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Interplay between viscosity and elasticity in freely expanding liquid sheets

Srishti Arora, Christian Ligoure,* and Laurence Ramos†

Laboratoire Charles Coulomb, UMR No. 5221, CNRS, Université de Montpellier,
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We investigate the dynamics of freely expanding liquid sheets prepared with fluids with
different rheological properties: (i) Viscous fluids with a zero-shear viscosity η0 in the
range 1–1000 mPa s and (ii) viscoelastic fluids whose linear viscoelastic behavior in the
frequency range 0.1–100 rad/s can be accounted for by a Maxwell fluid model, whose
characteristic elastic modulus G0, relaxation time τ , and zero-shear viscosity η0 = G0τ ,
can be tuned over several orders of magnitude. The sheets are produced by a drop of fluid
impacting a small cylindrical solid target. For viscoelastic fluids, we show that, when τ

is shorter than the typical lifetime of the sheet (∼10 ms), the dynamics of the sheet is
similar to that of Newtonian viscous liquids with equal zero-shear viscosity. In that case,
for little viscous samples (η0 � 30 mPa s), the maximal expansion of the sheet dmax is
independent of η0, whereas for more viscous samples, dmax decreases as η0 increases. We
provide a simple model for the dependence of the maximal expansion of the sheet with
the viscosity that accounts well for our experimental data. By contrast, when τ is longer
than the typical lifetime of the sheet, the behavior drastically differs. The sheet expansion
is strongly enhanced as compared to that of viscous samples with comparable zero-shear
viscosity, but is heterogeneous with the occurrence of cracks, revealing the elastic nature
of the viscoelastic fluid.

DOI: 10.1103/PhysRevFluids.1.083302

I. INTRODUCTION

Upon hitting a solid or liquid surface, a drop can splash, partially or fully rebound, or remain on
the surface and spread [1,2]. The maximal extension reached by the impinging drop when it spreads
on the surface is very important for many practical configurations, including spray coating, pesticide
application, and ink-jet printing, as it will define the mark made by the drop on the surface. For
practical reasons fluids much more viscous than pure water and also with more complex rheological
properties than pure Newtonian fluids may be used. Accordingly, Newtonian fluids with broad ranges
of viscosity [3,4] and a large variety of complex fluids have been investigated so far, ranging from
dilute polymer solutions (see the review in Ref. [5] and the references therein) to model viscoelastic
surfactant solutions [6], yield-stress fluids [7–11], colloidal suspensions [12], and blood [13]. The
importance of wettability for a yield stress fluid made of microgels [10] and of the dynamics of
the contact line for dilute polymer solutions [14,15] has been clearly evidenced in the dynamics of
non-Newtonian drops. However, even for simpler fluids such as low-viscosity Newtonian liquids,
providing a theoretical prediction for the maximal spreading of a drop as a function of the surface ten-
sion, contact angle, impact velocity, and viscosity is not an easy task [13]. In the case of more viscous
Newtonian fluids, the main difficulty in reaching a theoretical prediction is to account for the viscous
dissipation of the drop when it spreads, as complex flows are involved. In this regard, several ap-
proaches have been proposed, yielding reasonably good agreement with experimental data [4,16,17].

Here we are interested in a related configuration, initially designed to suppress viscous dissipation
[18,19], where a drop impacts a small target of size comparable to that of the drop. Upon impact
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the drop freely expands in air, reaches a maximal extension, and then retracts due to surface tension
[18–22]. Hence, the dissipation processes occurring at the fluid-surface interface are reduced, if not
suppressed, possibly facilitating their modeling and/or experimental investigation. We note that this
configuration is the discrete version of the Savart experiment, where a liquid jet hits normally a
flat solid disk, resulting in a stationary planar liquid sheet [23]. In this case, detailed investigations
of the effect of the viscosity and viscoelasticity of the materials forming the sheets are scarce. A
noticeable exception is the study of liquids comprising small amounts of long soluble polymers
that have a dramatic effect on the destabilization processes due to the long-time relaxation of the
polymer chains [24–26]. In this paper we thoroughly investigate experimentally how the viscosity
and viscoelasticity of fluids impact the expansion of liquid sheets. To do so, we use Newtonian fluids
whose viscosity varies over a very large range and self-assembled networks that behave as pure
Maxwell fluids and whose elastic modulus and characteristic relaxation time can be finely tuned
over very large ranges, allowing one to independently investigate the role of viscosity and elasticity
in the dynamics of viscoelastic sheets.

