃/∂x2 ≡ 0 to account for the slow streamwise variation of the
eigenfunctions. The viscous terms in E are further simplified using a thin-shear-layer approximation
where only the cross-stream derivatives are retained. The details of the operator A to E appear in
Appendix C, where it may be noted that because of the simplifications made above, the conserved
scalar fluctuations have been decoupled from the fluctuations in density, velocities, and temperature.
In other words, density fluctuations as obtained via solving (8) do not include any contribution
from chemical reactions [62], so that the effect of combustion on stability modes is solely via the
modulation of mean quantities, as discussed in the next section.

Whether a particular instability mode radiates to the far field as Mach waves depends on its ability
to propagate at a supersonic phase speed, which may be characterized via a relative Mach number
M̄n,k for the mode (ωn,αn) in the respective stream k, where

M̄n,1 = M1|ωn/�(αn) − 1| and M̄n,2 = M1
√

κρ |ωn/�(αn) − κU |, (9)

with M̄n,k > 1 indicating the mode radiating in the corresponding stream as Mach waves.

B. Mean flow

The mean flow q̄ in Eq. (8) is obtained from the steady, two-dimensional, compressible boundary
layer equations [63], which may be deduced from (5) by neglecting the streamwise pressure gradient.
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When written in terms of a stream function ψ such that ρū = ∂ψ/∂y and ρv̄ = −∂ψ/∂x these
equations yield [38]

∂ψ

∂y

∂ q̄

∂x
− ∂ψ

∂x

∂ q̄

∂y
= 1

Re

∂

∂y

(
μ

∂ q̄

∂y

)
, (10)

where q̄ = [ū h̄t Z̄]T , with the mean energy written in terms of total enthalpy h̄t containing the
chemical, thermal, and kinetic energies.

The thermal and chemical portions of h̄t may be simplified following standard procedures to
yield the adiabatic flame temperature T̄ ∗

c [59] such that

T̄ ∗
c = T̄ ∗

1 − q∗
c ȲF,−∞

c∗
p1

(1 + φ)
, (11)

where, q∗
c is the heat released per unit fuel mass, c∗

p1
is the constant specific heat, and T̄ ∗

1 the “frozen”
mean temperature of the oxidizer side. The equivalence ratio φ, a ratio of fuel-air ratios between
real and stoichiometric mixtures, reduces here to

φ = nȲF,−∞
ȲO,∞

. (12)

A nondimensional heat release parameter may now be readily constructed from (11) via

� = −q∗
c ȲF,−∞

c∗
p1

T̄ ∗
1 (1 + φ)

, (13)

which is identical to the one used in Day et al. [38] Although as per (3), q∗
c is given by

−q∗
c = h∗

f,F + n h∗
f,O − (n + 1)h∗

f,P , (14)

where h∗
f,i are heat of formations of species i, in this work, for a given � and φ, we simply assume

a single chemical reference species to combine the effects of fuel, oxidizer, and product, simply
denoted by h∗

f,F , which is then used to compute the mean temperature profile [see (B1)]. Also,
note that in a linear analysis like we do here, specifics of (3) or the actual values of c∗

p1
and T̄ ∗

1 are
unimportant and can be taken arbitrary.

The classical way of solving (10) is by introducing similarity parameters (ξ,η) [64] via

ξ = xn and η = 1

f (ξ )

∫ y

0
ρ dy, (15)

where the exponent n maps the flow spreading along the streamwise x direction, allowing for
different flow regimes to be included within the same framework, while the function f (ξ ) also
includes Re as a parameter. In this way, Eq. (15) may be regarded as a generalized version of the
well-known Howarth’s transformation [64], which now directly accommodates nonlaminar mean
spread rates in the analysis on setting n 
= 1. For laminar mean flow n = 1, and in addition

f (ξ ) =
√

2ξ

Re
(16)

yields

F ′′′ + FF ′′ = 0, h̄′′
t + F h̄′

t = 0, Z̄′′ + FZ̄′ = 0, (17)

where Z̄ and h̄t are now functions of η only with F (η) = ψ(x,y)/f (ξ ). Here ()′ indicates
differentiation with respect to η. The system of equations (17) are identical to the mean equations of
Day et al. [38], which are solved in a similar fashion described briefly in Appendix B. A composite
spreading curve, as discussed next, is superimposed on these mean solutions to yield their streamwise
evolution.
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FIG. 2. Streamwise evolution of (a) the mean vorticity thickness and (b) the most unstable mode in a cold
mixing layer Mc = 0.5,κρ = 1,κU = 0.6 [38,65], shown for the following mean flows: —— linear PSE with
composite spread, – · – · – nonlinear PSE, and – – – DNS. The solid gray line in (b) shows the extension of
modal growth with a purely laminar spread rate. The dashed lines in (a) are extensions of the respective laminar
and turbulent spread curves, intersecting at xm: the transition location (see text). The initial thickness at the
virtual origin x0 is taken as δw|0 = 1.

For an evolving mixing layer, the primary far-field sound is known to originate from sources
near its transitional [23] and turbulent regions [17–21], whose positions would depend upon the
streamwise spread rate dδw/ dx of the underlying mixing layer. The fact that a typical mixing
layer evolving with a laminar spread rate [38], as obtained from the above analysis and computed
within a reasonably sized computational domain, would hardly radiate much sound motivated us to
include a turbulent spread rate for these initially laminar mixing layers. A typical such mean-flow
spreading curve in terms of the vorticity thickness δw is shown in Fig. 2(a). Here the laminar
vorticity thickness follows [64]

δl(x) ∼ √
x for x < xm, (18)

which is immediately apparent once (4) is rewritten in terms of (15) and (16) via the computed
similarity variables to yield

δw(x) = 1 − κU

|ρ̄(η)F ′′(η)|max

√
2xn

Re
, (19)

with n set to unity. In Eq. (19), Re is specified to be 104 for an Mc = 1, as used throughout this
work, while ρ̄(η) is just the inverse of T̄ (η), the latter obtained from h̄t (η) [see (B1) in Appendix B].
The turbulent vorticity thickness δt (x) is inferred via the turbulent spread rate [55]

dδt (x)

dx
= 0.091φc

(1 − κU )(1 + √
κρ)

1 + κU
√

κρ

for x > xm, (20)

where φc = 0.5 is the compressibility correction at Mc = 1 [66], yielding n = 2 in Eq. (15).
The laminar vorticity thickness curve through δw|0 goes on to intersect the turbulent curve at x =

xm, so that turbulent vorticity thickness at x � xm is obtained via δt (x) = δl(xm) + ( dδt/ dx)(x −
xm), with its (constant) slope given by (20). This procedure introduces an artificial discontinuity at
x = xm, removed via a spline of width lm about the discontinuity that smoothly blends the laminar
and turbulent halves yielding the composite spread curve [e.g., Fig. 2(a)], simultaneously preserving
the form of original curve to the extent possible [see (C1) for the spline equation]. Since any
uncertainty over the location xm and length lm may carry over to the corresponding modal energy
curves [see, e.g., Fig. 2(b)], in turn modifying the amount of sound radiated from the mixing layer,
detailed sensitivity analyses with respect to the choice of these parameters are carried out, described
briefly in Appendix C. These studies reveal (see Appendix C) that any uncertainty over xm is indeed
translated to the saturation location of respective energy curves, but in an almost proportionate
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fashion, while the saturation energy magnitudes are also directly proportional to the length of the
corresponding laminar growth regions. On the other hand, the apparent width of transition region, a
function of lm, when lowered allows the spline curve to be more closer to the original curve [e.g., the
dashed lines in Fig. 2(a)], yielding a faster transition, which as described in Appendix C still causes
a proportionate change in modal energies, without altering the respective saturation locations. Note
that, within the linear modeling framework, our interest is in comparing across a set of reacting
mixing layers while not making any attempt to predict their true radiated sound levels. This, coupled
with a lack of available data on the growth of reacting mixing layers made us choose (xm,lm) after
carefully studying the streamwise evolution of a set of cold compressible (Mc = 1) mixing layers,
with the expectation that any uncertainty over their magnitudes would not alter our conclusions, as
evidenced by the sensitivity analysis of Appendix C.

