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Most large-scale planetary magnetic fields are thought to be driven by low Rossby
number convection of a low magnetic Prandtl number fluid. Here kinematic dynamo action
is investigated with an asymptotic, rapidly rotating dynamo model for the plane layer
geometry that is intrinsically low magnetic Prandtl number. The thermal Prandtl number
and Rayleigh number are varied to illustrate fundamental changes in flow regime, ranging
from laminar cellular convection to geostrophic turbulence in which an inverse energy
cascade is present. A decrease in the efficiency of the convection to generate a dynamo,
as determined by an increase in the critical magnetic Reynolds number, is observed as the
buoyancy forcing is increased. This decreased efficiency may result from both the loss of
correlations associated with the increasingly disordered states of flow that are generated, and
boundary layer behavior that enhances magnetic diffusion locally. We find that the spatial
characteristics of the large-scale magnetic field is dependent only weakly on changes in flow
behavior. In contrast, the behavior of the small-scale magnetic field is directly dependent
on, and therefore shows significant variations with, the small-scale convective flow field.
However, our results are limited to the linear, kinematic dynamo regime; future simulations
that include the Lorentz force are therefore necessary to assess the robustness of these
results.

DOI: 10.1103/PhysRevFluids.1.083701

I. INTRODUCTION

Most planets within the solar system possess large-scale magnetic fields that are thought to
be the result of dynamo action occurring within their electrically conducting fluid interiors [1].
Detailed spatiotemporal observations of these systems are lacking, therefore placing emphasis on
the development of theory and models for understanding the physical mechanisms responsible
for the generation of planetary magnetic fields (e.g., [2]). Generally speaking, modeling geo- and
astrophysical fluids is difficult due to the broad range of spatial and temporal scales that must
be resolved. Although significant advances in the understanding of planetary dynamos have been
made by direct numerical simulation (DNS) of the full set of governing magnetohydrodynamic
equations, accessing planetarylike flow regimes with DNS is currently impossible with modern-day
high-performance computing environments [3]. An alternative, but complementary strategy to DNS,
is the development of reduced models that filter dynamically unimportant phenomena and result
in simplified governing equations. One benefit of reduced models is that they are significantly
more efficient to solve numerically given that various terms from the equations are systematically
removed or simplified (e.g., [4]). As a result of these simplifications, reduced models can provide
enhanced physical interpretation and insight into observed hydrodynamic and magnetohydrodynamic
processes. In the present work we utilize an asymptotic model recently developed by Calkins et al.
[5] to examine the behavior of convection-driven kinematic dynamo action in the limit of rapid
rotation.
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It is widely believed that most planetary dynamos are powered by buoyancy-driven motions
associated with the convective transport of heat and chemicals. Moreover, it is thought that the
Coriolis force constrains fluid motions within the interiors of most planets given that the observed
large-scale magnetic fields are predominantly aligned with the rotation axis of the planet [1]. Indeed,
it was recognized early on in the seminal studies of Parker [6] and Steenbeck et al. [7] that the
Coriolis force provides a robust mechanism for breaking the reflectional symmetry of fluid motions;
this is necessary for large-scale magnetic field generation.

The rotating convection dynamics of an Oberbeck-Boussinesq fluid depend upon three
nondimensional parameters:

Ra = gγ�T H 3

νκ
, Ek = ν

2�H 2
, Pr = ν

κ
, (1)

where the Rayleigh number Ra controls the strength of the buoyancy force, the Ekman number Ek
is the ratio of viscous and Coriolis forces, and the thermal Prandtl number Pr is the ratio of viscous
to thermal diffusivity. Here H is the depth of the fluid layer and �T represents the (constant)
temperature difference between the lower and upper solid boundaries. The fluid is characterized by
thermal expansion coefficient γ , kinematic viscosity ν, and thermal diffusivity κ . The rotation rate
of the system is assumed constant and parallel to the axial direction ẑ, i.e., � = �̂z.

The rapidly rotating convection regime is characterized by the asymptotic limits Ek → 0 and
Pr � Ek, with Ra = O(Ek−4/3) [8]. In this regime, the Coriolis and pressure gradient forces are in
approximate balance, resulting in quasigeostrophic (QG) dynamics. Linear theory has established
that the horizontal wavelength in QG convection scales as L ∼ HEk1/3, such that the aspect ratio
H/L = Ek−1/3 � 1. Provided the Rossby number

Ro = U

2�L
(2)

is also small, these scalings also hold in the nonlinear regime (e.g., [9]). Here U is a characteristic
velocity scale of the convection and the Rossby number characterizes the ratio of inertial forces to
the Coriolis force. If we employ a viscous scaling for the velocity U = ν/L, we have

ε ≡ Ro = Ek1/3, (3)

where we have utilized the aspect ratio scaling previously mentioned.
Childress and Soward [10] exploited the asymptotic properties of QG convection to develop

the first reduced dynamo model for rotating convection. They focused on small amplitude weakly
nonlinear motions in which the small-scale (convective) Reynolds number

Re = UL

ν
(4)

is small, and the magnetic Prandtl number

Pm = ν

η
, (5)

where η is the magnetic diffusivity, is order unity. Dynamo action was investigated in detail by
Soward [11] and Fautrelle and Childress [12] for magnetic fields of varying strengths within the
context of the Childress-Soward dynamo model. It was shown that QG convection acts as an efficient
magnetic field generator in the sense that growing magnetic fields are observed just above the onset
of convection with a large-scale magnetic field that oscillates in time.

The quasigeostrophic dynamo model (QGDM) recently developed by Calkins et al. [5] is a
fully nonlinear generalization of the Childress-Soward dynamo model and is valid in the limit
(Ro,Ek) → 0 and Re = O(1), where we stress again that this is the Reynolds number based on
the small, convective scale. The QGDM can thus be used to explore both linear (i.e., kinematic)
and nonlinear dynamo behavior for all rapidly rotating convection regimes from near the onset of
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convection to strongly forced, convective turbulence. Distinct versions of the QGDM were developed
for both Pm = O(1) and Pm � 1, and it was shown that the Lorentz force and the reduced induction
equations have unique forms for these two cases. Calkins et al. [13] used the QGDM to investigate
the kinematic problem, in which the Lorentz force in the momentum equations is neglected, utilizing
the single wave number solutions considered by Bassom and Zhang [14] and Julien and Knobloch
[15,16]. It was shown that low Pm dynamos are readily attainable for low Ro convection, with low
Pr convection the most efficient given the reduced critical Rayleigh number in comparison to high
Pr fluids.