The paper is organized as follows. In Sec. II present the main experimental techniques and the
samples investigated. Section III is devoted to the experimental results. We describe and quantify
how sheets made of viscous and viscoelastic materials expand. We provide in Sec. IV a model for
the dynamics of viscous sheets and discuss the results for viscoelastic samples. We summarize in
Sec. V.

II. MATERIALS AND METHODS

A. Experimental techniques

Rheology is used to investigate the sample viscoelasticity and viscosity. A strain-controlled
rheometer (Ares from TA Instruments) and a stress-controlled rheometer (MCR 502 from
Anton-Paar) equipped with a Couette geometry are used. Temperature is fixed at T = 25 ◦C for
all rheology measurements. All other experiments are conducted at room temperature. Surface
tension measurements are performed using a Wilhelmy plate tensiometer.

Thin sheets freely expanding in air are produced by impacting a single drop of fluid on a solid
target of size comparable to that of the drop. The setup, initially designed by Rozhkov et al. [19],
has been described elsewhere [21]. In brief, we use a hydrophilic cylindrical target of diameter dt =
6 mm, slightly larger than the drop diameter d0 = (3.6 ± 0.1) mm. The liquid drop is injected from
a syringe pump through a needle placed vertically above the target. The drop falls from a distance
of 91.0 cm, yielding a velocity at impact of v0 ≈ 4 m/s. In the following, the origin of time is taken
at the drop impact. The size of the falling droplets is dictated by the inner diameter of the syringe
and the equilibrium surface tension of the samples. In order to maintain a constant droplet size,
needles with different diameters are used to account for the various equilibrium surface tensions
of the samples. Time series are recorded after the impact of the drop using a high-speed camera
Phantom V7.3 (800 × 600 pixels2, operated at 6700 frames/s). After the drop impact, a liquid sheet
freely expands in air. The sheet is bounded by a thicker rim that destabilizes into ligaments, which
subsequently disintegrate into drops. The sheet then retracts due to surface tension.

IMAGE J software is used to compute the time evolution of the sheet diameter. The contour of
the sheet is determined by thresholding the images, and using a wand (tracing) tool, the sheet area
A is measured, from which an effective diameter is deduced using the simple geometric relation
d = √

4A/π .

B. Experimental samples

Self-assembled transient networks consist of reversibly cross-linked polymers in solution, forming
spontaneously three-dimensional networks at thermodynamical equilibrium that can transiently
transmit elastic stresses over macroscopic distances. They exhibit simple rheological properties
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and are even able to fracture [27]. We investigate here networks comprising surfactant micelles
[28] and surfactant-stabilized oil droplets [29], dispersed in brine (0.5M and 0.2M NaCl,
respectively), and reversibly bridged by telechelic polymers. Micelles are composed of a mixture of
cetylpyridinium chloride (CpCl) and sodium salicylate (NaSal) with a [NaSal]/[CpCl] molar ratio of
0.1. Microemulsions are composed of decane droplets of 6 nm diameter, stabilized by a mixture of
CpCl and octanol, with a molar ratio of [octanol]/[CpCl] of 0.65. Telechelic polymers are made
of a long water-soluble polyethylene oxide chain of molecular weight 35 kg/mol, at the extremity
of which are grafted hydrophobic stickers that are short carboxylic chains Cn with n = 12 or 18.
For the micelle-based samples, the mass fraction of the micelles is ϕ = (mCpCl + mNaSal)/mtotal