Figure 2(a) shows an implementation of this composite spread curve that also contains the
corresponding spreading obtained for this case from nonlinear PSE simulations [65], clearly showing
the composite spread curve to roughly follow the nonlinear spread curve, of course without modeling
any of the vortex pairing events of the latter. The effectiveness of this composite vorticity thickness is
shown in Fig. 2(b) by tracking the streamwise energy evolution of the most unstable mode, which if
evolves in a laminar mean with a laminar spread rate can grow indefinitely in an exponential fashion
[linearly, when plotted in a log scale as in Fig. 2(b)], as it lacks any interaction from other modes. The
mean flows of DNS and nonlinear PSE calculations include such energy exchanges, which tend to
saturate these most unstable modal growths at certain streamwise distances [see Fig. 2(b)]. In spite of
a purely linear approach, the composite spread curve model is clearly able to achieve similar levels of
modal saturation [see Fig. 2(b)], without explicitly accounting for any nonlinear modal interactions.
Such a model is expected to work even better for the supersonic cases that we consider in this work,
which by itself lacks nonlinear events like vortex pairing. Note here that the chosen x = xm location
and width lm is held constant for all the cases studied in this work (the former marked via a vertical
dashed line in Figs. 4–9 below), while the turbulent portion of the spreading curves δt (x) can vary
via (20), yielding composite spreading curves which differ for the cases studied, with interesting
consequences to the stability as discussed in Sec. III B. Once the spreading curve δw(x) for the
mixing layer is fixed at each of the streamwise locations, the mean profiles q̄(x,y) are computed by
transforming q̄(η) to the physical space via (19), (15), and (16). Finally, note that initial vorticity
thickness δw|0 = 1 provides the location of the virtual origin x0 via (19) (see also Fig. 2), and all
streamwise distances reported here have this distance subtracted out.

C. Aeroacoustic source model

In a direct method, as followed here, the radiated sound waves are directly computed from
the reduced governing equations (8), which however, do not provide any description of the sound
sources. Instead, we use the Lilley-Goldstein equation [23,67], which models aeroacoustic sources
in parallel, transversely sheared flow, where the source term � is composed of a quadrupole velocity
and a dipole temperature component

L̄0π = � = D0

Dt

∂fi

∂xi

− 2
∂ū

∂xj

∂fj

∂x1
, (21)

where fi is akin to an externally applied force

fi = − ∂

∂xj

(1 + π )ûj ûi − T̂
∂π

∂xi

, (22)

with D0/Dt ≡ ∂/∂t + ū ∂/∂x1, the pressure π = (p/p̂)1/γ − 1, and L̄0 is the third-order Pridmore-
Brown operator [67].

In this work, the source terms in Eq. (21) are computed from PSE solutions of Sec. II A, which are
not further solved for the radiated sound, since for supersonic shear layers, the instability wave-based
PSE model is sufficient in providing a complete representation of the far-field aeroacoustics. Instead
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in Sec. III, we use the source models provided by (21) to understand how well the locations and
magnitudes of the peak sources correlate with their radiated sound.

D. Boundary and initial conditions

The calculation of modes that are supersonic relative to at least one of the free streams (M̄n,k > 1)
require an implicit approach while specifying the conditions at the supersonic side [38]. This is due
to the fact that these modes show an oscillatory decay as they approach the particular boundary,
which is not modeled by the typical homogeneous Dirichlet boundary conditions [68], otherwise
applied to the boundary where the phase speed is subsonic. In this work, the following boundary
conditions are used:

d q̃n

dy
= ∓λ q̃n as y → ±∞ for M̄n,k > 1,

q̃n = 0 as y → ±∞ for M̄n,k < 1, (23)

with k ≡ 1,2. Here λ is the complex coefficient of an exponential decay function obtained from
linear stability analysis [38].

Initial conditions (q̃n,αn)|x0 for solving (8) are obtained by solving a parallel-flow version of (5)
using the calculated mean at that location. The governing equations are combined to obtained a
single Rayleigh-type stability equation which is then solved using a shooting method satisfying the
appropriate boundary conditions [69].

E. Numerical methods

The PSEs (8) are discretized using fourth-order central differences in the y direction and first-order
implicit Euler differences for the streamwise derivatives. The derivative in the boundary term (23)
is computed to a first-order difference. This yields a system of equations to be solved for the shape
functions q̃n at each of the streamwise locations, where parabolization implies some restrictions on
the step size �x [70]. The wave number is updated at each step using an iteration-based normalization
condition of the shape function [16,61]:

αk+1
j+1 = αk

j+1 − i

�x

∫ ∞
0

(
q̃k

j+1

)∗(
q̃k

j+1 − q̃k
j

)
dy∫ ∞

0

∣∣q̃k
j+1

∣∣2
dy

, (24)

where ()∗ denotes complex conjugate, j is the streamwise step index, and k the iteration step index.
Only the velocity components are used in Eq. (24) to obtain convergence of αn within 10−9, which
then yields the shape functions.

III. AEROACOUSTIC SOURCES AND RADIATED SOUND

A. Modal classification

Compressible, reacting mixing layers potentially contain additional unstable modes over the
incompressible, central (K-H) mode [38,48,49,62,71], but unless the relative Mach number M̄n,k > 1
for any unstable mode ωn in at least one of the streams k = 1,2, these are unimportant from the point
of radiating sound via Mach waves. The modal classification we employ follows this requirement,
where a mode ωn is classified as a “fast” mode if it radiates toward the slow side (y → −∞) of
the mixing layer with M̄n,1 < 1 and M̄n,2 > 1 [e.g., Fig. 3(a)], while a “slow” mode radiates to the
fast side (y → ∞) with M̄n,1 > 1 and M̄n,2 < 1 [e.g., Fig. 3(b)] [38,49]. A central mode is either of
subsonic speed in both streams (M̄n,k < 1 for k = 1,2) or supersonic in both. In the former case, no
Mach wave radiation is possible (e.g., the case K00 in Table I) since the instability wave model fails
to couple with the far-field sound, which instead radiates sound via a vortex-pairing mechanism that
generates higher harmonics by means of nonlinear interactions [23], beyond the scope of the present
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FIG. 3. Relative Mach numbers – · – · – M̄n,1, – – – M̄n,2, and modal growth rates —— |�(αn)| as a function
of Strouhal number St shown for (a) F1010, (b) S1010, and (c) C1010 cases of Table I. In case (c), the lines
with symbols indicate the slow mode. The shaded box is the extent of broadband spectra considered in this
work, while a thick horizontal line marks M̄n,k = 1.

linear model. The other case, where the central mode can potentially radiate to both sides of the mixing
layer, is possible only for appropriately large Mc, when the K-H mode is largely stabilized and has lit-
tle influence on the far field, similar to what has been observed for highly compressible free jets [56].

The listed cases in Table I include the three possible scenarios that may arise out of the fast and
slow modes in a broadband source perturbed at three discrete frequencies of St = 0.2,0.3, and 0.4,
where the Strouhal number St = ωδw|0/2π (1 − κU ). A fast case (prefixed by an “F” in Table I) is
one where the most unstable modes at all the discrete frequencies are of fast types, in a slow case
(prefixed by “S”) they are all of slow types, while a colayer case (prefixed by “C”) has a mixture of
most unstable fast and slow modes as shown in Fig. 3(c) for the � = 1 and φ = 1 baseline colayer
case. To study the effect of heat release and chemical composition (via � and φ, respectively) on
these broadband sources, these baseline configurations are varied to yield all the different cases of
Table I. In practical configurations, the effective heat release from diluted fuel or oxidizer streams
like we consider here [see (3)] is expected to be limited [57], restricting � = 1.5 at the maximum,
sufficient for drawing useful conclusions within a linear framework. To simplify matters, we follow
a naming convention where the first two digits immediately following the type-identifying letter
prefix indicate the heat-release parameter �, while the last two digits indicate the equivalence ratio
φ. A cold central mode “K” case is also considered at the frequency of its maximum growth rate to
serve as a benchmark for the outer mode cases. Note that the specific choice of broadband spectrum
follows from the observation that the most unstable mode for the cases considered in Table I falls
within the St = 0.2–0.4 range (except C1010 and C1015, both of which are marginally outside at
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TABLE I. A summary of the cases presented with Mc = 1 and M1 = 4 held constant. ρ̄∂ū/∂y is plotted for
y ∈ [−1.6,1.3] and the peak for K00 case is at 0.417. The unit of SPLmax is dB and θmax (at r = 270) is in degrees.

Cases ρ̄∂ū/∂y κρ � φ |�|max × 104 (x,y)|�max SPLmax θmax

K00 1.0 0.0 – 1889 (187,0) – –

F0510 0.5 0.5 1.0 94 (191,0.95) −20.23 −11.05

F1010 0.5 1.0 1.0 678 (192,1.15) −17.66 −11.30

F1510 0.5 1.5 1.0 2734 (200,1.29) −16.61 −11.15

F1005 0.5 1.0 0.5 697 (213,1.15) −17.36 −11.20

F1015 0.5 1.0 1.5 481 (161,0.68) −19.19 −11.40

S0510 1.5 0.5 1.0 1578 (210,−0.88) −21.14 4.15

S1010 1.5 1.0 1.0 2836 (225,−1.15) −12.90 3.60

S1510 1.5 1.5 1.0 69936 (229,−1.29) −8.66 3.05

S1005 1.5 1.0 0.5 194 (226,−0.95) −21.74 3.95

S1015 1.5 1.0 1.5 2304 (221,−0.95) −12.79 4.30

C1010 1.0 1.0 1.0 23 (148,0.68) −24.45 −7.85
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TABLE I. (Continued.)

