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The generalized Chapman-Enskog (GCE) method for rapid and slow thermochemical
processes is employed to formulate a set of continuum breakdown parameters for chemically
reacting flows. These GCE breakdown parameters are derived for one-temperature,
two-temperature, and three-temperature models, through classification of the relevant
thermochemical time scales relative to fast elastic collisional processes and slow flow
processes associated with changes in macroscopic observables. Continuum breakdown
mechanisms owing to multicomponent diffusion, thermal diffusion, normal and shear
stresses, Fourier-type heat fluxes based on translational, rotational, and vibrational
temperatures, bulk viscosity, and relaxation pressure are presented for chemically reacting
flows. The GCE breakdown parameters, derived from rigorous kinetic theory, capture the
proper physical mechanism leading to continuum breakdown. These breakdown parameters
are used to analyze continuum breakdown in a Mach 24 reacting air flow over a sphere and
continuum breakdown is observed in the shock and close to the sphere surface. The flow
field near the sphere surface is found to be characterized by sharp species concentration
gradients due to gas-phase and surface reactions. Chemical reactions thus lead indirectly to
the distortion of the velocity distribution function (VDF), providing a pathway to continuum
breakdown that is captured by the GCE specieswise diffusion breakdown parameter.

DOI: 10.1103/PhysRevFluids.1.083402

I. INTRODUCTION

Multiscale flows involving mixed regions of continuum and rarefied flow regimes are common
in a variety of engineering applications, from microelectromechanical system devices to high-speed
atmospheric entry vehicles. Simulation techniques developed for multiscale flow modeling require an
accurate description of rarefaction effects, which are most suitably captured by kinetic solvers, such
as direct methods for the Boltzmann equation or particle-based methods such as the direct simulation
Monte Carlo (DSMC) method [1]. While kinetic methods may be employed from continuum to
free molecular flow regimes, they are most commonly used for modeling nonequilibrium flows
characterized by a Knudsen number Kn � 0.1. Approaching the continuum limit, the flow field
may be accurately modeled with continuum (Euler or Navier-Stokes) solvers, which provide a
computationally efficient alternative to the kinetic solvers, but these solutions become inaccurate
outside the hydrodynamic regime. It is precisely in this regime, however, that a high-fidelity kinetic
solver may be employed. Thus, a combined continuum-kinetic approach is often adopted as a
way to achieve high-fidelity solutions across a broad range of flow regimes, while maintaining
computational efficiency.

Hybrid multiscale methods have been developed and successfully applied to a wide range of flow
problems [2–6]. These combined approaches typically involve spatial coupling of computational
fluid dynamics (CFD) solvers, based on Euler or Navier-Stokes continuum descriptions, with kinetic
solvers, based on the Bhatnagar-Gross-Krook model, the direct Boltzmann method, or the particle-
based DSMC method. One of the key components of hybrid solvers is defining the hybrid interface
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as well as the interface location. The hybrid interface is a computational boundary in physical space
dividing the regions of continuum and rarefied flow, facilitating the transfer of flow field information
between the continuum and kinetic solvers. To maximize computational efficiency, it is important
to determine where, in physical space, the continuum solution method begins to break down and the
kinetic solution method should be employed.

The onset of continuum breakdown is characterized by a departure of the underlying velocity
distribution function (VDF) from its equilibrium Maxwellian form. CFD solvers based on the
Navier-Stokes equations provide accurate solutions for systems involving small departures from
equilibrium, expressed mathematically as a perturbation of the Maxwellian distribution or the
well-known Chapman-Enskog distribution [7]. Physically, the hydrodynamic quantities of number
density, velocity, and temperature are carried by the equilibrium Maxwellian distribution, while the
perturbation of the Maxwellian distribution manifests as higher-order fluxes, including heat flux as
well as normal and shear stresses for a simple gas. The Navier-Stokes equations incorporate these
higher-order effects in the governing equations through constitutive relationships, which provide
closure for the equations and allow for the relation of internal stresses and heat fluxes to gradients
of the macroscopic observables. Provided the departure from equilibrium is small, these constitutive
relations hold and the Navier-Stokes equations are valid.

When flow field gradients become large or characteristic length scales become comparable to the
molecular mean free path, the underlying VDF exhibits a strong departure from equilibrium and can
no longer be mathematically expressed as a small perturbation by Chapman-Enskog theory. Under
these conditions, the closure of the Navier-Stokes equations through the constitutive relations is no
longer valid and a kinetic description is necessary.

II. CONTINUUM BREAKDOWN PARAMETERS

Continuum breakdown parameters are dimensionless quantities that are used to characterize the
degree of departure from an equilibrium Maxwellian distribution and to determine when continuum
breakdown has occurred. These quantities are generally compared against a continuum breakdown
criterion, which relates the magnitude of the breakdown parameter for a given physical mechanism
(e.g., entropy generation rate, gradients in density, velocity, temperature, etc.) to a measure of
nonequilibrium [8–10]. The breakdown criterion is selected as a threshold below which macroscopic
observables from both continuum and kinetic solutions are in good agreement, generally within 5%
[9,11–13]. Although a number of different approaches to identify continuum breakdown have been
proposed, this work focuses on continuum breakdown parameters as determined by expressions
involving macroscopic quantities obtained from a CFD (Navier-Stokes) solution. Furthermore,
this work adopts the breakdown criteria values established in previous investigations to facilitate
comparisons with the proposed breakdown parameters and discussion herein.

Bird [8] proposed a continuum breakdown parameter for steady and unsteady expanding flows.
For steady, expanding flows the parameter takes the form

P =
√

π

2
s
λ

ρ

∣∣∣∣dρdl

∣∣∣∣. (1)

The quantities ρ and λ are the local density and mean free path, respectively; s, the speed ratio,
is given by s = uβ, where u is the local velocity and β is the inverse most probable speed; and l

represents the distance along a streamline.
In a later work, Bird [14] put forth the concept of a local Knudsen number based on the length scale

of macroscopic gradients, for assessing the validity of the continuum approximation for a given flow
system. This concept was furthered by Boyd and co-workers [9,15] to form the gradient-length-local
(GLL) Knudsen number, which is one of the most widely used parameters for assessing continuum
breakdown for compressing and expanding hypersonic flows based on a Navier-Stokes solution.
This parameter is expressed as the ratio of the local mean free path and a length scale determined
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by flow gradients

KnGLL = λ

Qlocal

∣∣∣∣dQ

dx

∣∣∣∣, (2)

where λ is the local mean free path and Q is a macroscopic observable such as density, velocity
magnitude, or temperature, whose gradients are calculated with respect to a flow field distance.
When Q is set as the velocity magnitude, Qlocal = max(|v|,a), where a is the local sonic speed [16].

A more rigorous formulation of the continuum breakdown parameters for steady flows may be
obtained directly from the Chapman-Enskog method, involving expansion of the velocity distribution
function f (C) in a small parameter, which provides the governing equations for systems that exhibit
small departures from equilibrium. To first order in the Chapman-Enskog expansion, the distribution
function f (C) is expressed as the equilibrium (Maxwellian) distribution function f (0)(C) plus a
perturbation

f (C) = f (0)(C)[1 + φ(1)(C)], (3)

where φ(1)(C) is the first-order Chapman-Enskog perturbation on f (0)(C). Upon substitution of
Eq. (3) into the Boltzmann equation, a general form for the perturbation φ(1)(C) for a simple
(single-species, monatomic) gas is obtained [7,17]:

φ(1)(C) = −1

n
A(C) · ∇ ln T − 1

n
B(C) : ∇v, (4)

where A(C) and B(C) are vector and tensor functions of the thermal velocity C . These functions
appear in the definitions for the transport coefficients of viscosity μ and thermal conductivity ktr as
bracket integrals

μ = 1
10kBT [B,B], (5)

ktr = 1
3kB[A,A]. (6)

The solution of the unknown functions A and B is typically approximated through expansion
in Sonine polynomials (an exact solution may be obtained exclusively for the case of Maxwell
molecules) and explicit expressions for the transport coefficients are thus obtained to first order in
Sonine polynomials in terms of the � integrals:

μ = 5kBT

8�(2,2)
, (7)

ktr = 25cv,trkBT

16�(2,2)
. (8)

Upon substitution into Eq. (4), the expression for φ(1) becomes

φ(1)(C) = (qxCx + qyCy + qzCz)
(

2
5C

2 − 1
) − 2

(
CxCyτxy + CxCzτxz + CyCzτyz

)
− (

C2
xτxx + C2

yτyy + C2
z τzz

)
, (9)

where the quantities τij and qi are dimensionless quantities defined as

τij = μ

p

(
∂jvi + ∂ivj − 2

3
∂kvkδij

)
, (10)

qi = −2β

p
ktr∂iT . (11)

These dimensionless quantities, presented by Garcia and Alder [13], are the Chapman-Enskog
continuum breakdown parameters for a simple (single-species, monatomic) gas and appear as the
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coefficients of the terms on the right-hand side of Eq. (9). The perturbation in this case is only a
function of thermal velocity normalized by the most probable thermal speed, Ci = Ci/

√
2kbT /m.