We stress here that the characteristics of kinematic dynamo action depend crucially on the value
of Pm [2]; for rapidly rotating flows there is also a sensitivity to the Ekman number (e.g., [17]).
Dormy [18] argues that a distinguished limit should be sought where both Pm and Ek are small
with 1 � Pm � Ek for the dynamics to begin to replicate that of planetary interiors. As shown
by Calkins et al. [5], the dynamo utilized here, in contrast with virtually all numerical models of
planetary dynamos, does satisfy this inequality.

In the absence of magnetic field, the QGDM is equivalent to the QG convection equations
first developed by Julien et al. [9] and extensively explored via simulations by Sprague et al.
[19] and Julien et al. [4]. Neglecting the buoyancy force and dissipation, these equations are also
mathematically identical to those developed by Stewartson and Cheng [20] in their investigation
of low frequency (i.e., geostrophic) inertial waves in deep fluid layers (see also [21]). The linear,
spherical convection investigations of Roberts [22] and Busse [23], and later work by Jones et al.
[24] and Dormy et al. [25], utilized a mathematically identical approach that exploited a leading-
order geostrophic balance and spatial anisotropy. Moreover, reduced QG convection equations
were recently developed for the three-dimensional cylindrical annulus geometry [26], extending
the small-slope two-dimensional model first developed by Busse [23]. Collectively, these previous
investigations highlight the importance of developing and employing asymptotic models for the
purpose of improving our understanding of flow regimes that are characteristic of planets.

Simulations of the QG convection equations have identified four primary flow regimes in rapidly
rotating, nonmagnetic Rayleigh-Bénard convection [4,19]. These regimes can be identified by
the predominance of a given flow morphology, and can be referred to as the (1) cellular, (2)
convective Taylor column, (3) plume, and (4) geostrophic turbulence regimes. Each of these regimes
is characterized by unique heat transfer behavior and flow statistics [27,28]. The final geostrophic
turbulence regime is dominated by an inverse cascade that generates a depth invariant dipolar vortex
which fills the horizontal extent of the computational domain [29]. An identical inverse cascade
mechanism was identified previously in stochastically forced, rotating homogeneous turbulence
[30,31], and subsequent DNS studies have demonstrated it as a robust phenomenon in rapidly
rotating convection [32–34]. DNS investigations [32] and laboratory experiments [35,36] show
excellent agreement with the simulations of the QG convection equations. In particular, Stellmach
et al. [32] showed that it is necessary to reach very small Ekman numbers (Ek � 10−7) and
Rossby numbers (Ro � 0.05) to reach the asymptotic regime in which the dipolar structure of the
inverse-cascade-generated vortex is preferred over the cyclonic vortices that become predominant
in the broken-symmetry regime present at higher Ekman and Rossby numbers [31,33,34,37].

Many previous DNS dynamo investigations have been undertaken in the Rayleigh-Bénard, plane
layer geometry [38–45]. Investigations in spherical geometries are of obvious importance for planets
but must employ lower efficiency numerics typically and are therefore more restricted in parameter
space [35]. The DNS investigation of Stellmach and Hansen [40] confirmed the predictions of
Soward [11] that a strong, time-oscillatory mean magnetic field can be generated near the onset of
convection. Tilgner [43,44] found a transition from the mean field dynamo mechanism of Childress
and Soward [10] to a dynamo of fluctuation type. The recent work of Guervilly et al. [45] examined
the influence of the inverse cascade and associated large-scale vortex on the resulting dynamo; they
found that for Pm � 1, the mean magnetic field is weak and the inverse cascade is less pronounced,
in comparison to a case at Pm = 0.2 where a significant inverse cascade and mean magnetic field
are present. It should be noted that all of these investigations, despite the advantage of being in a
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computationally simple plane layer, are at parameters well away from those relevant to planetary
interiors.

In the present work we extend the single mode kinematic investigation of Calkins et al. [13]
to the hydrodynamically fully nonlinear, multimode case by performing numerical simulations
of the QG convection equations in which all of the dynamically active scales are present. As
mentioned previously, these equations have been studied in some detail; our main focus is utilizing
the simulations to collect the necessary statistics for studying the onset of dynamo action. Moreover,
we utilize two different Prandtl numbers to illustrate the influence of fluid properties. We stress that
our results are limited to the linear (with respect to the magnetic field), kinematic dynamo regime in
the present work.

II. METHODS

A. The quasigeostrophic dynamo model (QGDM)

A brief overview of the derivation and main features of the QGDM are given in the present
section; for a detailed discussion the reader is referred to [5]. The basic premise of the QGDM is
similar to the Childress-Soward dynamo model in that we exploit the anisotropic structure of the
convection, where H/L = ε−1 and ε = Ro. This characteristic anisotropy in rotating convection
motivates the use of multiple scale asymptotics in the space (along the axial direction) and time
dimensions, and results in the expansions (e.g., [46])

∂z → ∂z + ε∂Z, ∂t → ∂t + ε3/2∂τ + ε2∂T , (6)

where Z = εz is the large-scale vertical coordinate over which convection occurs, τ = ε3/2t is the
slow mean magnetic field time scale, while T = ε2t is the slow mean temperature time scale. The
slow and fast independent variables are therefore denoted by (Z,τ,T ) and (x,t), respectively. Slow
horizontal scales can also be utilized, though we neglect this effect in the present work (for a more
general discussion, see [5]).