Cases ρ̄∂ū/∂y κρ � φ |�|max × 104 (x,y)|�max SPLmax θmax

C1510 1.0 1.5 1.0 88 (172,−0.81) −21.67 5.90

C1015 1.0 1.0 1.5 15 (139,0.68) −26.42 6.60

St ≈ 0.18) (see also the case in Fig. 3), which ensures the most unstable frequency to be always
contained within this spectrum. For the colayer case in Fig. 3(c), the fast mode takes over the role
as the most unstable mode beyond St � 0.25, which ensures a broadband perturbation that includes
both slow and fast modes. In all the cases, we have fixed Mc = 1 and M1 = 4 while the density ratio
κρ is varied to alter the density-weighted vorticity ρ̄∂ū/∂y, yielding the necessary biased modal
configurations, as illustrated inside Table I. Note that the velocity ratio κU is directly related to κρ via
κU = 1 − (Mc/M1)(1 + 1/

√
κρ), once the Mach numbers are fixed. The spanwise wave number β =

0 for all the cases except the cold central mode K00, a three-dimensional mode with a peak at β = 0.5.
The far-field sound is computed at an arc of radius r = 270, fixed at the splitter end (see Fig. 1),

with θ measured from the downstream direction. This distance is chosen to lie well within the
acoustic far field, when considering the wavelength of the longest possible acoustic wave supported
by our computations.

B. Fast and slow cases

With Mc and M1 held constants, a bias in mean density yields the fast and slow modes, where
the side with the larger density produces a sharper local peak in the corresponding mean-density-
weighted vorticity (ρ̄∂ū/∂y) profiles as can be seen from Table I. Unlike in the central-mode
dominated case K00 (with κρ = 1), this density bias introduces new vortical structures that are
offset from the K-H mode location and near the local peaks of ρ̄∂ū/∂y.

Figure 4 shows the Lilley-Goldstein source |�| superimposed upon the total pressure contours
for the case K00. Note that unlike the broadband outer mode cases to follow, the K00 case is
composed of just the most unstable mode at St = 0.08 and β = 0.5. This lower tonal perturbation
frequency is immediately apparent from the longer-wavelength pressure contours, showing a typical
wave-packet-like shape. Its subsonic phase speed implies fast decay outside the hydrodynamic near
field (see also Figs. 6, 7, and 9 where the K00 case is compared to outer mode cases), whereas the
source fluctuations appear over a much compact region near the flow interface.

The near-field source and pressure contours of the fast and slow cases of Table I are shown in
Fig. 5, whereas Figs. 6 and 7 plot the near-field modal evolution and the far-field sound for these
fast and slow cases, respectively. As expected, in these figures most of the sound source fluctuations
(colored contours) are seen to originate downstream of the transition location xm = 120, which
along with lm = 120 is imposed on the composite spread model of the mixing layer, as discussed in
Sec. II B. Although, the peak sources in Fig. 5 seem to be located significantly further downstream
of x = xm, perhaps pointing to the relatively slow growth of these mixing layers. The streamwise
evolution of instability modes in the near field is tracked via an integrated energy measure [72]

Ê(x) =
∑

n

∫ ϒ

−ϒ

{
ρ̄(|ûn(x,y)|2 + |v̂n(x,y)|2) + T̄ |ρ̂n(x,y)|2

ρ̄
+ ρ̄|T̂n(x,y)|2

T̄

}
dy, (25)
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FIG. 4. Colored contours of the Lilley-Goldstein source |�| of (21) superimposed on the real part of total
pressure contours in gray scale, shown here for the K00 case of Table I. The vertical dashed line is the location
of transition point xm in the composite spread curve used (see Sec. II B). There are 30 pressure contour levels
in between ±0.003 and 100 source contours in between 10−4 and 0.16.

where the eigenfunctions are according to (7), y = ±ϒ are the hydrodynamic near-field cutoff
points, and the sum is over St = 0.2,0.3, and 0.4 (n = 3).

In general, the slow-mode-dominated cases show a faster streamwise growth of the integrated
energy ( dÊ(x)/ dx) than the fast modes, yielding higher magnitudes of the respective source
fluctuations, further leading to louder sound radiations at shallower angles. This may be understood
from the fact that slow mode cases have slower turbulent spread rates of dδt (x)/ dx [see Eqs. (20)
and (26) below] than the fast cases of Table I, yielding lower mixing layer thicknesses, thus expected
to yield modal growth rates higher than the corresponding fast cases. This also follows from the
well-known effect a finite-thickness mixing layer has on the growth of K-H central mode, which for a
given perturbation frequency is known to slow down on increasing thickness [73]. In order to explain
the slower spread rates of the slow cases, first note that, although such spread rates of compressible
mixing layers are known to be well-correlated with Mc, at higher values of the latter additional
dissipation due to the temperature ratio (κρ in our case) of the streams becomes prevalent [74]. Next,
once Mc and M1 are held constants, (20) yields

dδt (x)

dx
= K

(
1 + 1

κρ

)
, (26)

where K is a function of Mc and M1. Equation (26) clearly points to lower spread rates of the slow
mode cases which have higher κρ , as per Table I. Specifically for the parameters listed in Table I,
dδt (x)/ dx|slow = 2.75 × 10−2 whereas dδt (x)/ dx|fast = 3.66 × 10−2, implying the fast cases to be
more than 30% faster spreading. The same is also reflected in the source contours of Fig. 5, where
greater spread of the sound sources in fast cases point to thicker mixing layers.

1. Effect of heat release

The heat release parameter � varies between the cases in Figs. 5(a), 5(c), and 5(e) which are
shown together in Figs. 6(a) and 6(c) for the fast mode cases and between Figs. 5(b), 5(d), and 5(f)
and shown in Figs. 7(a) and 7(c) for the corresponding slow mode cases. On comparing Figs. 6(a)
and 7(a), it is easy to note the more pronounced effect that � has on the growth rates of the more
unstable slow mode cases, where the S1510 case [see Fig. 7(a)] attains the highest modal growth
among all the cases considered here, easily exceeding the central K00 case by a few orders of
magnitude. For the slow (or fast) cases, the turbulent spread rate of (20) depends upon the ratios of
free stream parameters, which remain unchanged, but as � is raised additional energy is available
via increased heat of formation [see (13) and (14)], which results in a steeper mean temperature (or
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FIG. 5. Same as in Fig. 4 for the following cases: (a), (c), (e), (g), and (i) F0510–F1015 (left column) and
(b), (d), (f), (h), and (j) S0510–S1015, all in the order of being listed in Table I. The filled white circle inside the
source in some of the cases indicate the location of |�|max. Here the source contours are in between 8 × 10−4 –
0.18 for the fast mode cases and 5 × 10−3 – 5.5 for the slow mode cases.
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Ê

(b)

Effect of φ

θ (deg.)

S
P

L
(d

B
)

(c) θ (deg.)

S
P

L
(d

B
)

(d)

FIG. 6. The integrated modal energy of (25) are plotted in (a) and (b) with the corresponding sound pressure
levels (SPL) in dB, shown in (c) and (d) for —— F1010; – – – F0510; – · – · – F1510; — — — F1005; and
– ·· – ·· – F1015 cases of Table I. Case K00 is shown by the thicker gray line, while the vertical dashed line is
the location of transition point xm in the composite spread curve (see Sec. II B). The shaded box spanning ±2
degrees in the SPL plots corresponds to ϒ = 9.4 in Eq. (25), representing the estimated zone of influence of
near-field hydrodynamics.

density) gradient inside the mixing layer. This may also be noticed from Table I, where as � is raised,
the corresponding ρ̄∂ū/∂y profiles seem to possess increasingly pronounced peaks, although their
magnitudes drop. The latter infers the lower � cases to be more unstable near to the splitter, which is
where the ρ̄∂ū/∂y profiles of Table I are calculated. However, the higher � cases with their sharper
peaks grow faster, quickly assuming dominance at relatively shorter distances (x ∼ 10) downstream
of the splitter. Increased temperature gradients thus lead to higher sound source fluctuations, further
amplified for the slow cases, which have relatively lower spreads of the mixing layer (see also the
|�|max values in Table I). The locations of the peak sources shift to further downstream (and deeper
inside the fast or slow side) as � is raised (check the corresponding peak source locations in Fig. 5),
apparently due to the extra diffusive processes in reacting mixing layers at higher heat release that
push the flame sheet and the source fluctuations away.