Large values for Eqs. (10) and (11) indicate that the departure from equilibrium may no longer be
considered as a small perturbation and the Navier-Stokes equations are no longer valid.

The use of such breakdown parameters for problems involving high-temperature aerothermody-
namics requires the assessment of continuum breakdown for gas mixtures with excited internal
energy states and chemical reactions. Deschenes et al. [11,12] presented an extension of the
GLL Knudsen number for continuum breakdown due to rotational nonequilibrium. Other high-
temperature continuum breakdown mechanisms such as vibrational nonequilibrium and chemical
reactions were not considered, owing to the idea that such processes occur over characteristic
time scales much greater than the elastic collisional time scale. This effort formally addresses this
assumption using the generalized Chapman-Enskog method from kinetic theory.

The generalized Chapman-Enskog (GCE) method introduces a formal approach for deriving
the continuum breakdown parameters for problems involving fast and slow high-temperature
thermochemical processes [18]. This formalism allows for the continuum breakdown parameters
to be determined precisely and in a way that is consistent with the underlying governing equations
employed in the CFD solver. The GCE method was employed by Stephani et al. [19] to derive
a set of continuum breakdown parameters for chemically frozen flows. This formulation recovers
the same continuum breakdown parameters by Garcia and Alder [13], but includes additional
breakdown parameters for nonequilibrium characterized by diffusion fluxes and internal (rotational
and vibrational) heat fluxes.

The aim of this work is to present a complete set of GCE continuum breakdown parameters
for chemically reacting, steady flows. The method for rapid and slow thermochemical processes
outlined by Nagnibeda and Kustova [18] is applied for one temperature, two-temperature, and
three-temperature models and the corresponding sets of breakdown parameters are presented for
each (Sec. III). The GCE parameters are then applied to evaluate continuum breakdown in a Mach
24 reacting air flow over a sphere and the role of chemical reactions as an indirect mechanism for
continuum breakdown is assessed (Sec. IV). A detailed comparison of (i) the mathematical forms
(Sec. III E) and (ii) the predicted mechanism leading to breakdown in the reacting flow simulation
(Sec. IV D), between the GCE and GLL formulation is made. A summary is presented in Sec. V.

III. FORMULATION OF GCE BREAKDOWN PARAMETERS

A. Method for rapid and slow processes

In high-speed, high-temperature flows where nonequilibrium thermal and chemical processes
become important, the relaxation time scales of various collisional processes (elastic and inelastic)
can vary substantially. In general, relaxation times for elastic and inelastic processes relative to the
characteristic time of variation of macroscopic quantities are

τel � τrot � τvib < τreact ∼ θ, (12)

where characteristic times are τel for elastic collisions, τrot and τvib for collisions with rotational
and vibrational exchange, and τreact for reactions (inelastic collisions). θ is the characteristic time
of change in macroscopic quantities. This effectively divides collisional processes into two groups:
rapid processes with time scales much smaller than θ (τrap � θ ) and slow processes with time scales
on the order of θ (τsl ∼ θ ).

This variability in time scales is introduced in the GCE analysis through definition of the small
parameter ε = τ/θ . In consideration of rapid and slow processes the kinetic equation can be written
as

∂f

∂t
+ c · ∇xf = 1

ε
J rap + J sl. (13)
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Using this approach, the collision operator is separated into two parts, J rap weighted by 1/ε =
θ/τrap � 1 and J sl weighted by 1/ε = θ/τsl ∼ O(1). The GCE method is then used as before to
express the distribution function to first order as

f = f (0) + εf (1) = f (0)(1 + φGCE). (14)

The aim of this work is to find the GCE breakdown parameters as determined by casting
φGCE in terms of known Navier-Stokes flux quantities. In the following sections, three different
approximations are imposed on the relative time scales introduced in Eq. (12), namely, one-
temperature, two-temperature, and three-temperature assumptions, to construct the appropriate set of
continuum breakdown parameters for use with each of these models employed in a continuum solver.

B. One-temperature model

In the one-temperature model, the translational and internal modes are assumed to be in
equilibrium with each other and are represented by a single temperature. The associated characteristic
relaxation time scales are expressed as

τT -T < τR-R � τV -V < τT -R-V � τreact ∼ θ, (15)

where τT -T ,τR-R,τV -V are the characteristic time scales for the energy exchange within each mode and
τT -R-V is the time scale for the intermodal energy exchange. In the one-temperature approximation,
the energy exchanges between the translational and internal energy modes are rapid processes, while
the chemical reactions are on the order of the gas dynamic time scales and treated as slow processes:

J rap = J T -T + JR-R + JV -V + J T -R-V , J sl = J react. (16)

Under the one-temperature approximation, the GCE perturbation φGCE,s for species s is of the
form [18]

φGCE,s = −1

n
As · ∇ ln(Ttr) − 1

n

∑
t

Dt
s · d t − 1

n
Bs : ∇v − 1

n
Fs∇ · v − 1

n
Gs. (17)

The generalized functions As and Dt
s are vector functions of the reduced peculiar velocity Cs , Bs is a

tensor function of Cs , and Fs and Gs are scalars. The second term on the right-hand side of Eq. (17)
contains the term d t , which is the diffusion driving force for species t defined as

d t = ∇
(

nt

n

)
+

(
nt

n
− ρt

ρ

)
∇ ln(p). (18)

The solutions of the unknown generalized functions are obtained as expansions in the Sonine
Sn

ν (x) and Waldmann-Trübenbacher Pn(x) polynomials with accompanying expansion coefficients
(e.g., as,rpq ):

As = −
(

ms

2kbTtr

)1/2

Cs

∑
rpq

as,rpqS (r)
3/2

(
C2

s

)
P (p)(εrot,s)P (q)(εvib,s),

Dt
s =

(
ms

2kbTtr

)1/2

Cs

∑
r

dt
s,rS (r)

3/2

(
C2

s

)
,

Bs =
(

CsCs − 1

3
C2

s I

)∑
r

bs,rS (r)
3/2

(
C2

s

)
, (19)

Fs =
∑
rpq

fs,rpqS (r)
1/2

(
C2

s

)
P (p)(εrot,s)P (q)(εvib,s),

Gs = −
∑
rpq

gs,rpqS (r)
1/2

(
C2

s

)
P (p)(εrot,s)P (q)(εvib,s).
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Note that all functions in Eq. (19) are expanded by polynomials in the rapid processes only, which
for the single-temperature approximation include Cs , εrot,s , and εvib,s . The transport coefficients of
thermal conductivity (translational ktr,s , rotational krot,s , and vibrational kvib,s), viscosity (shear μs

and bulk ζs), multicomponent diffusion (mass Dst and thermal DT,s), and relaxation pressure (prel,s)
may be expressed in terms of the expansion coefficients [18]

ktr,s + krot,s + kvib,s = kb

3
[As ,As] ⇒

⎧⎪⎪⎨
⎪⎪⎩

ktr,s = 5kb

4
ns

n
as,100

krot,s = mscv,rot,s

2
ns

n
as,010

kvib,s = mscv,vib,s

2
ns

n
as,001,

DT,s = 1

3n

[
Dt

s ,As

] = − 1

2n
as,000, Dst = 1

3n

[
Dt

s ,D
t
s

] = 1

2n
dt

s,0,

μs = kbTtr

10
[Bs ,Bs] = kbTtr

2

ns

n
bs,0, ζs = kbTtr[Fs,Fs] = −kbTtr

ns

n
fs,100,

prel,s = kbTtr[Fs,Gs] = kbTtr
ns

n
gs,100. (20)