All of the dependent variables are decomposed into mean and fluctuating variables according to

f (x,Z,τ,T ) = f (Z,τ,T ) + f ′(x,Z,τ,T ), (7)

with the fast averaging operator defined by

f (Z,τ,T ) = lim
t ′,V→∞

1

t ′V

∫
t ′,V

f (x,Z,t,τ,T ) dx dt, f ′ ≡ 0, (8)

where V is the small-scale fluid volume. Each variable is then expanded as a power series according
to

f (x,Z,t,τ,T ) = f 0(Z,τ,T ) + f ′
0(x,Z,t,τ,T ) + ε1/2[f 1/2(Z,τ,T ) + f ′

1/2(x,Z,t,τ,T )]

+ ε[f 1(Z,τ,T ) + f ′
1(x,Z,t,τ,T )] + O(ε3/2). (9)

We substitute the above expansions for each variable into the governing equations, separate into
mean and fluctuating equations, and collect terms of equal asymptotic order. By construction, the
leading-order balance in the fluctuating momentum equation is geostrophy

ẑ × u′
0,⊥ = −∇⊥p′

1, (10)

where the (fluctuating) geostrophic velocity is u′
0,⊥ = (u′

0,v
′
0,0), p′

1 is the fluctuating pressure, and
∇⊥ = (∂x,∂y,0). Mass conservation at leading order is horizontally nondivergent

∇⊥ · u′
0 = 0, (11)
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which allows us to define the geostrophic stream function u′
0,⊥ = −∇ × ψ ′

0̂z and the corresponding
axial vorticity ζ ′

0 = ∇2
⊥ψ ′

0. Vortex stretching is captured via mass conservation at order ε,

∇ · u′
1 + ∂Zw′

0 = 0, (12)

where the higher order ageostrophic velocity field is given by u′
1.

The prognostic momentum equation is obtained at O(1) in the asymptotic expansion. Closure
of this equation is obtained by imposing solvability conditions; the end result is that the three
components of the momentum equation are reduced to a vertical vorticity equation and a vertical
momentum equation that do not depend upon the small-scale vertical coordinate z. Similar reductions
are performed for the heat and magnetic induction equations.

Hereafter, we drop subscripts denoting asymptotic ordering. The complete set of reduced
equations, nondimensionalized using the small-scale viscous diffusion time L2/ν, is given by

D⊥
t ∇2

⊥ψ ′ − ∂Zw′ = B · ∇⊥j ′
z + ∇4

⊥ψ ′, (13)

D⊥
t w′ + ∂Zψ ′ = R̃a

Pr
ϑ ′ + B · ∇⊥b′

z + ∇2
⊥w′, (14)

D⊥
t ϑ ′ + w′∂Zϑ = 1

Pr
∇2

⊥ϑ ′, (15)

∂T ϑ + ∂Z(w′ϑ ′) = 1

Pr
∂2
Zϑ, (16)

∂τ B = ẑ × ∂ZE + 1

P̃m
∂2
ZB, (17)

0 = B · ∇⊥u′ + 1

P̃m
∇2

⊥b′. (18)

Here the temperature and magnetic field vector are given by ϑ = ϑ + εϑ ′ and B = B + ε1/2b′,
respectively. The components of the mean and fluctuating magnetic field vectors are denoted by B =
(Bx,By,0) and b′ = (b′

x,b
′
y,b

′
z) and the corresponding fluctuating current density is j′ = (j ′

x,j
′
y,j

′
z) =

(∂yb
′
z, − ∂xb

′
z,∂xb

′
y − ∂yb

′
x). The mean emf is denoted by E = (u′ × b′).

The reduced Rayleigh number and the reduced magnetic Prandtl number appearing in the above
system of equations are defined by

R̃a = ε4Ra, Pm = ε1/2P̃m. (19)

The asymptotically reduced wave number and frequency are defined by k̃ = Ek1/3k and ω̃ = Ek2/3ω,
where k and ω are the unscaled values. The critical reduced Rayleigh number, wave number, and
frequency characterizing the onset of convection are denoted as R̃ac, k̃c, and ω̃c. The onset of
convection is steady (ω̃c = 0) for Pr � 0.68, in which case R̃ac ≈ 8.6956 and k̃c ≈ 1.3048 [8,15].
In the present work we discuss results for Pr = 1 and Pr = 10.

The boundary conditions for the reduced system are impenetrable, stress free, fixed temperature,
and perfectly electrically conducting:

w′ = 0 at Z = 0,1, (20)

ϑ = 1 at Z = 0, and ϑ = 0 at Z = 1, (21)

∂ZB = 0 at Z = 0,1. (22)

Due to the asymptotic reduction procedure, the reduced fluctuating heat and magnetic field equations
(15) and (18) do not contain vertical derivatives with respect to the fluctuating temperature and
magnetic field variables. As a result of this fact, no boundary conditions are explicitly enforced
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for these variables. However, evaluating and analyzing Eqs. (15) and (18) at the top and bottom
boundaries show that both the fluctuating temperature and fluctuating magnetic field will have the
same class (e.g., perfectly conducting) of boundary conditions enforced implicitly as are applied
to their mean counterparts explicitly in Eqs. (21) and (22). For instance, evaluating Eq. (15) at the
bottom boundary utilizing Eq. (20) gives

D⊥
t ϑ ′|Z=0 = 1

Pr
∇2

⊥ϑ ′|Z=0. (23)

This is an advection diffusion equation with no inhomogeneous source terms; we must therefore have
ϑ ′|Z=0 → 0 as t → ∞. The same condition holds at the top boundary (Z = 1) given the impenetrable
boundary conditions on the fluctuating velocity. The implicit fixed temperature boundary conditions
for the fluctuating temperature are then

ϑ ′ = 0 at Z = 0,1. (24)

Taking the axial derivative of the horizontal components of Eq. (18) gives

0 = ∂ZB · ∇⊥u′
⊥ + B · ∇⊥(∂Zu′

⊥) + 1

P̃m
∇2

⊥(∂Zb′
⊥), (25)

where b′
⊥ = (b′

x,b
′
y,0). Since ∂ZB = ∂Zu′

⊥ = 0 at both the top and bottom boundaries, we must
therefore have

∂Zb′
⊥ = 0 at Z = 0,1. (26)

Similarly, evaluating the vertical component of Eq. (18) at the top and bottom boundaries shows that

b′
z = 0 at Z = 0,1. (27)

Along the same line of reasoning, one can show that b′ will also satisfy perfectly electrically
insulating boundary conditions if such boundary conditions are imposed on the mean magnetic field.

We note that neither the thermal boundary conditions nor the magnetic boundary conditions
influence the main results of the present work. In the limit of rapid rotation, fixed temperature
and fixed heat flux thermal boundary conditions become equivalent provided that no large-scale
horizontal modulation is present [47]. Moreover, for the present kinematic dynamo problem both
perfectly conducting and perfectly insulating electric boundary conditions yield identical stability
criteria (e.g., see [48]).