Both slow and fast modes radiate efficiently as Mach waves into the stream of supersonic phase
speed, quantified by their relative Mach numbers [see (9)], as shown in Fig. 3 for a few example cases.
The angle at which these Mach waves radiate is a function of M̄n,k via θ̄n = π − cos−1(1/M̄n,k) [75].
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FIG. 7. Same as in Fig. 6 for —— S1010; – – – S0510; – · – · – S1510; — — — S1005; and – ·· – ·· –
S1015 cases of Table I.

In general, slow mode cases have higher supersonic relative Mach numbers in the fast stream M̄n,1

than the relative Mach numbers of the fast modes in the slow stream M̄n,2 (see also Fig. 3), ensuring
the slow mode cases to radiate at shallower angles (see Table I) than the corresponding fast cases.
Further, as � increases, these broadband sources radiate at even shallower angles, clearly evident
for the first three slow cases of Table I. Note that unlike the slow modes, the fast cases shown
in Figs. 6(c) and 6(d) radiate over a relatively broad range of angles, as a true broadband source
should, because of the fact that component modes (St = 0.2–0.4) in the fast cases grow over longer
streamwise distances, yielding sources that are more distributed (compare the respective source
structures in Fig. 5). In the slow cases, sources are more compact, yielding far-field spectra peaking
within a narrow range of angles [Figs. 7(c) and 7(d)]. The peak sound levels at these angles depend
directly on the corresponding |�|max magnitudes, as a linear theory would suggest. In our analysis
of the far-field, we neglect any peak if it appears within the shaded band of Figs. 6(c) and 6(d) or
Figs. 7(c) and 7(d), which would then correspond to hydrodynamic fluctuations.

2. Effect of equivalence ratio

The effect of φ on the dynamics of fast and slow modes is more interesting, whose individual field
plots are shown in Figs. 5(c), 5(g), and 5(i), while the modal evolutions and far-fields are together
in Figs. 6(b) and 6(d), respectively, for the fast cases and similarly in Figs. 5(d), 5(h), and 5(j) and
in Figs. 7(b) and 7(d) for the slow cases. As discussed in Sec. I, with the increased use of lean ratios
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in commercial turbine engines, the effect that varying φ has on the near-field flow dynamics and its
radiated sound has assumed significance. Although the role of φ on the aeroacoustic characteristics of
reacting flows has been anticipated [7], most of the previous studies have focused on either premixed
or partially premixed configurations [76–79]. In the model nonpremixed configuration as considered
here, φ may modulate the mean profiles via changing the heat of formation as given by (13) and (14).
However, with all other factors held constant, q∗

c is proportional to (1 + 1/φ) via (12), where YO,∞
and n are fixed with respect to a given chemical process as per (3). This ensures a greater increase
in the heat of formations for leaner ratios φ < 1 than a comparatively smaller decrease at richer
mixtures φ > 1 [via (12)], if φ is varied by the same amount about the stoichiometric ratio, as we
do here.

The effect of this variation on the slow- and fast-mode-dominated cases is quite different. For
the fast mode cases of Fig. 6(b), the differences in the respective Ê across varying φ are minimal,
which in contrast is more significant for the slow mode cases of Fig. 7(b). This may be explained on
revisiting the individual ρ̄∂ū/∂y profiles of Table I. When the mixture is lean (φ = 0.5), the flame
sheet moves to the slow (fuel) side with a minima in ρ̄ located somewhere below y = 0, which for
the slow mode case S1005 directly acts against the peak in ∂ū/∂y. Because the lean cases have mean
density minimas that are lower than the corresponding rich cases, the resulting effect is a ρ̄∂ū/∂y

profile with a considerably reduced slow-side peak, yielding a weaker slow mode [see Fig. 7(b)].
In fact, there is a stronger fast-side peak in ρ̄∂ū/∂y (at x = 0) for this case, which decays to be
negligible, starting from x ∼ 10. In contrast, the effect of this lean parametric configuration on the
fast mode case F1005 is minimal when compared to the φ = 1 case (F1010) [the corresponding
curves in Fig. 6(b) are almost indistinguishable] as the ∂ū/∂y peak is now on the other (fast) side.

In contrast, the rich φ = 1.5 mixture is unable to modulate the fast F1015 case (when compared
to the F1010 case) in any appreciable manner [see Fig. 6(b)] as their respective heat of formations
are not significantly different. In fact, even a theoretically infinite rich case φ → ∞ changes the heat
of formation to only one-half of the stoichiometric conditions.

x

y

(a) x

y

(b)

x

y

(c)

FIG. 8. Same as in Fig. 4 for the following cases: (a)–(c) C1010 – C1015, in order of Table I. The source
contours have 100 steps in between 1.2 × 10−4 – 7.5 × 10−3.
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FIG. 9. Same as in Fig. 6 for —— C1010; – · – · – C1510; and – ·· – ·· – C1015 cases of Table I.

The SPL levels of Figs. 6(d) and 7(d) follow the near-field fluctuations, where the lean slow
case S1005 is easily the quietest flow (see also Table I). The lean cases F1005 and S1005 radiate at
shallower angles than the corresponding rich cases as the respective peak source locations for these
cases are at further downstream (see Table I and Fig. 5).

C. Colayer cases

A colayer case is one where the instability structures may radiate to either side of the mixing
layer, and in this way these cases are intermediate to the fast and slow cases of Table I. However, do
note that unlike in Day et al. [38], whose colayer cases are located right at the regime boundaries
with equal growth rates of slow and fast modes, we use a slightly different definition in this work.
We label a case to be of colayer type, if within a given broadband mix (St = 0.2−0.4 in our case), a
different type of mode is dominant in at least one of the discrete frequencies. Using this definition, a
broadband spectrum containing all the frequencies will perhaps be of colayer type in any parametric
configuration. In fact, had we included a wider range of frequencies in our broadband mix, many of
the fast and slow cases of Table I would turn to colayer type. Note that in Table I, cases C0510 and
C1005 are absent, since at these parametric conditions the corresponding fast modes dominate over
the entire chosen broadband range, so these cases are rather of fast type.

All the colayer cases shown in Figs. 8 and 9 are less unstable than all the fast and slow cases of
Table I. On comparing we note that even the C1510 case is more hydrodynamically stable than the
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lower heat release F0510 case, with the former radiating lesser sound as expected. The source terms
in these cases have branches on both the slow and fast sides (see Fig. 8) with the most unstable
branch usually deciding the side of dominant radiation. For example, in the C1510 case of Fig. 8(b),
the branch on the slow side is clearly more unstable, yielding a dominant radiation resembling the
slow mode cases of Table I. The source fluctuations for these mixed-mode colayer cases peak at
distances that are considerably upstream (and closer to the layer interface) than the single outer-mode
dominated cases.

The peak radiation angles for the colayer cases are between those of the fast and slow cases (see
Table I). Curiously, for the C1015 case the peak radiation appears to be on the fast side, where it is
also more hydrodynamically unstable. This may be resolved from Fig. 9(d), where it is easy to see
that although the respective radiation peaks are of similar amplitudes on both sides, the multilobe
pattern characteristic of broadband radiation appears only on the slow side, which is indeed the
direction of its primary radiation.

IV. CONCLUSIONS

Although the importance of outer modes on the dynamics of reacting shear flows has long
been anticipated [38,50,52], to date the configurations studied in the experiments and numerical
simulations have largely revolved around the central K-H mode. In this work, a set of supersonic
mixing layers are studied at higher heat release conditions (i.e., higher �), when some of the
two-dimensional outer modes dominate over the three-dimensional central mode of an equivalent
cold mixing layer. The main focus has been on quantifying the nature of near-field instabilities and
the associated Mach radiation as density ratio κρ , heat release parameter �, and equivalence ratio
φ are systematically varied for a fixed amount of compressibility Mc. In this context, we note here
briefly that although the wave packet nature of the near-field pressure were visible in the respective
field plots (see Figs. 4, 5 and 8), this has not been further pursued in this work, whose analysis in
itself could be an interesting future exercise.

A composite spread curve has been used for the mean evolution of the mixing layers which
indirectly introduced flow nonlinearities via inclusion of a turbulent region. In the absence of
any useful documented data on the spreading of reacting mixing layers, the estimate of transition
location in our spreading model has been based on cold, compressible layers. In future, as data on
reacting mixing layers become available, this composite spread model may be recalibrated, which
perhaps would yield a more direct validation of the model. In any case, the success of linear PSE
in tracking the modal evolution using such a spreading model that favorably compares to the more
computationally expensive nonlinear calculations (shown here for a nonreacting case) supports the
recent claim that linearized fluctuations evolving on a turbulent base flow are enough to correctly
capture large-scale structures in shear flows [41].