Additional transport mechanisms are considered in this work from that of Stephani et al. [19].
These include the thermal component of diffusion resulting from temperature gradients, bulk
viscosity that arises from inelastic intermodal (T -R-V ) energy exchange (a rapid process in the
single-temperature model), and the relaxation pressure, which is a result of the existence of rapid
and slow inelastic processes. Chemical relaxation is the only slow process considered in this case.
Substituting these transport coefficient expressions [Eq. (20)] into Eq. (19), we arrive at the final
expression for the generalized functions

As = As,T + As,tr + As,rot + As,vib,

As,T =
(

ms

2kbTtr

)1/2

2nDT,sCs ,

As,tr = −
(

ms

2kbTtr

)1/2 4Ktr,s

5kb

n

ns

(
5

2
− C2

s

)
Cs ,

As,rot = −
(

ms

2kbTtr

)1/2 2Krot,s

mscv,rot,s

n

ns

(ε̄rot,s − εrot,s)Cs ,

As,vib = −
(

ms

2kbTtr

)1/2 2Kvib,s

mscv,vib,s

n

ns

(ε̄vib,s − εvib,s)Cs , (21)

Dt
s =

(
ms

2kbTtr

)1/2

2nDstCs ,

Bs = 2μs

kbTtr

n

ns

(
CsCs − 1

3
C2

s I

)
,

Fs = − ζs

kbTtr

n

ns

(
3

2
− C2

s

)
,

Gs = prel,s

kbTtr

n

ns

(
3

2
− C2

s

)
.
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The perturbation defined in Eq. (17) can now be expressed in terms of the transport coefficients

φGCE,s = −1

n

∑
t

(
ms

2kbTtr

)1/2

2nDstCs · d t − 1

n

(
ms

2kbTtr

)1/2

2nDT,sCs · ∇ ln(Ttr)

− 1

n

(
ms

2kbTtr

)1/2 4Ktr,s

5kb

n

ns

(
C2

s − 5

2

)
Cs · ∇ ln(Ttr)

− 1

n

(
ms

2kbTtr

)1/2 2Krot,s

mscv,rot,s

n

ns

(εrot,s − ε̄rot,s)Cs · ∇ ln(Ttr)

− 1

n

(
ms

2kbTtr

)1/2 2Kvib,s

mscv,vib,s

n

ns

(εvib,s − ε̄vib,s)Cs · ∇ ln(Ttr)

− 1

n

2μs

kbTtr

n

ns

(
CsCs − 1

3
C2

s I

)
: ∇v

− 1

n

ζs

kbTtr

n

ns

(
C2

s − 3

2

)
∇ · v + 1

n

prel,s

kbTtr

n

ns

(
C2

s − 3

2

)
. (22)

The diffusion fluxes in the Navier-Stokes solvers are expressed in terms of the diffusion velocity,
which has contributions from mass and thermal diffusion

V s = V M,s + V T ,s = −
∑

t

Dstd t − DT,s∇ ln(Ttr). (23)

Using Eq. (23) and introducing the pressure ps = nskbTtr, density ρs = msns , and inverse most
probable thermal speed βs = √

ms/2kbTtr, the perturbation takes the form

φGCE,s = 2βs V M,s · Cs + 2βs V T ,s · Cs − 4βsktr,s

5ps

(
C2

s − 5

2

)
Cs · ∇Ttr

− 2βskrot,s

ρscv,rot,sTtr
(εrot,s − ε̄rot,s)Cs · ∇Ttr − 2βskvib,s

ρscv,vib,sTtr
(εvib,s − ε̄vib,s)Cs · ∇Ttr

−2μs

ps

CsCs :

(
1

2
(∇v + ∇T v) − 1

3
∇ · vI

)
− ζs

ps

(
C2

s − 3

2

)
∇ · v + prel,s

ps

(
C2

s − 3

2

)
. (24)

Finally, the GCE perturbation φGCE,s can be cast in terms of flux-based quantities that are readily
available from a CFD solution

φGCE,s = DM,s · Cs + DT ,s · Cs + q tr,s · Cs

(
C2

s − 5
2

) + qrot,s · Cs(εrot,s − ε̄rot,s)

+ qvib,s · Cs(εvib,s − ε̄vib,s) + τ s : CsCs + Pbulk,s

(
C2

s − 3
2

) + Prel,s
(
C2

s − 3
2

)
. (25)

The coefficients on the right-hand side of Eq. (25) are the GCE continuum breakdown parameters
for a reacting gas mixture assuming a single-temperature model:

DM,s = 2βsρs V M,s

ρs

= 2βs DNS
M,s

ρs

, DT ,s = 2βsρs V T ,s

ρs

= 2βs DNS
T ,s

ρs

,

q tr,s = − 4βs

5ps

ktr,s∇Ttr = 4βsqNS
tr,s

5ps

, qrot,s = − 2βs

ρscv,rot,sTtr
krot,s∇Ttr = 2βsqNS

rot,s

ρscv,rot,sTtr
,

qvib,s = − 2βs

ρscv,vib,sTtr
kvib,s∇Ttr = 2βsqNS

vib,s

ρscv,vib,sTtr
,
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τ s = 2μs

ps

(
1

2
(∇v + ∇T v) − 1

3
∇ · vI

)
= τNS

s

ps

,

Pbulk,s = − 1

ps

ζs∇ · v = pNS
bulk,s

ps

, Prel,s = pNS
rel,s

ps

. (26)

The GCE continuum breakdown parameters may be computed directly from the Navier-Stokes flux
quantities [indicated on the far right-hand side of Eq. (26) by the superscript NS] of mass diffusion,
thermal diffusion, Fourier heat fluxes (translational, rotational, and vibrational) based on gradients of
a single temperature Ttr, viscous stress, bulk stress, and relaxation pressure due to chemical reactions.

C. Two-temperature model

In the two-temperature model, the translational and rotational energy modes are assumed to be in
equilibrium and are represented by a single temperature Ttr. The vibrational energy exchange (V -V )
is also assumed to be rapid, however the energy exchange between translational-rotational and
vibrational modes (T R-V ) is considered as a slow process, thus resulting in a separate vibrational
temperature Tvib. The associated characteristic relaxation time scales are expressed as

τT -T < τR-R � τV -V � τT -R � τT R-V < τreact ∼ θ (27)

and the rapid and slow collision operators for the kinetic equation corresponding to Eq. (13) are

J rap = J T -T + JR-R + J T -R + JV -V , J sl = J T R-V + J react. (28)

For a mixture of gases following the two-temperature model with the simple harmonic oscillator
approximation, the GCE perturbation φGCE,s is of the form [18]

φGCE,s = −1

n
As · ∇ ln(Ttr) − 1

n
A(v)

s · ∇ ln(Tvib) − 1

n

∑
t

Dt
s .d t − 1

n
Bs : ∇v − 1

n
Fs∇ · v − 1

n
Gs.

(29)

Since the T R-V exchanges are considered as slow processes, the perturbation in the two-temperature
model has an additional term A(v)

s , associated with the gradients in the vibrational temperature.
Additionally, only translational and rotational terms are present in Fs (below), which represents
fast inelastic processes in the system. The definitions of the other functions in φGCE,s are the same
as in Eq. (19). The Sonine and Waldmann-Trübenbacher polynomial expansion of the generalized
functions are given by

As = −
(

ms

2kbTtr

)1/2

Cs

∑
rp

as,rpS (r)
3/2

(
C2

s

)
P (p)(εrot,s),

A(v)
s = −

(
ms

2kbTtr

)1/2

Cs

∑
q

a(v)
s,qP (q)(εvib,s),

Dt
s =

(
ms

2kbTtr

)1/2

Cs

∑
r

dt
s,rS (r)

3/2

(
C2

s

)
,

Bs =
(

CsCs − 1

3
C2

s I

) ∑
r

bs,rS (r)
3/2

(
C2

s

)
,

Fs =
∑
rp

fs,rpS (r)
1/2

(
C2

s

)
P (p)(εrot,s),

Gs = −
∑
rpq

gs,rpqS (r)
1/2

(
C2

s

)
P (p)(εrot,s)P (q)(εvib,s). (30)
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The transport coefficients are next expressed in terms of the polynomial expansion coefficients [18]

ktr,s + krot,s = kb

3
[As ,As] ⇒

{
ktr,s = 5kb

4
ns

n
as,10

krot,s = mscv,rot,s

2
ns

n
as,01,

kvib,s = kb

3

[
A(v)

s ,A(v)
s

] = mscv,vib,s

2

ns

n
a

(v)
s,1,

DT,s = 1

3n

[
Dt

s ,As

] = − 1

2n
as,00,

D
(v)
T ,s = 1

3n

[
Dt

s ,A
(v)
s

] = − 1

2n
a

(v)
s,0,

Dst = 1

3n

[
Dt

s ,D
t
s

] = 1

2n
dt

s,0,

μs = kbTtr

10
[Bs ,Bs] = kbTtr

2

ns

n
bs,0,

ζs = kbTtr[Fs,Fs] = −kbTtr
ns

n
fs,10,

prel,s = kbTtr[Fs,Gs] = kbTtr
ns

n
gs,100. (31)