and the amount of polymer is β = mpolymer/(mCpCl + mNaSal). Here mCpCl, mNaSal, and mpolymer are
the mass of CpCl, NaSal, and polymer, respectively, and mtotal is the total mass of the sample. In
addition, ϕ is fixed at 10% and the amount of polymer β is varied between 0 and 50%. For the
microemulsion-based samples, we fix the average number of telechelic stickers per oil droplet r = 4
and vary the mass fraction of oil droplet φ = (mhydrophobe + moil)/mtotal between 0.5% and 10%.
Here mhydrophobe is the mass of the hydrophobic part of surfactants and telechelic polymer and moil

is the mass of oil. To enhance the contrast of the liquid sheet, a dye (erioglaucine, concentration
2.5 g/l) is eventually added to the samples [21,22].

Additional tests are also performed at room temperature with purely viscous Newtonian mixtures
of glycerol and water. The samples comprise eventually surfactant, CpCl (5.88 mM), and NaCl
(0.5M). The water-glycerol composition varies between 22 and 97.5 wt.%, yielding viscosity
between 1.8 and 713 mPa s. We have checked that the addition of CpCl and NaCl does not modify
the sample viscosity. Without CpCl and NaCl, the equilibrium surface tension of the water-glycerol
mixtures ranges between 72.5 and 62.9 mN m−1. In the presence of surfactant and brine, the
equilibrium surface tension is measured to decrease to (38.5 ± 2.0) mN m−1.

C. Linear viscoelasticity

The sample composition is varied in order to tune the sample viscoelasticity. Our objective
is to produce viscoelastic samples with relatively low zero-shear viscosity so that drops can be
produced and impact the target. As shown previously for similar systems [28,29], the experimental
samples investigated here (micelles and microemulsion reversibly linked by telechelic polymers)
behave as purely viscous liquids below a percolation threshold and exhibit viscoelasticity above
the threshold. In contrast to previous investigations [28,30,31], we here focus on the region of the
phase diagram close above the percolation threshold. Elastic samples above the percolation threshold
behave as Maxwell fluids and are characterized by an elastic shear plateau modulus G0 and a unique
characteristic relaxation time τ . We have determined those parameters by fitting the frequency-
dependent moduli of the samples with the Maxwell model [storage modulus G′(ω) = G0(ωτ )2

1+(ωτ )2 and

loss modulus G′′(ω) = G0ωτ

1+(ωτ )2 , with ω the pulsation]. Note that for samples with relaxation times
shorter than the inverse of the maximum frequency experimentally accessible (τ of the order of
a few milliseconds), we have cross-checked the numerical values extracted from the fit of the
frequency dependence of the complex modulus with those obtained from the zero-shear viscosity
measurements. Here one varies the formulation, i.e., the mass fraction of oil droplets φ for the
emulsion-based samples and the amount of telechelic polymers β for the micelle-based samples,
in order to approach the percolation threshold where G0 and τ vanish critically. One defines ε as
the normalized distance from the percolation threshold: ε = β−βc

βc
for the micelle-based samples and

ε = φ−φc

φc
for the oil-droplet-based samples.

We show in Fig. 1 the evolution of the shear elastic plateau modulus with ε for the four classes
of samples (micelle and microemulsion comprising telechelic polymers with C18 and C12 long
hydrophobic stickers). In all cases, close to the percolation threshold the evolution of the elastic
modulus with the distance from the percolation threshold can be approximated by a power-law
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FIG. 1. Elastic shear plateau modulus of viscoelastic samples as a function of the distance from the
percolation threshold. Symbols are data points and the lines are power-law fits of the experimental data.

fit: G0 = Aεp. Numerical values of the percolation thresholds and of the exponent p, as derived
from a power-law fit of the data, are given in Table I. Notably, we found for each class of samples
(micelle-based and microemulsion-based networks) comparable values for the percolation threshold
and the exponent p, which are found independently of the telechelic polymer used.