In the present investigation we consider only the kinematic dynamo problem in the sense that the
Lorentz force terms appearing in Eqs. (13) and (14) are ignored. This is done to determine the region
of parameter space for which exponentially growing magnetic fields are present. The equations
are therefore linear in the magnetic field vectors B and b′, whose solutions can be sought via an
eigenvalue formulation of Eqs. (17) and (18), and Eq. (22) once u′ is determined from Eqs. (13)–(16),
(20), and (21).

With the use of Eq. (18) we can eliminate b′ and the two components of the emf become

E i = αijBj , (28)

where the pseudotensor αij is given by

αij = P̃m

(
w′∇−2

⊥ ∂xv′ − v′∇−2
⊥ ∂xw′ w′∇−2

⊥ ∂yv′ − v′∇−2
⊥ ∂yw′

−w′∇−2
⊥ ∂xu′ + u′∇−2

⊥ ∂xw′ −w′∇−2
⊥ ∂yu′ + u′∇−2

⊥ ∂yw′

)
, (29)

and ∇−2
⊥ denotes the inverse horizontal Laplacian operator.

For sufficiently long simulation times of the hydrodynamic problem, the numerical simulations
show that, as expected, the α tensor is diagonal, symmetric, and isotropic such that α12 = α21 = 0
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and α11 = α22 = α. The induction equations then simplify to become

∂τBx = −∂Z(αBy) + 1

P̃m
∂2
ZBx, (30)

∂τBy = ∂Z(αBx) + 1

P̃m
∂2
ZBy, (31)

where the α tensor is now referred to solely by the single pseudoscalar quantity α hereafter. For
specificity, in what follows we refer to α = α11 as defined in Eq. (29), which can also be written
more simply as

α = P̃m (w′∇−2
⊥ ∂xv′ + ∂xv′∇−2

⊥ w′). (32)

The particularly simple form of α given by Eq. (32) allows us to solve the kinematic dynamo problem
via a generalized eigenvalue formulation of Eqs. (30) and (31). Here we take the typical ansatz for
the mean magnetic field such that

B(Z,τ ) = B̂(Z)exp(στ ), (33)

where B̂(Z) is the complex vertical eigenfunction, the complex eigenvalue is σ = σg + iσd , and the
growth rate and dynamo oscillation frequency are denoted by σg and σd , respectively. We present
results only for the marginal state of dynamo action in which σg ≡ 0.

That α can be written solely in terms of the velocity field is a direct result of the small magnetic
Prandtl number limit that leads to the simplified fluctuating induction equation (18). Equation (18)
is often referred to as the quasistatic form of the induction equation and is well known from previous
investigations as a limit associated with requiring the small-scale magnetic Reynolds number

Rm = RePm (34)

to be asymptotically small. In the present work we assume Re = O(1) so that Pm � 1 if we are to
have Rm � 1. The quasistatic form of the induction equation has been discussed previously with
regards to the mean field theory of Steenbeck et al. [7] and Moffatt [49]. Like the asymptotic theory
utilized in the development of the QGDM, these previous investigations required scale separation to
justify the splitting of the dependent variables into mean and fluctuating components. Calkins et al.
[5] showed that scale separation can also be assured when Rm = O(1) [i.e., Pm = O(1)] for the case
of rapidly rotating, anisotropic motions, though for this case α can no longer be written in a form as
simple as that given by Eq. (32). Moreover, the first-order-smoothing approximation, characterized
by the absence of terms involving products of u′ and b′ in the fluctuating induction equation (e.g.,
b′ · ∇⊥u′), is a fundamental characteristic of the quasistatic form of the induction equation but is no
longer valid when Rm = O(1) (e.g., see [5]).

It is informative to discuss the asymptotic relationship between nondimensional parameters based
on the small, convective length scale with those based on the large depth of the fluid H . In particular,
the large- and small-scale magnetic Reynolds numbers are related by

RmH = Rm

ε
, (35)

where RmH = UH/η. For the small magnetic Reynolds number limit employed in the present work
this relationship becomes

RmH = R̃m

ε1/2
, (36)

where R̃m = O(1) is the reduced magnetic Reynolds number. The above relationship shows that
RmH � 1 despite the fact that Rm � 1. Similarly, the small-scale and large-scale Reynolds numbers
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are related by

ReH = Re

ε
, (37)

and thus ReH � 1 given that Re = O(1) and ε � 1.
The vertically averaged mean magnetic energy equation is given by 〈B·(17)〉 to give

∂τ

〈
1

2
B

2
〉

= 〈αB · J〉 − 1

P̃m
〈J2〉, (38)

where the angled brackets denote a vertical average and the mean current density is J =
(−∂ZBy,∂ZBx,0). Marginal stability thus corresponds to 〈αB · J〉 = P̃m

−1〈J2〉, showing that there
must be a nonzero vertically averaged alignment between the two currents αB and J for large-scale
dynamo action to occur, as noted by Moffatt [49].

A quantity that is thought to be important in dynamo theory is the (mean) kinetic helicity
H = u′ · ζ ′ (e.g., [50]), where the asymptotically reduced velocity and vorticity vectors are given by

u′ = −∂yψ
′ x̂ + ∂xψ

′ ŷ + w′ ẑ, (39)

ζ ′ = ∂yw
′ x̂ − ∂xw

′ ŷ + ζ ′ ẑ. (40)

We then have

H = 2 w′ζ ′. (41)

This simplified form of the helicity results from the fact that the horizontal components of u′ and ζ ′
can both be represented by the gradients of two scalars, and only the fast horizontal derivatives are
present. For single wave number solutions it was shown that α ∝ H [13]. Comparison of Eqs. (32)
and (41) shows, however, that α and H are not as simply related for general, multimode convection.
Indeed, we show below that the kinetic helicity and α exhibit significant differences in spatial
structure and temporal variations, though the magnitudes of the two quantities do show similar
trends with increasing R̃a.