Note that there is an additional thermal diffusion coefficient, arising from the separate vibrational
temperature in the two-temperature model approximation. Using the above definitions, the first-order
approximation to the generalized functions can be represented in terms of the transport coefficients

As = As,T + As,tr + As,rot, A(v)
s = A(v)

s,T + A(v)
s,vib,

As,T =
(

ms

2kbTtr

)1/2

2nDT,sCs ,

As,tr = −
(

ms

2kbTtr

)1/2 4ktr,s

5kb

n

ns

(
5

2
− C2

s

)
Cs ,

As,rot = −
(

ms

2kbTtr

)1/2 2krot,s

mscv,rot,s

n

ns

(ε̄rot,s − εrot)Cs ,

A(v)
s,T =

(
ms

2kbTtr

)1/2

2nD
(v)
T ,sCs ,

A(v)
s,vib = −

(
ms

2kbTtr

)1/2 2kvib,s

mscv,vib,s

n

ns

(ε̄vib,s − εvib)Cs ,

Dt
s =

(
ms

2kbTtr

)1/2

2nDstCs ,

Bs = 2μs

kbTtr

n

ns

(
CsCs − 1

3
C2

s I

)
,

Fs = − ζs

kbTtr

n

ns

(
3

2
− C2

s

)
,

Gs = prel,s

kbTtr

n

ns

(
3

2
− C2

s

)
. (32)
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The diffusion velocity is again introduced, which for the two-temperature model has an additional
thermal diffusion term

V s = V M,s + V T ,s + V (v)
T ,s = −

∑
t

Dstd t − DT,s∇ ln(Ttr) − D
(v)
T ,s∇ ln(Tvib). (33)

Expressing the diffusion terms using the diffusion velocity and following a procedure similar to the
one-temperature model, the perturbation becomes

φGCE,s = 2βs V M,s · Cs + 2βs V T ,s · Cs + 2βs V (v)
T ,s · Cs − 4βsktr,s

5ps

(
C2

s − 5

2

)
Cs · ∇Ttr

− 2βskrot,s

ρscv,rot,sTtr
(εrot,s − ε̄rot,s)Cs · ∇Ttr − 2βskvib,s

ρscv,vib,sTvib
(εvib,s − ε̄vib,s)Cs · ∇Tvib

− 2μs

ps

CsCs :

(
1

2
(∇v + ∇T v) − 1

3
∇ · vI

)
− ζs

ps

(
C2

s − 3

2

)
∇ · v + prel,s

ps

(
C2

s − 3

2

)
(34)

and the GCE perturbation φGCE,s for the two-temperature model is expressed in terms of flux-based
quantities as

φGCE,s = DM,s · Cs + DT ,s · Cs + D(v)
T ,s · Cs + q tr,s · Cs

(
C2

s − 5
2

) + qrot,s · Cs

(
εrot,s − ε̄rot,s

)
+ qvib,s · Cs(εvib,s − ε̄vib,s) + τ s : CsCs + Pbulk,s

(
C2

s − 3
2

) + Prel,s
(
C2

s − 3
2

)
. (35)

Finally, the GCE continuum breakdown parameters for the case of the two-temperature model are
given by

DM,s = 2βsρs V M,s

ρs

= 2βs DNS
M,s

ρs

,

D(v)
T ,s = 2βsρs V (v)

T ,s

ρs

= 2βs D(v),NS
T ,s

ρs

,

DT ,s = 2βsρs V T ,s

ρs

= 2βs DNS
T ,s

ρs

,

q tr,s = − 4βs

5ps

ktr,s∇Ttr = 4βsqNS
tr,s

5ps

,

qrot,s = − 2βs

ρscv,rot,sTtr
krot,s∇Ttr = 2βsqNS

rot,s

ρscv,rot,sTtr
,

qvib,s = − 2βs

ρscv,vib,sTvib
kvib,s∇Tvib = 2βsqNS

vib,s

ρscv,vib,sTvib
,

τ s = 2μs

ps

(
1

2
(∇v + ∇T v) − 1

3
∇ · vI

)
= τNS

s

ps

,

Pbulk,s = − 1

ps

ζs∇ · v = pNS
bulk,s

ps

, Prel,s = pNS
rel,s

ps

. (36)

D. Three-temperature model

In the three-temperature model, the energy exchange between T -T , R-R, and V -V (intramodal)
are considered as fast processes, while T -R-V (intermodal) energy exchange is a slow process.
Owing to the fast intramodal processes, the resulting translational, rotational, and vibrational modes
are assumed to follow Boltzmann distributions with distinct temperatures Ttr, Trot, and Tvib, but
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these temperatures are not necessarily in equilibrium owing to the slow T -R-V exchange. The
corresponding characteristic time scales and fast and slow collision operators are thus

τT -T < τR-R < τV -V � τT -R-V < τreact ∼ θ, (37)

J rap = J T -T + JR-R + JV -V , J sl = J T -R-V + J react. (38)

For a mixture of gases following the three-temperature model with a rigid-rotor–harmonic
oscillator assumption, the GCE perturbation φGCE,s is of the form

φGCE,s = −1

n
As · ∇ ln(Ttr) − 1

n
A(r)

s · ∇ ln(Trot) − 1

n
A(v)

s · ∇ ln(Tvib)

− 1

n

∑
t

Dt
s · d t − 1

n
Bs : ∇v − 1

n
Gs. (39)

The perturbation in the three-temperature model has two new terms A(r)
s and A(v)

s associated
with the gradients in the rotational and vibrational temperatures. Since all intermodal inelastic
energy exchange processes are slow processes, the Fs term vanishes from Eq. (39). The polynomial
expansion of the generalized functions are given by

As = −
(

ms

2kbTtr

)1/2

Cs

∑
r

as,rS (r)
3/2

(
C2

s

)
,

A(r)
s = −

(
ms

2kbTtr

)1/2

Cs

∑
p

a(r)
s,pP (p)(εrot,s),

A(v)
s = −

(
ms

2kbTtr

)1/2

Cs

∑
q

a(v)
s,qP (q)(εvib,s),

Dt
s =

(
ms

2kbTtr

)1/2

Cs

∑
r

dt
s,rS (r)

3/2

(
C2

s

)
,

Bs =
(

CsCs − 1

3
C2

s I

) ∑
r

bs,rS (r)
3/2

(
C2

s

)
,

Gs = −
∑
rpq

gs,rpqS (r)
1/2

(
C2

s

)
P (p)(εrot,s)P (q)(εvib,s). (40)

The transport coefficients are again expressed in terms of the polynomial expansion coefficients

ktr,s = kb

3
[As ,As] = 5kb

4

ns

n
as,1,

krot,s = kb

3

[
A(r)

s ,A(r)
s

] = mscv,rot,s

2

ns

n
a

(r)
s,1,

kvib,s = kb

3

[
A(v)

s ,A(v)
s

] = mscv,vib,s

2

ns

n
a

(v)
s,1,

DT,s = 1

3n

[
Dt

s ,As

] = − 1

2n
as,0,

D
(r)
T ,s = 1

3n

[
Dt

s ,A
(r)
s

] = − 1

2n
a

(r)
s,0,

D
(v)
T ,s = 1

3n

[
Dt

s ,A
(v)
s

] = − 1

2n
a

(v)
s,0,
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Dst = 1

3n

[
Dt

s ,D
t
s

] = 1

2n
dt

s,0,

μs = kbTtr

10
[Bs ,Bs] = kbTtr

2

ns

n
bs,0,

ζs = kbTtr[Fs,Fs] = 0,

prel,s = kbTtr[Fs,Gs] = 0. (41)

Note that in the three-temperature model, there are two additional thermal diffusion coefficients,
arising from the separate rotational and vibrational temperatures. The bulk viscosity ζ and the
relaxation pressure prel are equal to zero in this case due to the fact that there are no fast intermodal
inelastic processes. The perturbation function is next expressed in terms of the transport coefficients
to obtain