Once the compressibility is fixed, κρ modulates the nature of instabilities via biasing the density
in one of the streams of the mixing layer, yielding the outer-mode-dominated regimes in our work.
The slow mode cases, when the major instabilities are confined within the fuel side, are found to be
more unstable and sensitive to parametric changes. These cases have relatively thinner mixing layers
with lower spread rates which are more susceptible to perturbations. The corresponding aeroacoustic
sources are more compact and found to radiate at shallower angles. The fast mode cases with thicker
shear layers are significantly less unstable, and these are less likely to exceed the central mode
instability even when � is raised significantly.

For all the cases studied, increased heat release yielded higher levels of instability and sound.
This is in stark contrast to the expectations from a K-H central mode where higher heat release
weakens both the streamwise and spanwise vortical structures at the core of the mixing layer, thus
attenuating its growth. The outer modes, on the other hand, are fully compressible and depend on the
location of flame surface (via heat release parameter) and the associated shear between this flame
and free stream. As � is raised, the flame sheet is pushed further away from the mixing layer core
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for both the slow and fast cases, thereby raising shear and a steeper gradient in the density-weighted
vorticity, yielding greater potential for modal instabilities.

The variation of equivalence ratio, usually thought to be of lesser importance in flow dynamics,
yielded interesting conclusions. The fast modes are found to be mostly unaffected by moderate
changes of equivalence ratios about the stoichiometric φ = 1 mixture. In contrast, even in
moderately lean mixtures the corresponding slow mode is found to be noticeably stabilizing, once
the flame sheet is located closer to the maximum change in mean velocity, via a reduction of the
density-weighted vorticity production.
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APPENDIX A: VALIDATION

The linear PSE algorithm used in this work has been extensively validated against other mixing
layer simulations, both subsonic and supersonic [23,38], the details of which appear elsewhere [69].
Here we briefly compare the results of the present linear PSE solver for a cold supersonic mixing layer
with its DNS results reported in Cheung and Lele [23] for their case M29M1, as shown in Fig. 10.
The spanwise vorticity contours obtained from the linear PSE shown in Fig. 10(b) are remarkably
similar to the DNS of Fig. 10(a), which reaffirms the excellent ability of linear models in capturing
the large-scale structures of supersonic mixing layers. Such mixing layers lack vortex pairing in the
near field, a nonlinear process, owing to an absence of the subharmonic frequencies [23], which
makes them amenable to such linear models. The integrated modal energy of (25) is shown in
Fig. 10(c), where beyond x > 100, as plotted, the linear PSE starts over predicting the DNS results
when apparently the lack of (nonlinear) intermodal interactions in the former starts showing up in
the modal evolution. However, note that a nonlinear PSE model which includes these interactions
does not seem to fare any better in Fig. 10(c). In spite of these differences in the near-field modal
evolution, the location and amplitude of the peak Mach radiation as obtained from the linear PSE
match very well with the DNS as shown in Fig. 10(d), where the respective peaks are off by a mere
2 dB. The far-field predictions from the nonlinear PSE calculations are almost indistinguishable
from our linear PSE model at these angles.

APPENDIX B: MEAN FLOW COMPUTATIONS

The similarity equations (17) for the laminar mean along with the appropriate boundary
conditions [38,69] are solved using a shooting method with a dual iteration [65,69,80] to first
correctly obtain F (η) from the first similarity equation. The second and third equations are then
solved for Z̄(η) and h̄t (η). The latter yields the mean temperature, obtained via

T̄ (η) = [h̄t (η) − ȲF (η)h∗
f,F − ū2(η)/2]/cp1 , (B1)

after subtracting out the chemical and kinetic energies. The mean profiles so obtained are shown here
for the cases F1010 and S1010 of Table I in Fig. 11. The differing κρ in these two cases introduce
changes in ū and T̄ while Z̄ remains unchanged (as φ = 1). The flame sheets are located by the
respective peak in mean densities (or temperatures in Fig. 11), which along with the shear in ū yield
the ρ̄∂ū/∂y profiles, at the heart of origin of outer modes, illustrated in Table I.

APPENDIX C: SENSITIVITY OF THE COMPOSITE SPREAD MODEL

The components of composite spread model introduced in Sec. II B, include the laminar and
turbulent vorticity thicknesses, δl(x) and δt (x), respectively, and the spline parameters xm and lm.
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For the cases of Table I, this spline curve reduces to

δw(x) = δw

(
xm − lm

2

)(
xm − x

lm
+ 1

2

)
+ δw

(
xm + lm

2

)(
x − xm

lm
+ 1

2

)

+A

[
x2 − 2xmx +

(
xm + lm

2

)(
xm − lm

2

)]
, (C1)

where xm lies at the middle of the length lm and the constant A varies, which for the case K00
is A ≈ 1.13 × 10−4. The laminar and turbulent vorticity thicknesses as given via (18) and (20),
respectively, are standard results, whereas the choice of spline curve in Eq. (C1) that blends between
these two regimes may seem ad hoc, which we now show via a sensitivity analysis to be unimportant
in a linear setting.

Figure 12 shows the evolution of composite spread curves and the corresponding modal energies,
as xm is varied with the width lm = 120 held constant, for the case K00 of Table I. In Fig. 12(b)
the approximate saturation locations of the respective energy curves are labeled via vertical lines,
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FIG. 10. Comparison of linear PSE results of the most unstable mode for a supersonic mixing layer
M29M1 [23] with its DNS [23] for the following: spanwise vorticity contours between (a) DNS and (b) linear
PSE; variation of (c) Ê1(x) and (d) pressure |p̂1(y)| at x = 275. In (c) and (d) (solid black line) linear PSE,
(dashed line) DNS and a (solid gray line) nonlinear PSE solution [23] are shown.

083801-21



P. SHIVAKANTH CHARY AND ARNAB SAMANTA

y

q̄(a)

y

q̄(b)

FIG. 11. Mean profiles of —— ū; – – – T̄ ; – · – · – ρ̄; and – ·· – ·· – Z̄ shown for cases (a) F1010 and
(b) S1010 of Table I.

which when compared to the vertical lines corresponding to xm locations in Fig. 12(a) are seen to
be almost identically spaced with respect to each other, indicating them to be related via a linear
relationship. Also, the magnitude of saturation energy levels in Fig. 12(b) depend directly upon the
length of respective δl(x), which e.g. in the xm = 150 is the longest and breaks away last from the
constant-slope, exponentially growing laminar energy curve, yielding the maximum energy of the
three cases, but still proportional to xm.

In Fig. 13 the discontinuous transition location is fixed at xm = 120, while the width of the
region is varied progressively via lm. This procedure imparts different shapes to the spline curves,
where the lowest lm = 60 also produces the fastest transition to turbulence, yielding the maximum
saturation modal energy. Even here, it is easy to see the levels of this saturation energy to be inversely
proportional to the length lm, while the saturation locations remain approximately unchanged.

The sensitivity analysis reported here for the case K00 of Table I may be repeated for all the other
cases to yield identical conclusions. Thus, any uncertainties over the growth of transitional vorticity

(a) x

δ w

(b)

Ê

x

FIG. 12. Sensitivity analysis of the composite spread model with respect to the transition discontinuity (xm)
for – – – xm = 90; —— xm = 120; and – · – · – xm = 150 with lm = 120 held constant, for the case K00
of Table I, showing (a) the growth of mean vorticity thicknesses and (b) the corresponding evolutions of the
most unstable mode. In (a) the vertical lines indicate the respective xm locations, while in (b) these indicate
approximate locations of modal saturation.
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(a) x

δ w

(b)

Ê

x

FIG. 13. Same as in Fig. 12, but for sensitivity analysis with respect to the width of transition zone (lm) for
– – – lm = 60; —— lm = 120; and – · – · – lm = 180 with xm = 120 held constant. In (a) the vertical lines and
the shaded areas indicate the respective widths lm, while in (b) the vertical line is the location where all three
cases approximately saturate.

thickness, modeled here via a smooth spline curve, yield only proportional changes to the modal
energy evolution (and to the radiated sound), which in a linear analysis are deemed unimportant.

APPENDIX D: DETAILS OF PSE OPERATORS

Details of the operators appearing in Eq. (8) are given in this section:

A =

⎛
⎜⎜⎜⎜⎜⎝

i(αnū − ωn) iαnρ̄ 0 0 0

i αnT̄
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1
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,
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,
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D =

⎛
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∂y

8μ̄

3
∂v̄
∂y

0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠,

E2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0
0 μ̄ 0 0 0

0 0 4
3 μ̄ 0 0

0 0 0 γ μ̄

Pr 0

0 0 0 0 μ̄

Pr Le

⎞
⎟⎟⎟⎟⎟⎠

.

[1] M. J. T. Smith, Aircraft Noise (Cambridge University Press, Cambridge, UK, 2004).
[2] H. A. Hassan, Scaling of combustion-generated noise, J. Fluid Mech. 66, 445 (1974).
[3] W. C. Strahle, Combustion noise, Prog. Energy Combust. Sci. 4, 157 (1978).
[4] A. P. Dowling and S. R. Stow, Acoustic analysis of gas turbine combustors, J. Propul. Power 19, 751

(2003).
[5] T. Lieuwen and V. Yang, Combustion Instabilities in Gas Turbine Engines. Operational Experience,

Fundamental Mechanisms and Modeling, Progress in Astronautics and Aeronautics, Vol. 210 (AIAA,
2005).