We also utilize the relative kinetic helicity defined as

Hr = u′ · ζ ′√
u′ · u′

√
ζ ′ · ζ ′

. (42)

A maximally helical flow is one in which |Hr | = 1 at some point in space. For convection at onset
R̃a ≈ R̃ac, the (linear) functional forms of ζ ′ and w′ result in maximum helicity at two axial positions
(Z ≈ 0.3041 and 0.6959 for k̃c = 1.3048) where the two functions are perfectly correlated; as R̃a is
increased this correlation becomes reduced (e.g., see Fig. 5).

B. Numerical methods

The velocity field is computed by solving Eqs. (13)–(16) in the absence of the Lorentz force
terms. The equations are discretized in the horizontal and vertical dimensions with Fourier series and
Chebyshev polynomials, respectively. The time stepping is performed with a third order Runge-Kutta
scheme developed by Spalart et al. [51]. The reader is referred to [19] for further details of the
numerical methods employed in the simulations. A summary of the numerical simulations used in
the present work is given in Table I.

The horizontal dimensions of the computational domain are specified in terms of multiples
of the critical horizontal wavelength of the convection, L̃c; for steady convection L̃c = 2π/̃kc ≈
4.8154. With respect to collecting useful statistics in as short a wall-clock time as possible (given a
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TABLE I. Details of the numerical simulations used in the present study. Here Pr is the Prandtl number,
R̃a is the asymptotically scaled Rayleigh number, Nx = Ny is the horizontal spatial resolution, and NZ is the
vertical spatial resolution. The numerical output is the small-scale Reynolds number Re, the critical reduced
magnetic Prandtl number P̃md , the oscillation frequency of the dynamo, σd , and the vertical rms relative helicity
Hr,rms. In each case the nondimensional horizontal box dimensions are given in integer multiples of the critical
horizontal wavelength L̃c = 4.1854.

Pr R̃a Box Dimensions Nx × Ny × NZ Re P̃md σd Hr,rms

1 10 10L̃c × 10L̃c 64 × 64 × 65 0.68 4.42 3.12 0.667
1 20 10L̃c × 10L̃c 96 × 96 × 65 3.40 1.12 12.69 0.341
1 30 10L̃c × 10L̃c 96 × 96 × 129 7.01 0.75 19.28 0.160
1 40 10L̃c × 10L̃c 128 × 128 × 129 10.4 0.64 22.93 0.0989
1 50 20L̃c × 20L̃c 256 × 256 × 129 13.8 0.55 26.78 0.0763
1 60 20L̃c × 20L̃c 256 × 256 × 193 16.6 0.47 31.46 0.0622
1 80 20L̃c × 20L̃c 384 × 384 × 193 22.8 0.37 39.95 0.0482
1 100 20L̃c × 20L̃c 384 × 384 × 257 31.8 0.32 46.58 0.0418
10 10 10L̃c × 10L̃c 64 × 64 × 65 0.065 39.30 0.35 0.680
10 20 10L̃c × 10L̃c 64 × 64 × 65 0.29 9.39 1.51 0.582
10 30 10L̃c × 10L̃c 96 × 96 × 97 0.56 5.13 2.80 0.541
10 40 10L̃c × 10L̃c 96 × 96 × 97 0.88 3.26 4.43 0.539
10 50 10L̃c × 10L̃c 96 × 96 × 97 1.25 2.33 6.21 0.511
10 60 10L̃c × 10L̃c 96 × 96 × 97 1.68 1.98 7.32 0.405
10 80 10L̃c × 10L̃c 128 × 128 × 129 2.51 1.48 9.82 0.311
10 100 10L̃c × 10L̃c 128 × 128 × 129 3.34 1.28 11.35 0.233
10 150 10L̃c × 10L̃c 256 × 256 × 257 5.33 0.96 15.11 0.165
10 200 10L̃c × 10L̃c 384 × 384 × 385 6.96 0.88 16.80 0.119

statistically stationary convective state), there is a trade-off between the required simulation time and
the horizontal dimensions. For Pr = 10 cases we found that 10L̃c × 10L̃c dimensions are sufficient
to collect converged statistics. For Pr = 1 and R̃a < 50, 10L̃c × 10L̃c dimensions are also sufficient.
For R̃a � 50 the presence of the inverse cascade resulted in the requirement of impractical wall-clock
times for the collection of statistics; the dimensions were then increased to 20L̃c × 20L̃c, which
greatly accelerated the convergence rate of the statistics.

Solving the generalized eigenvalue problem requires that α is averaged over horizontal planes
and for sufficiently long integration times. A strategy that we employ to speed up the convergence of
α to a well-defined statistically steady state is to reflect the profile about the Z midplane (Z = 0.5),
multiply by −1, and take the average of the resulting profiles. In particular, this procedure allows us
to obtain an α profile that is perfectly antisymmetric with respect to Z = 0.5 and, therefore, more
representative of the stationary state.

The generalized eigenvalue problem for the complex eigenvalue σ and the mean magnetic
field eigenfunction B̂ is solved utilizing MATLAB’s sparse eigenvalue solver “sptarn.” Chebyshev
polynomials were used to discretize the vertical derivatives appearing in the governing equations.
We use the same number of Chebyshev polynomials to solve the eigenvalue problem as are used
for the numerical simulations (see Table I). To generate a numerically sparse system, we use the
Chebyshev three-term recurrence relation and solve directly for the spectral coefficients with the
boundary conditions enforced via “tau” lines [52]. The nonconstant coefficient terms appearing in
the mean induction equations are treated efficiently by employing standard convolution operations
for the Chebyshev polynomials [53,54]. An identical approach was used by Calkins et al. [13] and
also for the linear stability of compressible convection [55,56].
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FIG. 1. Volumetric renderings of the small-scale vertical vorticity ζ ′ illustrating each of the four flow
regimes observed in the convection simulations: (a) cellular regime, Pr = 1, R̃a = 10; (b) convective Taylor
column regime, Pr = 10, R̃a = 60; (c) plume regime, Pr = 10, R̃a = 200; and (d) geostrophic turbulence
regime, Pr = 1, R̃a = 100.