As = As,T + As,tr, A(r)
s = A(r)

s,T + A(r)
s,rot, A(v)

s = A(v)
s,T + A(v)

s,vib,

As,T =
(

ms

2kbTtr

)1/2

2nDT,sCs , As,tr = −
(

ms

2kbTtr

)1/2 4ktr,s

5kb

n

ns

(
5

2
− C2

s

)
Cs ,

A(r)
s,T =

(
ms

2kbTtr

)1/2

2nD
(r)
T ,sCs ,

A(r)
s,rot = −

(
ms

2kbTtr

)1/2 2krot,s

mscv,rot,s

n

ns

(ε̄rot,s − εrot)Cs ,

A(v)
s,T =

(
ms

2kbTtr

)1/2

2nD
(v)
T ,sCs , (42)

A(v)
s,vib = −

(
ms

2kbTtr

)1/2 2kvib,s

mscv,vib,s

n

ns

(ε̄vib,s − εvib)Cs ,

Dt
s =

(
ms

2kbTtr

)1/2

2nDstCs ,

Bs = 2μs

kbTtr

n

ns

(
CsCs − 1

3
C2

s I

)
,

Gs = prel,s

kbTtr

n

ns

(
3

2
− C2

s

)
.

The diffusion velocity in the three-temperature model has four components owing to the mass
diffusion and thermal diffusion from three temperature gradients

V s = V M,s + V T ,s + V (r)
T ,s + V (v)

T ,s

= −
∑

t

Dstd t − DT,s∇ ln(Ttr) − D
(r)
T ,s∇ ln(Trot) − D

(v)
T ,s∇ ln(Tvib). (43)

Expressing the diffusion terms using the diffusion velocity, the perturbation can be expressed as

φGCE,s = 2βs V M,s · Cs + 2βs V T ,s · Cs + 2βs V (r)
T ,s · Cs + 2βs V (v)

T ,s · Cs

− 4βsktr,s

5ps

(
C2

s − 5

2

)
Cs · ∇Ttr − 2βskrot,s

ρscv,rot,sTrot
(εrot,s − ε̄rot,s)Cs · ∇Trot

− 2βskvib,s

ρscv,vib,sTvib
(εvib,s − ε̄vib,s)Cs · ∇Tvib − 2μs

ps

CsCs :

(
1

2
(∇v + ∇T v) − 1

3
∇ · vI

)
. (44)
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The GCE perturbation φGCE,s for the three-temperature model is expressed in terms of flux-based
quantities as

φGCE,s = DM,s · Cs + DT ,s · Cs + D(r)
T ,s · Cs + D(v)

T ,s · Cs + q tr,s · Cs

(
C2

s − 5
2

)
+ qrot,s · Cs(εrot,s − ε̄rot,s) + qvib,s · Cs(εvib,s − ε̄vib,s) + τ s : CsCs . (45)

Thus the GCE continuum breakdown parameters for the three-temperature model are

DM,s = 2βsρs V M,s

ρs

= 2βs DNS
M,s

ρs

,

DT ,s = 2βsρs V T ,s

ρs

= 2βs DNS
T ,s

ρs

,

D(r)
T ,s = 2βsρs V (r)

T ,s

ρs

= 2βs D(r),NS
T ,s

ρs

,

D(v)
T ,s = 2βsρs V (v)

T ,s

ρs

= 2βs D(v),NS
T ,s

ρs

,

q tr,s = − 4βs

5ps

ktr,s∇Ttr = 4βsqNS
tr,s

5ps

,

qrot,s = − 2βs

ρscv,rot,sTrot
krot,s∇Trot = 2βsqNS

rot,s

ρscv,rot,sTrot
,

qvib,s = − 2βs

ρscv,vib,sTvib
kvib,s∇Tvib = 2βsqNS

vib,s

ρscv,vib,sTvib
,

τ s = 2μs

ps

(
1

2
(∇v + ∇T v) − 1

3
∇ · vI

)
= τNS

s

ps

. (46)

E. Comparison with the KnGLL breakdown parameters

In this section, an analytical comparison between the GCE and GLL continuum breakdown
parameters is made. The comparison is limited to the translational heat flux and self-diffusion flux
for a single species gas. As will be seen in Sec. IV, these are the primary mechanisms leading to
breakdown in the reacting flow case presented in this work, but this analysis can be readily extended
to facilitate comparison between other breakdown parameter quantities.

1. Translational heat flux

The GCE and GLL breakdown parameters that predict continuum breakdown associated with
large gradients in translational temperature (i.e., heat flux) are the translational heat flux breakdown
parameter (GCE) and the GLL Knudsen number based on translational temperature [repeated from
Eqs. (46) and (2)]:

q tr,GCE = −4β

5p
ktr∇Ttr, (47)

KnT ,tr
GLL = λ

T
∇Ttr. (48)
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Substituting β = √
m/2kbTtr and p = nkbTtr and expressing both the translational thermal

conductivity and mean free path of a single-species gas in terms of � integrals,

ktr = 25cv,trkbTtr

16�(2,2)
, (49)

λ = 1

n�(2,2)

√
2kbTtr

πm
, (50)

the ratio of the breakdown parameters is determined as

q tr,GCE

Kn
T,tr
GLL

= 15
√

π

16
. (51)

This ratio indicates that the GCE and GLL continuum breakdown parameters associated with
translational temperature gradients are not equivalent, but are different by a constant factor of
15

√
π/16 (≈1.66). This factor is precisely the normalization constant that originates from the

Sonine polynomial integration during the evaluation of the bracket integral [A,A], i.e., a result
from kinetic theory. It should be noted that this ratio becomes significantly more complex for a gas
mixture, as Eq. (49) becomes a system of equations involving mixture composition [7].

2. Self-diffusion flux

The GCE and GLL breakdown parameters that predict continuum breakdown associated with large
gradients in species concentration (i.e., diffusion flux) are the diffusion flux breakdown parameter
(GCE) and the GLL Knudsen number based on species density:

DM,s = 2βV M,s = 2βDss ds , (52)

Knρs

GLL = λ

ρs

∇ρs. (53)

Self-diffusion is presented here to facilitate comparison, as the analysis becomes increasingly more
complex for multicomponent diffusion in gas mixtures. For the case of self-diffusion, the diffusion
coefficient and the driving force can be expressed as

Dss = 3kbTtr

8nm�(1,1)
, (54)

ds = ∇ρs

ρs

. (55)

Substituting these expressions and the definition of λ from Eq. (50), the ratio of the breakdown
parameters is obtained as

DM,s

Knρs

GLL

= 3
√

π

8

�(2,2)

�(1,1)
. (56)

The GCE and GLL diffusion breakdown parameters are also not equivalent, but in this case their
ratio is a variable function of the �(1,1) and �(2,2) collision integrals. This is due to the fact that
diffusion, which appears in the GCE parameter, is associated with the transport of mass or identity
(represented by �(1,1)), while the mean free path, which appears in the GLL parameter, is associated
with the transport of momentum or energy (represented by �(2,2)). The factor of 3

√
π/8 appearing

on the right-hand side of Eq. (56) is the normalization constant associated with the bracket integral of
[Dt

s ,D
t
s], again a result from kinetic theory. This suggests that the GLL breakdown parameters, which

are expressed in terms of a Knudsen number based on a length scale determined by flow gradients
[9], does not properly capture the true departure of the distribution function from equilibrium as
determined by the GCE method (a precursor to the Navier-Stokes equations) and kinetic theory.
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FIG. 1. Computational domain: temperature contours (top) and GCE continuum breakdown regions based
on a threshold of 0.05 (bottom). Black lines indicate flow field profiles extracted for analysis at θ = 0◦, 67◦,
and 90◦.

IV. ASSESSMENT OF CONTINUUM BREAKDOWN

The GCE breakdown parameters developed in the preceding sections are analyzed for a hypersonic
flow past a sphere. Translational and vibrational heat flux, species diffusion, and stress tensor
breakdown parameters are evaluated at each point in the flow field to determine the mechanisms
responsible for continuum breakdown at a given location. The GCE breakdown parameters are
then compared with the corresponding GLL parameters to elucidate (i) the spatial variation, if any,
in the predicted onset of continuum breakdown and (ii) the physical mechanisms responsible for
continuum breakdown in either case. Furthermore, the relative strengths of competing mechanisms
are assessed to identify the physical processes that drive the system towards nonequilibrium and
collisional processes that work to restore equilibrium.