[6] S. A. Klein and J. B. W. Kok, Sound generation by turbulent nonpremixed flames, Combust. Sci. Technol.
149, 267 (1999).

[7] M. Ihme, H. Pitsch, and D. Bodony, Radiation of noise in turbulent nonpremixed flames, Proc. Combust.
Inst. 32, 1545 (2009).

[8] M. Ihme and H. Pitsch, On the generation of direct combustion noise in turbulent non-premixed flames,
Int. J. Aeroacoustics 11, 25 (2012).

[9] A. P. Dowling and Y. Mahmoudi, Radiation of noise in turbulent non-premixed flames, Proc. Combust.
Inst. 35, 65 (2015).

[10] K. K. Singh, S. H. Frankel, and J. P. Gore, Study of spectral noise emissions from standard turbulent
nonpremixed flames, AIAA J. 42, 931 (2004).

[11] F. Flemming, A. Sadiki, and J. Janicka, Investigation of combustion noise using a LES/CAA hybrid
approach, Proc. Combust. Inst. 31, 3189 (2007).

[12] S. L. Bragg, Combustion noise, J. Inst. Fuel 36, 12 (1963).
[13] W. C. Strahle, On combustion generated noise, J. Fluid Mech. 49, 399 (1971).
[14] W. Zhao and S. H. Frankel, Numerical simulations of sound radiated from an axisymmetric premixed

reacting jet, Phys. Fluids 13, 2671 (2001).
[15] F. P. Bertolotti and T. Herbert, Analysis of the linear stability of compressible boundary layers using the

PSE, Theor. Comput. Fluid Dyn. 3, 117 (1991).

083801-24

https://doi.org/10.1017/S0022112074000292
https://doi.org/10.1017/S0022112074000292
https://doi.org/10.1017/S0022112074000292
https://doi.org/10.1017/S0022112074000292
https://doi.org/10.1016/0360-1285(78)90002-3
https://doi.org/10.1016/0360-1285(78)90002-3
https://doi.org/10.1016/0360-1285(78)90002-3
https://doi.org/10.1016/0360-1285(78)90002-3
https://doi.org/10.2514/2.6192
https://doi.org/10.2514/2.6192
https://doi.org/10.2514/2.6192
https://doi.org/10.2514/2.6192
https://doi.org/10.1080/00102209908952109
https://doi.org/10.1080/00102209908952109
https://doi.org/10.1080/00102209908952109
https://doi.org/10.1080/00102209908952109
https://doi.org/10.1016/j.proci.2008.06.137
https://doi.org/10.1016/j.proci.2008.06.137
https://doi.org/10.1016/j.proci.2008.06.137
https://doi.org/10.1016/j.proci.2008.06.137
https://doi.org/10.1260/1475-472X.11.1.25
https://doi.org/10.1260/1475-472X.11.1.25
https://doi.org/10.1260/1475-472X.11.1.25
https://doi.org/10.1260/1475-472X.11.1.25
https://doi.org/10.1016/j.proci.2014.08.016
https://doi.org/10.1016/j.proci.2014.08.016
https://doi.org/10.1016/j.proci.2014.08.016
https://doi.org/10.1016/j.proci.2014.08.016
https://doi.org/10.2514/1.3424
https://doi.org/10.2514/1.3424
https://doi.org/10.2514/1.3424
https://doi.org/10.2514/1.3424
https://doi.org/10.1016/j.proci.2006.07.060
https://doi.org/10.1016/j.proci.2006.07.060
https://doi.org/10.1016/j.proci.2006.07.060
https://doi.org/10.1016/j.proci.2006.07.060
https://doi.org/10.1017/S0022112071002167
https://doi.org/10.1017/S0022112071002167
https://doi.org/10.1017/S0022112071002167
https://doi.org/10.1017/S0022112071002167
https://doi.org/10.1063/1.1386940
https://doi.org/10.1063/1.1386940
https://doi.org/10.1063/1.1386940
https://doi.org/10.1063/1.1386940
https://doi.org/10.1007/BF00271620
https://doi.org/10.1007/BF00271620
https://doi.org/10.1007/BF00271620
https://doi.org/10.1007/BF00271620


LINEAR MODELS FOR SOUND FROM SUPERSONIC . . .

[16] T. Herbert, Parabolized stability equations, Annu. Rev. Fluid Mech. 29, 245 (1997).
[17] C. K. W. Tam and P. J. Morris, The radiation of sound by the instability waves of a compressible plane

turbulent shear layer, J. Fluid Mech. 98, 349 (1980).
[18] C. K. W. Tam and D. Burton, Sound generation by instability waves of supersonic flows. Part 1. Two

dimensional mixing layers, J. Fluid Mech. 138, 249 (1984).
[19] E. J. Avital, N. D. Sandham, and K. H. Luo, Mach wave radiations by mixing layers. Part I: Analysis of

the sound field, Theor. Comput. Fluid Dyn. 12, 73 (1998).
[20] E. J. Avital, N. D. Sandham, and K. H. Luo, Mach wave radiations by mixing layers. Part II: Analysis of

the source field, Theor. Comput. Fluid Dyn. 12, 91 (1998).
[21] X. S. Wu, Mach wave radiation of nonlinear evolving supersonic instability modes in shear layers, J. Fluid

Mech. 523, 121 (2005).
[22] N. D. Sandham, C. L. Morfey, and W. Z. Hu, Nonlinear mechanisms of sound generation in a perturbed

parallel flow, J. Fluid Mech. 565, 1 (2006).
[23] L. C. Cheung and S. K. Lele, Linear and nonlinear processes in two-dimensional mixing layer dynamics

and sound radiation, J. Fluid Mech. 625, 321 (2009).
[24] G. L. Brown and A. Roshko, On density effects and large structures in turbulent mixing layers, J. Fluid

Mech. 64, 775 (1974).
[25] C. D. Winant and F. K. Browand, Vortex pairing : The mechanism of turbulent mixing-layer growth at

moderate Reynolds number, J. Fluid Mech. 63, 237 (1974).
[26] N. D. Sandham and W. C. Reynolds, Three-dimensional simulations of large eddies in the compressible

mixing layer, J. Fluid Mech. 224, 133 (1991).
[27] N. T. Clemens and M. G. Mungal, Large-scale structure and entrainment in the supersonic mixing layer,

J. Fluid Mech. 284, 171 (1995).
[28] A. W. Vreman, N. D. Sandham, and K. H. Luo, Compressible mixing layer growth rate and turbulence

characteristics, J. Fluid Mech. 320, 235 (1996).
[29] C. Pantano and S. Sarkar, A study of compressible effects in the high-speed turbulent shear layer using

direct simulation, J. Fluid Mech. 451, 329 (2002).
[30] R. Rajaram and T. Lieuwen, Parametric studies of acoustic radiation from turbulent premixed flames,

Combust. Sci. Technol. 175, 2269 (2003).
[31] G. Batchelor and A. E. Gill, Analysis of the stability of axisymmetric jets, J. Fluid Mech. 14, 529

(1962).
[32] S. C. Crow and F. H. Champagne, Orderly structure in jet turbulence, J. Fluid Mech. 48, 547 (1971).
[33] G. E. Mattingly and C. C. Chang, Unstable waves on an axisymmetric jet column, J. Fluid Mech. 65, 541

(1971).
[34] D. G. Crighton and M. Gaster, Stability of slowly diverging jet flows, J. Fluid Mech. 77, 397 (1976).
[35] A. Michalke, Survey on jet instability theory, Prog. Aerosp. Sci. 21, 159 (1984).
[36] C. K. W. Tam and P. J. Morris, Tone excited jets, part V: A theoretical model and comparison with

experiment, J. Sound Vib. 102, 119 (1985).
[37] M. R. Malik and C. L. Chang, Nonparallel and nonlinear stability of supersonic jetflow, Comput. Fluids

29, 327 (2000).
[38] M. J. Day, N. N. Mansour, and W. C. Reynolds, Nonlinear stability and structure of compressible reacting

mixing layers, J. Fluid Mech. 446, 375 (2001).
[39] P. K. Ray, L. C. Cheung, and S. K. Lele, On the growth and propagation of linear instability waves in

compressible turbulent jets, Phys. Fluids 21, 054106 (2009).
[40] L. C. Cheung and S. K. Lele, The dynamics of nonlinear instability waves in laminar heated and unheated

compressible mixing layers, Phys. Fluids 21, 094103 (2009).
[41] K. Gudmundsson and T. Colonius, Instability wave models for the near-field fluctuations of turbulent jets,

J. Fluid Mech. 689, 97 (2011).
[42] A. Sinha, D. Rodriguez, G. Brès, and T. Colonius, Wavepacket models for supersonic jet noise, J. Fluid

Mech. 742, 71 (2014).
[43] A. V. G. Cavalieri, P. Jordan, A. Agarwal, and Y. Gervais, Jittering wave-packet models for subsonic jet

noise, J. Sound Vib. 330, 4474 (2011).