III. RESULTS

A. Convection characteristics

It is helpful to review some of the important characteristics of the nonmagnetic convection
that are pertinent to the dynamo problem. Figure 1 illustrates each of the four flow regimes with
volumetric renderings of the axial vorticity ζ ′. The cellular regime shown in Fig. 1(a) is distinguished
by the cellular horizontal structure of the flow and the relative unimportance of inertia and thermal
advection. The convective Taylor column (CTC) regime is exemplified by Fig. 1(b) in which the flow
is characterized by sparsely populated, axially coherent structures. The plume regime of Fig. 1(c)
occurs as the Rayleigh number is increased further and the CTCs become unstable and lose axial
alignment. For Pr = 1 the flow transitions to a state of geostrophic turbulence near R̃a ≈ 50, and the
strongly turbulent case shown in Fig. 1(d) is representative of the flow morphology in this regime.
For a detailed report of flow morphology, statistics, and balances in rapidly rotating convection we
refer the reader to Ref. [4].

In Fig. 2 we show the convective-scale Reynolds number as a function of R̃a for all of the cases
investigated. Note that in the rapidly rotating, quasigeostrophic limit the Reynolds number based on
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FIG. 2. Convective-scale Reynolds number for all of the simulations. Re is calculated from the vertically
averaged rms vertical velocities.

the depth of the fluid layer is given by ReH = ε−1Re, and thus is intrinsically large for Re = O(1).
The plotted values of Re were obtained by taking vertical averages of the rms vertical velocities,
where the mean is defined as an average over the horizontal plane and time. The Reynolds numbers
for the different Prandtl number cases are separated approximately by an order of magnitude for a
given value of R̃a, and the data points for both cases show the same general trend with increasing
R̃a. For Pr = 1, the turbulent regime (R̃a � 50) is characterized by Re � 13. For Pr = 10 the
highest Reynolds number simulation carried out was for R̃a = 200 where Re ≈ 7; in comparison,
a similar value of the Reynolds number is observed for Pr = 1 at a much lower Rayleigh number
of R̃a = 30.

Profiles of H and α are shown in Fig. 3 for all of the simulations. We do not find a significant
change in the shape of α as R̃a is increased, though the location of the maximal values does exhibit
a shift towards the boundaries of the domain with increasing R̃a. The H boundary layer is more
pronounced for Pr = 1 where higher Reynolds numbers are accessed. The H profiles show more
obvious boundary layer behavior for both Prandtl numbers. That α and H possess a remarkably
smooth spatial structure for the entire investigated range of R̃a is likely a result of the fact that they
are both large-scale (mean) quantities that require spatiotemporal averaging. Similar behavior for
other mean quantities, such as the mean temperature profile ϑ , is also observed (e.g., see [4]).

In Ref. [13] kinematic dynamo action of the QGDM was investigated for the specific case of
single wave number (single mode) solutions. In this case the advective nonlinearities vanish, but the
wave number k̃ remains a variable parameter. To determine the influence of k̃ on dynamo behavior
two types of solutions were investigated: (1) the horizontal wave number was fixed at the critical
(linear) value k̃ = k̃c for all R̃a, and (2) the wave number was calculated to maximize the heat
transfer as R̃a increased (e.g., see [57,58]). For brevity we denote the single mode solutions with a
fixed horizontal wave number by SM and those solutions in which k̃ is varied to maximize the heat
transfer as SMmax. We find that the H profiles for the multimode results investigated in the present
study closely resemble the SMmax helicity profiles given in Ref. [13]. In contrast, the α profiles are
more reminiscent of the SM solutions which become self-similar with increasing R̃a (e.g., see Fig. 4
of [13]).

The rms values of H and α are given in Fig. 4 and show that both functions have nearly identical
scaling behavior with increasing Rayleigh number, though we find that H increases slightly more
rapidly when viewed on a linear abscissa scale. As for the Reynolds number based on the rms
convective velocity shown in Fig. 2, the influence of the Prandtl number appears only to influence
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FIG. 3. Vertical profiles of helicity for (a) Pr = 1 and (b) Pr = 10 and vertical profiles of α/P̃m for
(c) Pr = 1 and (d) Pr = 10 for all investigated Rayleigh numbers.
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FIG. 4. Vertical rms values of the helicity H and α as a function of R̃a for the two different Prandtl numbers.
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FIG. 5. Profiles of the relative helicity Hr for (a) Pr = 1 and (b) Pr = 10 for all of the investigated R̃a;
higher values of R̃a have smaller overall values of Hr (see Fig. 6).

the magnitude of the rms values for each function, but the general qualitative increase with R̃a is
found for both Prandtl numbers.

Figure 5 shows profiles of the relative helicity Hr . For both Prandtl numbers the general trend
observed is an overall decrease in the magnitude of Hr and a shift towards the boundaries of the
maximum value of Hr ; these results are in excellent agreement with the DNS study of Schmitz and
Tilgner [59]. For Pr = 10 we find that the two profiles for R̃a = 30 and R̃a = 40 possess nearly
identical Hr profiles despite the fact that the magnitudes of both α and H are different. This situation
will arise if the solutions have the same spatial form, but differing amplitudes.

Vertical rms values of the relative helicity Hr,rms are given in Fig. 6. Given the results of Fig. 5
it is unsurprising to see the general decrease of Hr,rms with increasing R̃a; this result is again in
excellent agreement with Schmitz and Tilgner [59] and the spherical investigation of Soderlund et al.
[60] where the same behavior was observed. We find that Hr,rms decreases more rapidly for Pr = 1
than for Pr = 10; the same Prandtl number trend was also observed in Ref. [59]. The more rapid
Hr,rms decrease observed for Pr = 1 is due likely to the enhanced role of inertia and more irregular
flows. Given that the reduced system of equations models convection only in the low Rossby number
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FIG. 6. Vertical rms values of the relative helicity, Hr,rms, as a function of R̃a for all of the cases investigated.
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FIG. 7. Comparison of the instantaneous, horizontally averaged (gray) and time and horizontally averaged
(black) (a) α/P̃m and (b) H profiles for Pr = 1 and R̃a = 100. Note the significant variation in the instantaneous
(gray) α profiles relative to the time-averaged (black) profiles in (a); significantly less temporal variation is
observed for H in (b).

regime, we can say that the overall decrease in Hr,rms need not be associated with a loss in rotational
constraint. Rather, the decrease of Hr,rms is due to the change in convective flow behavior to more
disordered states where the maximally helical nature of convection near onset (R̃a ≈ R̃ac) is lost.
Nevertheless, it should be recalled that the rms values of both H and α still show a monotonic
increase with R̃a (see Fig. 4), though the rate of growth appears to slow with increasing R̃a.