A. Computational setup

Two-dimensional, reacting air flow past a sphere is simulated using the finite volume, implicit
Langley aerothermodynamic upwind relaxation algorithm (LAURA) (Fig. 1) [20,21]. The system
is modeled as an 11-species air mixture with freestream conditions as shown in Table I. The sphere
surface is treated as a fully catalytic wall with radiative equilibrium wall temperature. A no-slip
velocity boundary condition is enforced on the sphere surface. Chemical reactions are modeled using
Park’s finite rate chemistry for the entire flow field. The two-temperature model is used in which
the rotational and translational modes are assumed to be in equilibrium and translational-vibrational
nonequilibrium is modeled via the Landau-Teller formulation. Specieswise diffusion coefficients
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TABLE I. Free stream conditions.

Parameter Value

M 24
ρ 1 × 10−4 (kg/m3)
T 276 (K)
u 8000 (m/s)
χN2 0.7835
χO2 0.2165

are obtained from the self-consistent effective binary diffusion (SCEBD) model [22,23] and mixture
viscosity and translational and internal thermal conductivities are obtained from the Gupta-Yos
mixing rule [24].

B. The GCE continuum breakdown

The focus of this analysis is aimed toward an understanding of the breakdown mechanisms in
the shock region and near the sphere surface. The breakdown parameters for a two-temperature
model presented in Sec. III C are assessed along profiles at θ = 0◦, 67◦, and 90◦ (Fig. 1), starting
from just upstream of the bow shock and extending to the surface of the sphere. Both the normal
and tangential components of the breakdown parameters are computed at each angular position.
The diffusion breakdown parameter is evaluated for each component of the 11-species air mixture
according to the SCEBD formulation of species diffusion flux [22]. However, it should be noted
that multicomponent diffusion breakdown parameters should be computed if the pairwise diffusion
coefficients are available. The translational and vibrational heat flux and stress tensor breakdown
parameters have been calculated for the mixture as a whole, but these quantities may also be
computed per species. The LAURA solver does not include thermal diffusion, bulk viscosity, or
relaxation pressure in the governing equations, so these are omitted from the current analysis. Thus,
the continuum breakdown parameters computed for this problem include

B = max
(∣∣Ds

i

∣∣,∣∣τij

∣∣,∣∣q tr
i

∣∣,∣∣qvib
i

∣∣), (57)

each evaluated in terms of the wall-normal and tangential components. The breakdown criterion
of B = 0.05 is adopted from the KnGLL criterion for this analysis to facilitate comparison [9]. The
continuum breakdown parameters are plotted from Figs. 2 to 4 as a function of wall-normal distance
at each angular position. The shaded regions in each figure indicate regions of GCE continuum
breakdown based on the definition in Eq. (57), which include breakdown within the shock region
and the near-surface region, where gradients and consequently the fluxes are highest.

1. Heat flux breakdown

The wall-normal and tangential components of the translational and vibrational heat flux
breakdown parameters are shown in Fig. 2 along θ = 0◦, 67◦, and 90◦. Following the profiles
from left (freestream) to right (sphere wall), the first shaded region represents the noncontinuum
region at the shock and the second indicates the presence of a noncontinuum region near the sphere
surface. Along the θ = 90◦ profile, a third postshock breakdown region is observed due to high
diffusion fluxes of NO and O2 and will be discussed in the next section. Within each of these
regions, at least one of the continuum breakdown parameters has crossed the breakdown threshold
of 0.05, indicating that a kinetic scheme must be employed to accurately describe the flow field.

Along all the three angular positions considered, namely, θ = 0◦, 67◦, and 90◦, the heat flux
parameters initiate continuum breakdown at the shock region. Thus, within the shock, the steep
gradients in the translational and vibrational temperatures and the resulting heat fluxes are responsible
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FIG. 2. Translational and vibrational heat flux breakdown parameters along (a) θ = 0◦ (stagnation line),
(b) θ = 67◦, and (c) θ = 90◦ profiles as indicated in Fig. 1. Note the variation in the range of the wall-normal
distance from (a) to (c). The shaded regions indicate continuum breakdown as specified in Eq. (57).

for perturbing the equilibrium Maxwellian VDF of the system. The end-of-shock breakdown location
marks the end of the shaded region around the shock, after which all breakdown parameters are
within the breakdown threshold, and the Navier-Stokes equations may be used to compute system
properties until the start of the next breakdown region is encountered. The end of shock is indicated
by the specieswise diffusion breakdown parameter along each angular position considered (Table
II).

Along the θ = 0◦ and 67◦ locations, the continuum region beyond the end-of-shock location
extends until ∼ 4 and ∼17 mm upstream of the sphere surface, respectively. Similarly, in the case of
the θ = 90◦ position, the continuum region downstream of the postshock region [Fig. 2(c)] terminates
when breakdown is observed near the sphere surface. Along all three angular positions, the near
wall breakdown is determined by the specieswise diffusion fluxes, as discussed in the following
section. Although the heat flux parameters do not determine the onset of breakdown near the wall,
the normal components of the translational and vibrational heat flux breakdown parameters do cross
the breakdown threshold very close to the sphere surface, along the θ = 67◦ and 90◦ positions. The
sharp temperature gradients that are set up due to the hot gases from the shock layer approaching
the relatively cool sphere surface are responsible for this effect.

Further, Fig. 2 also reveals that with increasing angular positions, the near wall breakdown of the
heat flux parameter occurs further upstream of the sphere surface. Since the heat flux breakdown
parameters are normalized by pressure [Eq. (36)], this trend observed in the breakdown location of
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TABLE II. Breakdown mechanisms: two-dimensional flow over a sphere.

Angle Start-shock region End-of-shock region Wall region

0 q tr
n , qvib

n , DO
n , DN

n DO2
n DO2

n , DNO
n

67 q tr
n , qvib

n , DO
n , DNO

n DO2
n DO2

n , DNO
n

90 q tr
n DO

n , DNO
n DO2

n

the heat flux terms is likely due to the decreasing pressure near the sphere surface with increasing
angular position, from the stagnation line (θ = 0◦) to the sphere shoulder (θ = 90◦).

2. Diffusion breakdown

Figure 3 shows the GCE diffusion breakdown parameters along θ = 0◦, 67◦, and 90◦. The most
prominent diffusion breakdown parameters are the wall normal components for N2, O2, N, O, and
NO, while the tangential components (not shown) are not significant in determining any breakdown
location. For similar reasons, the diffusion breakdown parameters of charged species have not been
shown.

FIG. 3. Diffusion breakdown parameters along (a) θ = 0◦ (stagnation line), (b) θ = 67◦, and (c) θ = 90◦

profiles indicated in Fig. 1. Note the variation in the range of the wall-normal distance from (a) to (c). The
shaded regions indicate continuum breakdown as specified in Eq. (57).
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The diffusion flux required to compute the species-wise diffusion breakdown parameter has been
evaluated using the SCEBD model of Ramshaw [22]. The diffusion breakdown parameter [Eq. (36)]
is computed as the species diffusion flux normalized by the inverse most probable speed of the
species and the species density, ρs . In case of a chemically reacting flow with conditions enabling
complete dissociation and recombination, the ρs falls to very low values at certain locations in the
flow field. This leads to mathematical anomalies in the computation of Ds

GCE,i . To overcome this,
the ρs in Eq. (36) is set to max(ρs,0.001 ∗ ρtotal) where ρtotal is the total density at the location under
consideration.

Following the θ = 0◦ and θ = 67◦ profile from left (free stream) to right (toward the surface),
Figs. 3(a) and 3(b) indicate that diffusion fluxes have become significant at the start of shock
breakdown location. However, at the sphere shoulder (θ = 90◦), diffusion fluxes become significant
only after continuum breakdown has already been initiated by the heat flux parameters [Fig. 2(c)].
The ‘end-of-shock’ breakdown location along all three angular positions is governed by the diffusion
breakdown parameter. Steep species concentration gradients are observed in the shock. These
gradients, coupled with the rise in pressure that accompanies the shock, contribute to the diffusion
driving force [Eq. (18)] that is responsible for distorting the Maxwellian VDF of the system by
means of large species diffusion fluxes. Further, the decreasing shock strength with increasing
angular positions cause reactions to occur until downstream of the shock. This results in extending
the ‘end-of-shock’ breakdown location further downstream of the actual shock. The postshock
breakdown region that is observed along θ = 90◦ is likely to develop due to the same reason.