083801-25

https://doi.org/10.1146/annurev.fluid.29.1.245
https://doi.org/10.1146/annurev.fluid.29.1.245
https://doi.org/10.1146/annurev.fluid.29.1.245
https://doi.org/10.1146/annurev.fluid.29.1.245
https://doi.org/10.1017/S0022112080000195
https://doi.org/10.1017/S0022112080000195
https://doi.org/10.1017/S0022112080000195
https://doi.org/10.1017/S0022112080000195
https://doi.org/10.1017/S0022112084000112
https://doi.org/10.1017/S0022112084000112
https://doi.org/10.1017/S0022112084000112
https://doi.org/10.1017/S0022112084000112
https://doi.org/10.1007/s001620050100
https://doi.org/10.1007/s001620050100
https://doi.org/10.1007/s001620050100
https://doi.org/10.1007/s001620050100
https://doi.org/10.1007/s001620050101
https://doi.org/10.1007/s001620050101
https://doi.org/10.1007/s001620050101
https://doi.org/10.1007/s001620050101
https://doi.org/10.1017/S0022112004002034
https://doi.org/10.1017/S0022112004002034
https://doi.org/10.1017/S0022112004002034
https://doi.org/10.1017/S0022112004002034
https://doi.org/10.1017/S0022112006001315
https://doi.org/10.1017/S0022112006001315
https://doi.org/10.1017/S0022112006001315
https://doi.org/10.1017/S0022112006001315
https://doi.org/10.1017/S0022112008005715
https://doi.org/10.1017/S0022112008005715
https://doi.org/10.1017/S0022112008005715
https://doi.org/10.1017/S0022112008005715
https://doi.org/10.1017/S002211207400190X
https://doi.org/10.1017/S002211207400190X
https://doi.org/10.1017/S002211207400190X
https://doi.org/10.1017/S002211207400190X
https://doi.org/10.1017/S0022112074001121
https://doi.org/10.1017/S0022112074001121
https://doi.org/10.1017/S0022112074001121
https://doi.org/10.1017/S0022112074001121
https://doi.org/10.1017/S0022112091001684
https://doi.org/10.1017/S0022112091001684
https://doi.org/10.1017/S0022112091001684
https://doi.org/10.1017/S0022112091001684
https://doi.org/10.1017/S0022112095000310
https://doi.org/10.1017/S0022112095000310
https://doi.org/10.1017/S0022112095000310
https://doi.org/10.1017/S0022112095000310
https://doi.org/10.1017/S0022112096007525
https://doi.org/10.1017/S0022112096007525
https://doi.org/10.1017/S0022112096007525
https://doi.org/10.1017/S0022112096007525
https://doi.org/10.1017/S0022112001006978
https://doi.org/10.1017/S0022112001006978
https://doi.org/10.1017/S0022112001006978
https://doi.org/10.1017/S0022112001006978
https://doi.org/10.1080/714923281
https://doi.org/10.1080/714923281
https://doi.org/10.1080/714923281
https://doi.org/10.1080/714923281
https://doi.org/10.1017/S0022112062001421
https://doi.org/10.1017/S0022112062001421
https://doi.org/10.1017/S0022112062001421
https://doi.org/10.1017/S0022112062001421
https://doi.org/10.1017/S0022112071001745
https://doi.org/10.1017/S0022112071001745
https://doi.org/10.1017/S0022112071001745
https://doi.org/10.1017/S0022112071001745
https://doi.org/10.1017/S0022112074001534
https://doi.org/10.1017/S0022112074001534
https://doi.org/10.1017/S0022112074001534
https://doi.org/10.1017/S0022112074001534
https://doi.org/10.1017/S0022112076002176
https://doi.org/10.1017/S0022112076002176
https://doi.org/10.1017/S0022112076002176
https://doi.org/10.1017/S0022112076002176
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/0376-0421(84)90005-8
https://doi.org/10.1016/S0022-460X(85)80106-1
https://doi.org/10.1016/S0022-460X(85)80106-1
https://doi.org/10.1016/S0022-460X(85)80106-1
https://doi.org/10.1016/S0022-460X(85)80106-1
https://doi.org/10.1016/S0045-7930(99)00013-4
https://doi.org/10.1016/S0045-7930(99)00013-4
https://doi.org/10.1016/S0045-7930(99)00013-4
https://doi.org/10.1016/S0045-7930(99)00013-4
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/div-classtitlenonlinear-stability-and-structure-of-compressible-reacting-mixing-layersdiv/1C36F23475898D5F4F3646550A05D6A5
https://doi.org/10.1063/1.3139302
https://doi.org/10.1063/1.3139302
https://doi.org/10.1063/1.3139302
https://doi.org/10.1063/1.3139302
https://doi.org/10.1063/1.3232329
https://doi.org/10.1063/1.3232329
https://doi.org/10.1063/1.3232329
https://doi.org/10.1063/1.3232329
https://doi.org/10.1017/jfm.2011.401
https://doi.org/10.1017/jfm.2011.401
https://doi.org/10.1017/jfm.2011.401
https://doi.org/10.1017/jfm.2011.401
https://doi.org/10.1017/jfm.2013.660
https://doi.org/10.1017/jfm.2013.660
https://doi.org/10.1017/jfm.2013.660
https://doi.org/10.1017/jfm.2013.660
https://doi.org/10.1016/j.jsv.2011.04.007
https://doi.org/10.1016/j.jsv.2011.04.007
https://doi.org/10.1016/j.jsv.2011.04.007
https://doi.org/10.1016/j.jsv.2011.04.007


P. SHIVAKANTH CHARY AND ARNAB SAMANTA

[44] A. Towne, T. Colonius, P. Jordan, A. V. G. Cavalieri, and G. A. Brès, Stochastic and nonlinear forcing of
wavepackets in a Mach 0.9 jet, in Proceedings of the 21st AIAA/CEAS Aeroacoustics Conference, Dallas,
TX, USA (AIAA, Reston, USA, 2015), Paper 2015–2217.

[45] A. V. G. Cavalieri and A. Agarwal, Coherence decay and its impact on sound radiation by wavepackets,
J. Fluid Mech. 748, 399 (2014).

[46] K. Mohseni, T. Colonius, and J. B. Freund, An evaluation of linear instability waves as sources of sound
in a supersonic turbulent jet, Phys. Fluids 14, 3593 (2002).

[47] M. E. Goldstein and S. J. Leib, The role of instability waves in predicting jet noise, J. Fluid Mech. 525,
37 (2005).

[48] H. Gropengiesser, Study on the stability of boundary layers and compressible fluids, NASA Technical
Translation TT F-12786 (NASA, 1970).

[49] T. L. Jackson and C. E. Grosch, Inviscid spatial stability of a compressible mixing layer, J. Fluid Mech.
208, 609 (1989).

[50] T. L. Jackson and C. E. Grosch, Inviscid spatial stability of a compressible mixing layer. Part 2. The flame
sheet model, J. Fluid Mech. 217, 391 (1990).

[51] O. H. Planche and W. C. Reynolds, Heat release effects on mixing in supersonic reacting free shear layers,
in Proceedings of the 30th Aerospace Sciences Meeting & Exhibit, Reno, NV, USA (AIAA, Reston, USA,
1992), Paper 92–0092.

[52] D. S. Shin and J. H. Ferziger, Linear stability of the compressible reacting mixing layer, AIAA J. 31, 677
(1993).

[53] C. K. W. Tam, Directional acoustic radiation from a supersonic jet generated by shear layer instability,
J. Fluid Mech. 46, 757 (1971).

[54] C. K. W. Tam, Supersonic jet noise, Annu. Rev. Fluid Mech. 27, 17 (1995).
[55] D. Papamoschou and A. Roshko, The compressible turbulent shear layer: An experimental study, J. Fluid

Mech. 197, 453 (1988).
[56] A. Samanta, On the axisymmetric stability of heated supersonic round jets, Proc. R. Soc. London A 472,

20150817 (2016).
[57] J. C. Hermanson and P. E. Dimotakis, Effects of heat release in a turbulent, reacting shear layer, J. Fluid

Mech. 199, 333 (1989).
[58] A. Sharma and S. K. Lele, Effects of heating on noise radiation from a two-dimensional mixing layer: Direct

computations and acoustic analogy predictions, in Proceedings of the 17th AIAA/CEAS Aeroacoustics
Conference, Portland, OR, USA (AIAA, Reston, USA, 2011), Paper 2011–2744.