The simulations show that α is characterized by more pronounced temporal variations in
comparison toH, which converges much more rapidly over the course of a simulation. This is similar
behavior to that observed by Cattaneo and Hughes [41], who compared the statistical properties of α

in relation to those for H for moderately rotating turbulent convection. In Fig. 7 we have plotted both
the instantaneous, horizontally averaged (in gray) profiles and the time and horizontally averaged
profiles (in black). One of the most obvious differences between α and H is the extreme temporal
variability shown in the former quantity where large variations in the profile are observed. For H the
instantaneous profiles possess the same general characteristics as the time-averaged profile, whereas
the same cannot be said of α. This difference in behavior may be due to the presence of the inverse
Laplacian in the definition of α [see Eq. (32)] since this operator tends to enhance low wave number,
large-scale structures that possess significant kinetic energy and large temporal fluctuations.

B. Kinematic dynamos

For a given value of R̃a, we compute the minimum value of P̃m that yields a mean magnetic field
with zero growth rate (i.e., marginal stability with σg ≡ 0); the corresponding critical value of the
magnetic Prandtl number is denoted as P̃md . As in Ref. [13], all of the dynamos are found to be
oscillatory with a critical dynamo frequency σd . Figures 8(a) and 8(b) show P̃md and σd versus R̃a.
The results from the steady single mode solutions of Calkins et al. [13] are also shown. Despite the
observed changes in flow regime over the investigated range of R̃a, we find little evidence for these
changes in the dynamo behavior; for steady single mode solutions these results are insensitive to Pr.
This observation might have been anticipated given the similarities found in the α profiles for all R̃a
of Fig. 3. For instance, for Pr = 1 the flow transitions to turbulence near R̃a = 50, yet the P̃md and σd

data do not show any pronounced changes in this region of parameter space. This result might seem
surprising given that such transitions in flow regime are characterized by distinct statistics [4,28].

In general, the results show that the magnitude of the P̃md -R̃a slope is a decreasing function of
R̃a, resulting in a general decrease in the efficiency of the convection-driven dynamo. It is possible
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FIG. 8. Kinematic dynamo results showing (a) the critical magnetic Prandtl number P̃md and (b) the critical
dynamo frequency σd versus R̃a. The steady single mode solutions of Calkins et al. [13] are shown by the
broken curves: SMmax are those solutions that maximize the heat transfer and have wave numbers k̃ which vary
(increase) with increasing R̃a; solutions SM have a fixed horizontal wave number of k̃ = k̃c = 1.3048 for all
R̃a.

that this behavior is linked to the rapid decrease in Hr observed in Figs. 5(a) and 6. Figure 8(b)
shows that lower values of P̃m are also associated with higher values of the dynamo frequency σd ,
since higher values of Re are required.

The critical reduced magnetic Reynolds number,

R̃md = P̃mdRe, (43)

is shown as a function of R̃a and Re in Figs. 9(a) and 9(b), respectively. In general, we find that
R̃md increases with R̃a (and Re), with the most significant increases observed for the Pr = 1 cases.
The Pr = 10 cases show a similar trend as the Pr = 1 cases when viewed from the perspective of
Fig. 9(b). The Pr = 10 cases closely follow the SM solutions up to R̃a = 50, where the curve then
shows a more substantial increase in R̃md ; this is the region in parameter space where the flow begins
to transition from the CTC regime to the plume regime [4,28]. We also find a change in behavior at
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FIG. 9. Critical reduced magnetic Reynolds number R̃md versus (a) R̃a and (b) Re for all of the cases
investigated. The steady single mode solutions of Calkins et al. [13] are shown by the broken curves.
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FIG. 10. (a) x component of the marginally stable mean magnetic field eigenfunction B̂x for Pr = 1 and
R̃a = 100. The real, Re(B̂x), and imaginary, Im(B̂x), parts of the solution are shown by the solid black and solid

red curves, respectively, and the modulus is given by the dashed black curves. (b) Mean Ohmic dissipation J
2

for the eigenfunction shown in (a).

R̃a = 50 for the Pr = 1 simulations where the flow transitions to turbulence, and the rate of increase
in R̃md slows briefly before picking up again at R̃a = 100. The SMmax solutions do exhibit the same
general trend of increasing R̃md with R̃a and Re as the numerical simulations, in contrast to the fixed
wave number SM solutions which asymptote to a constant value of R̃md ≈ 2.9 as (R̃a,Re) → ∞.
In contrast to the P̃md results shown in Fig. 8, here we find that the R̃md behavior is, at least to some
extent, reflective of flow regime behavior.

Profiles of the marginally stable mean magnetic field and Ohmic dissipation J
2

are given in
Fig. 10 for R̃a = 100 and Pr = 1. In accordance with the observed properties of the α profiles
shown in Fig. 3, we find that the mean magnetic field structure does not change significantly as the
Rayleigh and Prandtl numbers are varied; the case shown is therefore representative of all the cases

FIG. 11. Mean electromagnetic vectors: (a) mean magnetic field B and (b) emf E = αB (yellow) and mean
current density J (blue) for Pr = 1 and R̃a = 50.
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FIG. 12. Volumetric renderings of the small-scale vertical current density j ′
z for each of the four flow

regimes: (a) cellular regime, Pr = 1, R̃a = 10; (b) convective Taylor column regime, Pr = 10, R̃a = 60;
(c) plume regime, Pr = 10, R̃a = 200; and (d) geostrophic turbulence regime, Pr = 1, R̃a = 100.

investigated to a high degree of approximation. The profile shown in Fig. 10(a) is nearly identical in
structure to the mean magnetic field profiles obtained from the SM solutions of Calkins et al. [13]
(see their Fig. 11) and also previous weakly nonlinear [61] and linear investigations [62]. For the
perfectly conducting boundary conditions employed here, the mean magnetic field is antisymmetric
with respect to the midplane (Z = 0.5) of the fluid layer, leading to a mean current density that is

symmetric across the midplane. The Ohmic dissipation J
2

shown in Fig. 10(b) reaches maximum
values where vertical gradients in B are largest (Z ≈ 0.1,0.9 for the case shown).