In approaching the sphere surface, it is the species diffusion breakdown parameter (DO2
GCE,n) that

determines the onset of the near wall breakdown region. The movement of hot fluid towards the
relatively cold sphere surface creates temperature gradients that initiate gas phase reactions. Coupled
with wall catalycity effects, steep concentration gradients develop that lead to large diffusion fluxes.
Although recombinations of N begin further upstream of the wall along all three angular positions,
the diffusion fluxes of O2 determine the start of the near wall breakdown region. Unlike N2, O2 is
almost completely dissociated in the shock. Therefore the concentration of O2 in moving towards
the wall is very low. The low concentration along with the rise in diffusion flux of O2 due to chemical
reactions in the wall vicinity, distort the VDF, leading to continuum breakdown.

Fig. 3 also reveals that with increasing angular positions, the near wall breakdown of the species-
wise diffusion parameter occurs at larger distances upstream of the sphere surface. This can be
attributed to the decreasing total density (and hence, species density) as one traverses along the
sphere surface from the stagnation line to the sphere shoulder.

3. Stress tensor breakdown

Fig. 4 shows the normal (nn), tangential (tt) and shear (nt) stress breakdown parameters along
θ = 0◦, 67◦, and 90◦. Following the profiles from left to right, it can be seen that continuum
breakdown occurs at the shock region before the stress components become significant. With an
increase in the angular position, the value of the stress tensor components close to the sphere wall
begins to increase. The sharp velocity gradients developed due to the slowing of the fluid in the wall
boundary layer are responsible for this rise. However, the stress tensor breakdown parameters do not
determine any of the breakdown locations.

It is clear from Figs. 2 to 4 that there exist two (three for θ = 90◦) distinct continuum breakdown
regions (shock, postshock, and near the sphere surface) where a transition needs to be made from a
CFD to a kinetics-based solution technique. This transition, often referred to as the hybrid interface
location introduced in Sec. I, is determined by the location where any of the breakdown parameter
values has exceeded the breakdown threshold. The physical mechanisms leading to the onset of
continuum breakdown are summarized in Table II for the cases considered above. The shock
(and postshock) region is bound by two separate hybrid interfaces, one defining the start-of-shock
continuum breakdown location and the second, defining the end-of-shock continuum breakdown
location, while the breakdown near the sphere surface is governed by a single hybrid interface.
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FIG. 4. Stress Tensor breakdown parameters along: (a) θ = 0◦ (stagnation line), (b) θ = 67◦, (c) θ = 90◦

profiles indicated in Fig. 1. Note the variation in the range of the wall-normal distance from (a) to (c). The
shaded regions indicate continuum breakdown as specified in Eq. (57).

Multiple breakdown parameters are listed for cases where multiple mechanisms simultaneously
predict continuum breakdown. For the postshock breakdown region developed along θ = 90◦, the
interfaces are governed by DO2

n and DNO
n and are not listed in the table below.

C. Chemical reactions: Indirect influence on continuum breakdown

Table II and Fig. 3(a) reveal that in the near wall region along the stagnation line, continuum
breakdown is initiated by the diffusion breakdown parameter DO2

n . This section elucidates the
competition between the physical mechanisms that drive the system towards nonequilibrium, as
well as mechanisms that work to restore the system back to equilibrium.

Consider, for example, the temperature and mole fractions of O and O2 along the stagnation line
leading up to the sphere surface. Compared to the hot gas (∼7000 K) in the postshock layer, the
relatively cool wall temperature of 2200 K is expected to decrease the gas-phase dissociation of O2,
partially contributing to the observed decrease in the mole fraction of O and the increase in the mole
fraction of O2 near the wall (Fig. 5). Further, the advection and diffusion processes, coupled with
wall catalycity effects, result in a high rate of surface recombination. These recombination reactions
form O2, leading to a strong flux of O2 away from the wall, with the wall acting as a source. Thus,
advection and diffusion of O towards the wall produces O2 through gas-surface recombinations,
which in turn leads to diffusion of O2 away from the wall. The final, steady-state composition of the
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FIG. 5. Variation in temperature and mole fraction of O2 and O in the flow field along the stagnation line.

gas near the wall depends of the relative balance between the competing physical mechanisms in this
region, namely, advection, diffusion, and gas-phase and gas-surface recombination reactions. With
this view, the first and second Damköhler numbers DaI and DaII, respectively, have been evaluated
as [25]

DaI = τadvection

τreact
, (58)

DaII = τdiffusion

τreact
(59)

at two locations along the stagnation line: (i) at the start of the near wall breakdown region
[∼4 mm upstream of the sphere surface (Fig. 5)], henceforth referred to as location a, and (ii)
at the sphere surface. Thus, DaI compares the advection and reaction time scales, whereas DaII

relates the diffusion and reaction time scales. The ratio of DaI to DaII therefore serves as an indicator
of whether the advection or diffusion process dominates in a chosen region of the flow field.

Using the general definition of Damköhler numbers as per Eqs. (58) and (59), three sets of
Damköhler numbers DaI and DaII (six Damköhler numbers in all) have been evaluated. The first
set compares the time scales of (i) advection with gas-phase reactions at location a (DaI,gas) and
(ii) diffusion with gas-phase reaction at location a (DaII,gas). The second set compares the time scales
of (i) advection with surface reactions at the sphere wall (DaI,surf w) and (ii) diffusion with surface
reactions at the sphere wall (DaII,surf w). The third set compares the time scales of (i) advection with
effective surface reactions at location a (DaI,surf a) and (ii) diffusion with effective surface reactions
at location a (DaII,surf a).

The first set of Damköhler numbers which is used to assess the relative strength of the diffusion
and advection process with respect to gas-phase recombinations, is evaluated at location a as

DaI,gas = ẇs ld

ρs |V | , (60)

DaII,gas = ẇs l
2
d

ρsDs

, (61)

where ẇs is the species production due to gas-phase dissociation and recombination and ρs denotes
species density. The quantity ld is the characteristic diffusion length and is taken to be the distance
from the sphere wall to location a (∼4 mm) for computing all six Damköhler numbers. The
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TABLE III. Time scale comparison between diffusion, advection, the gas phase, and surface chemistry.

Position Reaction considered DaI DaII

location a [Eqs. (60) and (61)] gas phase 0.000181 0.000270
sphere wall [Eqs. (62) and (63)] surface ∞ 166.3599
location a [Eqs. (65) and (66)] effective surface 0.1354 0.2021

quantities |V | and Ds denote the velocity magnitude and the diffusion coefficient of the species
under consideration at location a. For all the quantities computed in this analysis, atomic oxygen O
is the species of interest. The values of DaI,gas and DaII,gas, computed at location a, as per Eqs. (60)
and (61) are presented in the first row of Table III.

The second set of Damköhler numbers is evaluated at the sphere wall and provides an assessment
of the relative strengths of advection and diffusion of O with respect to surface recombinations of
O. These numbers are formulated as

DaI,surf w = 1

|V |γw

√
kBTw

2πms

, (62)

DaII,surf w = ld

Ds

γw

√
kBTw

2πms

, (63)

where Tw and ms are the wall temperature and the particle weight of the atomic species [26]. γw is
the surface catalycity, and for the fully catalytic wall considered in this work γw = 1. It should be
noted that both |V | and Ds are values of velocity magnitude and specieswise diffusion coefficient,
respectively, at the sphere wall. The values of DaI,surf w and DaII,surf w, computed at the sphere wall,
as per Eqs. (62) and (63) are presented in the second row of Table III.

The third set of Damköhler numbers is evaluated again at location a and provides an assessment of
the relative strength of advection and diffusion of O with respect to effective surface recombinations
of O. To translate the influence of surface reactions occurring at the sphere wall to location a,
Thoemel et al. [26] suggested the use of an effective wall catalycity γeffective given by

γeffective = net recombination of O at location a

total incident O at location a
. (64)

Based on this effective wall catalycity, DaI,surf a and DaII,surf a can be expressed as

DaI,surf a = 1

|V |γeffective

√
kBTa

2πms

, (65)

DaII,surf a = ld

Ds

γeffective

√
kBTa

2πms

, (66)

where Ta , |V |, and Ds are values of gas temperature, velocity magnitude, and specieswise diffusion
coefficient, respectively, at location a. The values of DaI,surf a and DaII,surf a , computed using Eqs. (65)
and (66), are presented in the third row of Table III. Thus, a time scale comparison for each of the
competing mechanisms that can influence continuum breakdown in the vicinity of the sphere wall,
namely, advection, diffusion, gas-phase reactions, and surface recombinations, has been summarized
in the form of Damköhler numbers, based on Eqs. (60)–(66), in Table III.