[59] F. A. Williams, Combustion Theory, 2nd ed. (The Benjamin/Cummins Publishing Company, Menlo Park,
USA, 1985).

[60] Y. C. See and M. Ihme, Effects of finite-rate chemistry and detailed transport on the instability of jet
diffusion flames, J. Fluid Mech. 745, 647 (2014).

[61] D. Rodriguez, A. Samanta, A. V. G. Cavalieri, T. Colonius, and P. Jordan, Parabolized stability
equation models for predicting large-scale mixing noise of turbulent round jets, in Proceedings of
the 17th AIAA/CEAS Aeroacoustics Conference, Portland, OR, USA (AIAA, Reston, USA, 2011),
Paper 2011–2838.

[62] D. S. Shin and J. H. Ferziger, Linear stability of the reacting mixing layer, AIAA J. 29, 1634 (1991).
[63] Kenneth K. Kuo, Principles of Combustion, 2nd ed. (John Wiley & Sons, Hoboken, USA, 2005).
[64] H. Schlichting and K. Gersten, Boundary-Layer Theory, 8th ed. (Springer-Verlag Berlin, 2000).
[65] M. J. Day, Structure and stability of compressible reacting mixing layers, Ph.D. thesis, Stanford University,

1999.
[66] M. F. Barone, W. L. Oberkampf, and F. G. Blottner, Validation case study: Prediction of compressible

turbulent mixing layer growth rate, AIAA J. 44, 1488 (2006).
[67] M. E. Goldstein, An exact form of Lilley’s equation with a velocity quadrupole/temperature dipole source

term, J. Fluid Mech. 443, 231 (2001).
[68] T. Herbert, Parabolized stability equations, Tech. Rep., AGARD-FDP-VK 1. Special Course on Progress

in Transition Modeling, AGARD-R-793 (1994).

083801-26

https://doi.org/10.1017/jfm.2014.186
https://doi.org/10.1017/jfm.2014.186
https://doi.org/10.1017/jfm.2014.186
https://doi.org/10.1017/jfm.2014.186
https://doi.org/10.1063/1.1501545
https://doi.org/10.1063/1.1501545
https://doi.org/10.1063/1.1501545
https://doi.org/10.1063/1.1501545
https://doi.org/10.1017/S0022112004002551
https://doi.org/10.1017/S0022112004002551
https://doi.org/10.1017/S0022112004002551
https://doi.org/10.1017/S0022112004002551
https://doi.org/10.1017/S002211208900296X
https://doi.org/10.1017/S002211208900296X
https://doi.org/10.1017/S002211208900296X
https://doi.org/10.1017/S002211208900296X
https://doi.org/10.1017/S0022112090000775
https://doi.org/10.1017/S0022112090000775
https://doi.org/10.1017/S0022112090000775
https://doi.org/10.1017/S0022112090000775
https://doi.org/10.2514/3.11603
https://doi.org/10.2514/3.11603
https://doi.org/10.2514/3.11603
https://doi.org/10.2514/3.11603
https://doi.org/10.1017/S0022112071000831
https://doi.org/10.1017/S0022112071000831
https://doi.org/10.1017/S0022112071000831
https://doi.org/10.1017/S0022112071000831
https://doi.org/10.1146/annurev.fl.27.010195.000313
https://doi.org/10.1146/annurev.fl.27.010195.000313
https://doi.org/10.1146/annurev.fl.27.010195.000313
https://doi.org/10.1146/annurev.fl.27.010195.000313
https://doi.org/10.1017/S0022112088003325
https://doi.org/10.1017/S0022112088003325
https://doi.org/10.1017/S0022112088003325
https://doi.org/10.1017/S0022112088003325
https://doi.org/10.1098/rspa.2015.0817
https://doi.org/10.1098/rspa.2015.0817
https://doi.org/10.1098/rspa.2015.0817
https://doi.org/10.1098/rspa.2015.0817
https://doi.org/10.1017/S0022112089000406
https://doi.org/10.1017/S0022112089000406
https://doi.org/10.1017/S0022112089000406
https://doi.org/10.1017/S0022112089000406
https://doi.org/10.1017/jfm.2014.95
https://doi.org/10.1017/jfm.2014.95
https://doi.org/10.1017/jfm.2014.95
https://doi.org/10.1017/jfm.2014.95
https://doi.org/10.2514/3.10785
https://doi.org/10.2514/3.10785
https://doi.org/10.2514/3.10785
https://doi.org/10.2514/3.10785
https://doi.org/10.2514/1.19919
https://doi.org/10.2514/1.19919
https://doi.org/10.2514/1.19919
https://doi.org/10.2514/1.19919
https://doi.org/10.1017/S002211200100547X
https://doi.org/10.1017/S002211200100547X
https://doi.org/10.1017/S002211200100547X
https://doi.org/10.1017/S002211200100547X


LINEAR MODELS FOR SOUND FROM SUPERSONIC . . .

[69] P. Shivakanthchary, Linear models for reacting mixing layers, Master’s thesis, Indian Institute of Science,
2016.

[70] F. Li and M. R. Malik, Spectral analysis of parabolized stability equations, Comput. Fluids 26, 279
(1997).

[71] M. Lessen, J. A. Fox, and H. M. Zien, Stability of the laminar mixing of two parallel streams with respect
to supersonic disturbances, J. Fluid Mech. 25, 737 (1966).

[72] B. T. Chu, On the energy transfer to small disturbances in fluid flow (Part I), Acta Mech. 1, 215 (1965).
[73] C. K. W. Tam and F. Q. Hu, On the three families of instability waves of high-speed jets, J. Fluid Mech.

201, 447 (1989).
[74] O. Zeman, Dilatation dissipation: The concept and application in modeling compressible mixing layers,

Phys. Fluids A 2, 178 (1990).
[75] C. K. W. Tam, Mach wave radiation from high-speed jets, AIAA J. 47, 2440 (2009).
[76] S. Kotake and K. Takamoto, Combustion noise: Effects of the shape and size of burner nozzle, J. Sound

Vib. 112, 345 (1987).
[77] K. K. Singh, C. Zhang, J. P. Gore, L. Mongeau, and S. H. Frankel, An experimental study of partially

premixed flame sound, Proc. Combust. Inst. 30, 1707 (2005).
[78] R. Rajaram and T. Lieuwen, Acoustic radiation from turbulent premixed flames, J. Fluid Mech. 637, 357

(2009).
[79] L. Kabiraj, H. Nawroth, A. Saurabh, and C. O. Paschereit, Experimental study of noise generation by

a turbulent premixed flame, in Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin,
Germany (AIAA, Reston, USA, 2013), Paper 2013–2002.

[80] N. D. Sandham and W. C. Reynolds, A Numerical Investigation of the Compressible Mixing Layer, Tech.
Rep. TF-45, Mechanical Engineering Department, Stanford University (1989).

083801-27

https://doi.org/10.1016/S0045-7930(96)00044-8
https://doi.org/10.1016/S0045-7930(96)00044-8
https://doi.org/10.1016/S0045-7930(96)00044-8
https://doi.org/10.1016/S0045-7930(96)00044-8
https://doi.org/10.1017/S0022112066000375
https://doi.org/10.1017/S0022112066000375
https://doi.org/10.1017/S0022112066000375
https://doi.org/10.1017/S0022112066000375
https://doi.org/10.1007/BF01387235
https://doi.org/10.1007/BF01387235
https://doi.org/10.1007/BF01387235
https://doi.org/10.1007/BF01387235
https://doi.org/10.1017/S002211208900100X
https://doi.org/10.1017/S002211208900100X
https://doi.org/10.1017/S002211208900100X
https://doi.org/10.1017/S002211208900100X
https://doi.org/10.1063/1.857767
https://doi.org/10.1063/1.857767
https://doi.org/10.1063/1.857767
https://doi.org/10.1063/1.857767
https://doi.org/10.2514/1.42644
https://doi.org/10.2514/1.42644
https://doi.org/10.2514/1.42644
https://doi.org/10.2514/1.42644
https://doi.org/10.1016/S0022-460X(87)80201-8
https://doi.org/10.1016/S0022-460X(87)80201-8
https://doi.org/10.1016/S0022-460X(87)80201-8
https://doi.org/10.1016/S0022-460X(87)80201-8
https://doi.org/10.1016/j.proci.2004.08.205
https://doi.org/10.1016/j.proci.2004.08.205
https://doi.org/10.1016/j.proci.2004.08.205
https://doi.org/10.1016/j.proci.2004.08.205
https://doi.org/10.1017/S0022112009990681
https://doi.org/10.1017/S0022112009990681
https://doi.org/10.1017/S0022112009990681
https://doi.org/10.1017/S0022112009990681