Three-dimensional visualizations of the mean electrodynamic vectors are shown in Fig. 11. The
spiral structure of all the vector fields is evident. We see that E · J = 0 at Z = 0.5 where both vectors
approach zero and point in nearly antiparallel directions as one approaches this point. In accordance

with the mean energy equation (38), E and J are predominantly aligned in regions where J
2

[shown
in Fig. 10(b)] is largest.

Volumetric renderings of the small-scale vertical current density j ′
z are shown in Fig. 12 for each

of the four basic convective flow regimes shown in Fig. 1. Taking the vertical component of the curl
of Eq. (18) and inverting for j ′

z yields

j ′
z = −P̃m ∇−2

⊥ B · ∇⊥ζ ′, (44)
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showing that j ′
z is directly controlled by the structure of ζ ′. Of particular note is the trend of increasing

scale of j ′
z shown in Fig. 12 as the flow becomes more turbulent with increasing R̃a. The presence of

the inverse Laplacian in Eq. (44) implies that j ′
z is sensitive to the presence of large-scale structures

in this low Pm limit.
The DNS study of Guervilly et al. [45] (G15) found that for sufficiently small values of Pm

the large-scale vortex can aid in the generation of a significant mean magnetic field. In the present
work we find that the large-scale vortex is not necessary for the generation of the mean magnetic
field, though it does influence the structure of the small-scale electromagnetic fields. There are,
however, many differences between the present investigation and that of G15. First, the present
investigation is limited to the low Rossby number regime in which the large-scale vortex is dipolar
in structure, whereas in G15 the Rossby number is high enough (though still less than unity) to
break this symmetry resulting in a predominantly cyclonic (positive vorticity) vortex. Furthermore,
we focus on the planetarylike, small magnetic Reynolds number limit in the present work and in
G15 they study the Rm = O(1) regime. However, we note that in Ref. [5] a Rm = O(1) QGDM was
also developed; future simulations of this model, though less relevant for geophysical applications,
will be helpful for comparison with DNS studies.

IV. CONCLUSIONS

The characteristics of α and the mean magnetic field are found to be weakly sensitive to the
transitions in flow morphology and convective dynamics that occur as the Rayleigh and Prandtl
numbers are varied. Indeed, we find qualitatively similar behavior in the dynamo properties for both
laminar cellular convection near R̃ac where Re � 1 and for turbulent flows at R̃a � R̃ac in which
Re � 1. In this latter case an inverse cascade and associated domain-scale vortex is present, which
has little influence on the large-scale magnetic field but does control directly the structure of the
small-scale electromagnetic fields. A similar observation was made in the single mode investigation
of Calkins et al. [13], where, for a particular class of solutions, the α profiles became self-similar
functions of R̃a. Though it is merely speculative given the neglect of the Lorentz force in the present
work, the relative insensitivity of the large-scale field to the small-scale convective dynamics may
suggest why DNS studies, though vastly different in parameter space from natural dynamos, can
closely approximate many of the observed properties of the geodynamo and other planetary dynamos
(e.g., [3]).

We find a decrease in the efficiency of the convection for sustaining magnetic field growth as
the Rayleigh number is increased, as characterized by an increasing critical magnetic Reynolds
number. A similar trend was observed in one class of single mode solutions of Calkins et al. [13],
where the enhancement of large-scale magnetic diffusion due to boundary layers was offered as
a possible cause. In the present work this reasoning may also apply, though the boundary layers
associated with α are much less pronounced. The rise in critical magnetic Reynolds number might
also result from the more disordered states of convection that occur at higher Rayleigh numbers,
with a possible quantitative measure of this behavior being the substantial decrease in relative kinetic
helicity amplitude with increasing Rayleigh number.

The Prandtl number controls the relative importance of inertia for a given value of the Rayleigh
number, with higher values of Pr leading to an increased range of R̃a over which inertia plays a
weak role in the convective dynamics. For instance, an order of magnitude difference in the Prandtl
number leads to an order of magnitude approximate difference in the observed Reynolds numbers at
comparable values of the Rayleigh number (e.g., see Fig. 2). This effect of Pr has a direct influence
on the critical magnetic Prandtl number required for dynamo action, with lower Pr fluids capable of
sustaining dynamo action at lower values of Pm (or P̃m) for a given value of the Rayleigh number.
These findings suggest that compositional convection, which is characterized by Pr ∼ O(100) (e.g.,
[63]), requires very large values of R̃a to drive a dynamo in comparison to liquid metal thermal
convection which is characterized by Pr ∼ 10−2.
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The QGDM is an asymptotic mean field model and offers the possibility of simulating
magnetohydrodynamic flows that are not currently accessible with DNS. No ad hoc assumptions
are necessary to parametrize the α effect since the equations are mathematically closed through the
asymptotic reduction procedure. Moreover, these models allow for a more direct appraisal of dynamo
physics given the simplified set of equations. Of course, it is necessary to extend the present model
to the more realistic case of spherical geometry to allow direct comparison with geo- and planetary
magnetic field observations. The three-dimensional cylindrical annulus model developed by Calkins
et al. [26] offers an intermediate stage between the development of a global spherical model and the
plane layer model investigated in the present work. Christensen [64] argues that, providing the flow
is sufficiently rotationally influenced, the large-scale dynamo properties in spherical shell dynamo
calculations may be relatively insensitive to the hydrodynamic Reynolds number and the magnetic
Prandtl number. However, computational limitations restrict DNS studies to relatively narrow ranges
of these parameters; the QGDM may therefore help us to further our understanding of the influence
that these parameters have on the resulting dynamo.

The asymptotic kinematic dynamo model for rapidly rotating low Pm convection provides much
insight into the structure and morphology of magnetic fields at the onset of dynamo action. The
observed relative insensitivity of the large-scale magnetic field to changes in flow regime may
provide a strategy for parametrizing the effects of small-scale, low Rossby number convection for
the purpose of simulating only the large-scale dynamo behavior. However, it is clearly necessary
to extend these results into the nonlinear regime in which the Lorentz force is included and the
magnetic field can feed back onto the convective dynamics, and to investigate the influence of
large-scale horizontal modulations that will allow for a fully multiscale representation of the mean
magnetic field (e.g., [5]). Of particular importance is to determine the behavior of these nonlinear,
multiscale solutions and their associated influence on the properties of α and hence the large-scale
dynamo.
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