It can be seen from the first row of Table III that the values of DaI and DaII at location a are very
low. This indicates that gas-phase reactions at the location of breakdown occur on larger time scales
compared to that of advection and diffusion.
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FIG. 6. Comparison of (a) GCE and (b) GLL breakdown parameters along stagnation line θ = 0◦. The
hatched areas represent the breakdown region indicated by the GCE parameters, whereas the solid gray fill
indicates the breakdown region predicted by the GLL formulation.

The second row of Table III compares the advection and diffusion processes at the wall with the
surface recombination rate. At the wall, advection vanishes due to the no-slip velocity boundary
condition and the value of DaI, which is a ratio of the advection time scale to the surface reaction
time scale, tends to ∞. However, the value of DaII, the ratio of the diffusion time scale to the
surface reaction time scales at the wall, is O(2), indicating that diffusion is mainly responsible for
the transport of O towards the wall for initiating surface recombinations. Thus, the molecular flux
emerging from the wall is dependent on the rate at which diffusion transports atomic species towards
the sphere surface. This diffusion–surface chemistry coupling is responsible for the steep decrease
in atomic O that is observed close to the sphere wall (Fig. 5).

The DaI and DaII values in the third row of Table III indicate that at location a, both advection and
diffusion processes occur on time scales comparable to those of the effective surface recombinations.
Thus, the near wall region is characterized by chemical nonequilibrium and the GCE diffusion
flux breakdown parameter captures the continuum breakdown resulting from these competing
mechanisms.

The GCE diffusion breakdown parameter represents a ratio of the diffusion velocity to the most
probable speed of the gas. For the case under study, diffusion and thermal motion of the gas occur on
comparable speeds and hence the diffusion breakdown parameter exceeds the breakdown threshold
of 0.05 [Fig. 3(a)]. Thus, chemical reactions set up steep concentration gradients giving rise to
diffusion fluxes, which in this case are strong enough to distort the equilibrium Maxwellian of the
VDF leading to continuum breakdown.

The above analysis indicates that the Damköhler numbers, by comparing the flow and diffusion
time scales with the reaction time scale, provide an estimate of the extent of chemical nonequilibrium
in the system. It is found that continuum breakdown, as indicated by the GCE specieswise diffusion
breakdown parameter, occurs in the regions of strong chemical nonequilibrium.

D. Comparison with the KnGLL breakdown parameters

Figures 6 and 7 show the GCE and GLL breakdown parameters plotted against wall-normal
distance along the two extreme angular positions, namely, θ = 0◦ and 90◦. The KnGLL has been
evaluated for translational and vibrational temperature, velocity magnitude, and individual species
density based on Eq. (2). The chemically reacting nature of the flow causes species concentrations
to fall to very low values at certain locations in the flow field, leading to mathematical anomalies
in the computation of the specieswise KnGLL. To overcome this, the Qlocal in Eq. (2) is set to
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FIG. 7. Comparison of (a) GCE and (b) GLL breakdown parameters along θ = 90◦. The hatched areas
represent the breakdown region indicated by the GCE parameters, whereas the solid gray fill indicates the
breakdown region predicted by the GLL formulation.

max(ρs,0.001 ∗ ρtotal), where ρtotal is the total density at the location under consideration, similar to
procedure employed in the computation of the Ds

GCE,i .
The GLL breakdown regions are indicated by solid gray fill and the GCE breakdown regions are

denoted by the hatched lines, for all continuum breakdown zones. The breakdown regions indicate
that at least one of the breakdown parameters has exceeded a threshold value of B = 0.05. Thus,
these shaded areas represent regions in the flow field where the continuum approximation fails to
describe the flow system and a kinetic-based solution methodology needs to be applied.

Figure 6 shows the GCE and GLL breakdown regions, along θ = 0◦. Both GCE and GLL
breakdown parameters predict the onset of continuum breakdown approaching the shock due to
large translational temperature gradients (q tr

GCE,n and Kntr
GLL,n) at nearly identical locations along

the stagnation line θ = 0◦ [Figs. 6(a) and 6(b)]. The differences in the prediction of continuum
breakdown in approaching the shock becomes apparent for increasing angle θ and is prominent at
the θ = 90◦ orientation (Fig. 7). It is observed that the GLL formulation predicts the start-of-shock
breakdown location slightly downstream of that indicated by the GCE breakdown parameters [Figs.
7(a) and 7(b)]. This shift in the start-of-shock location is likely to arise due to the difference in the
coefficients of ∇T in the q tr

GCE,n and Kntr
GLL,n parameters. As outlined in Sec. III E, the ratio of q tr

GCE,n

to Kntr
GLL,n for a single species system is 15

√
π/16. For the 11-species air mixture considered in this

study, this ratio was found to be around 2. As θ increases, the shock strength (and the corresponding
temperature gradient) decreases and the disparity between q tr

GCE,n and Kntr
GLL,n in predicting the onset

of breakdown in the shock region is amplified.
It is observed that Knρ,O2

GLL,n predicts start of the near wall breakdown region slightly downstream of
that indicated by the GCE parameter in Figs. 6 and 7. Similarly, along the θ = 90◦ position, the GCE
diffusion parameter predicts a larger postshock breakdown region than the corresponding GLL terms.
The GCE formulation considers a nondimensionalized form of the specieswise diffusion fluxes to
determine continuum breakdown, rather than accounting for only the specieswise density gradients.
Further, the representation of diffusion breakdown in the GCE framework considers the contribution
of the species number density gradient and pressure gradients to the diffusion driving force, which
are responsible for diffusion fluxes [Eq. (18)]. The contribution of this pressure gradient term to the
diffusion driving force [Eq. (18)] in turn depends on the abundance and the mass density of the species
under consideration, relative to the mixture. Also, the effect of the specieswise diffusion coefficients
is also taken into account by the GCE formulation, but the GLL density gradient parameter does
not incorporate this feature. These differences in the breakdown parameter definitions are the likely
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reasons for the disparity in the results observed between the GCE and GLL formulations with regard
to specieswise diffusion breakdown.

V. CONCLUSION

The generalized Chapman-Enskog method for rapid and slow processes was used to develop a
robust set of continuum breakdown parameters for chemically reacting flows from kinetic theory.
These continuum breakdown parameters are derived for one-temperature, two-temperature, and
three-temperature models and may readily be applied to analyze continuum breakdown from a
CFD flow field solution. The full set of GCE continuum breakdown parameters includes breakdown
mechanisms predicted by diffusion processes (multicomponent and thermal), normal and shear
stresses, Fourier-type heat fluxes based on translation, rotational, and vibrational temperatures, bulk
viscosity, and relaxation pressure. These GCE breakdown parameters, derived from rigorous kinetic
theory, are able to accurately capture the proper mechanism leading to the breakdown of all the
transport processes, unlike the existing phenomenological breakdown parameters.

The GCE parameters were then used to analyze continuum breakdown for a Mach 24 reacting flow
over a sphere. Continuum breakdown was observed due to the strong translational and vibrational
heat fluxes at the shock location. Along the stagnation line, the strong species diffusion fluxes due
to dissociation and recombination reactions at the shock were also found to perturb the system’s
VDF. The specieswise diffusion breakdown parameter was instrumental in determining the end-
of-shock breakdown location. Diffusion-driven processes resulting from gas-phase and surface
chemical reactions were also found to play an important role in determining the location of the near
wall breakdown region. Thus, chemical reactions, which are a major source for setting up species
concentration gradients, can indirectly distort the VDF by means of strong diffusion fluxes leading
to continuum breakdown.

It is also noted that thermal and velocity-slip models have often been employed in CFD
calculations to account for noncontinuum effects near a solid surface. While such slip models may
be well suited for continuum breakdown in simple gas flows where breakdown due to large velocity
gradients (i.e., normal and shear stresses) or temperature gradients (i.e., heat fluxes) dominates, the
breakdown occurring due to specieswise diffusion fluxes is not likely to be captured by a slip model.
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