On the other hand, the characteristic relaxation times τ strongly vary, as shown in Fig. 2(a), where
the evolution of τ with ε is plotted for the four classes of samples investigated. Indeed, changing
the length of the hydrophobic carboxylic stickers leads to a change of the average residence time
of the stickers in the micelles and oil droplets, implying in turn modifications of the characteristic
viscoelastic relaxation times. We note that the relaxation times for the C18-microemulsion-based
samples are systematically about two orders of magnitude larger than those for the C18-micelle-based
samples. Using the four classes of samples, one therefore has access to viscoelastic samples whose
relaxation times span almost three orders of magnitude (from 1 to 880 ms). The zero-shear viscosity
η0 of the samples, below and above the percolation threshold (above percolation, η0 = G0τ ), is
plotted in Fig. 2(b). Below percolation (ε < 0), the viscosities of the C12- and C18-based samples
are equal and weakly increase with ε. Above percolation, η0 increases more sharply with ε and,
as expected, the viscosities of the C12- and the C18-based samples strongly differ. Overall, the
zero-shear viscosity spans more than six orders of magnitude, from viscosity close to the one of
water (0.0012 Pa s) to 307 Pa s. Notably, Maxwell fluids that display the same zero-shear viscosity
but with drastically different characteristic relaxation time are available, allowing one to decouple
the effect of viscosity and of elasticity in the processes at play in the dynamics of freely expanding
sheets.

TABLE I. Percolation thresholds and critical exponents of the
shear plateau moduli for the four classes of transient networks.

Sample φc (%) βc (%) p

micelles C18 13.5 1.76
micelles C12 11.5 1.76
microemulsion C18 1.8 1.28
microemulsion C12 2.2 1.37
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FIG. 2. (a) Characteristic relaxation time and (b) zero-shear viscosity as a function of the distance from the
percolation threshold. Symbols are the same as in Fig. 1.

III. EXPERIMENTAL RESULTS

Dynamics of viscous and viscoelastic sheets

1. Viscous samples

Figure 3 displays a series of images of sheets produced by impacting drops of Newtonian fluids
of various viscosities (mixtures of water and glycerol and a micellar system below the percolation
threshold). In Fig. 4(a) we show the time evolution of the sheet diameter for samples with various
zero-shear viscosities η0. For the sake of clarity, we only show data for glycerol-water mixtures,
but data with micellar and microemulsion systems below the percolation threshold display similar
features. As η0 increases, the sheet expands less: The maximum diameter dmax is smaller and is
reached earlier (tmax decreases). We quantify how the maximal expansion depends on viscosity and
plot in Fig. 5 the maximal diameter normalized by its value at low viscosity (the inviscid case)
d̃ = dmax

dmax(η0→0) as a function of the zero-shear viscosity (bottom x axis). We find that the maximal
diameter is constant dmax = (21.2 ± 1.2) mm and independent of the viscosity for η0 � ηc ∼
30 mPa s and then continuously decreases with η0. We notice that, in the viscosity regime where
the sheet dynamics is affected by the viscosity (η0 > ηc), volume loss due to ejection of secondary
droplets is negligible.

We note that data obtained for pure water-glycerol mixtures and for water-glycerol mixtures
containing also surfactant and salt perfectly collapse over the whole range of viscosity investigated.
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FIG. 3. Snapshots of (a) viscous sheets made of water-glycerol mixtures and (b) sheets made of C12-based
micellar system, of various zero-shear viscosities as indicated. In (b) the sample with the lowest viscosity
η0 = 3.1 mPa s is viscous and the two other samples are viscoelastic. Images are taken at the maximal
expansion of the sheets.

The two classes of mixtures differ by their equilibrium surface tension: γ = (66.9 ± 3.4) mN m−1 for
pure water-glycerol and γ = (38.5 ± 2.0) mN m−1 for the mixtures with CpCl and NaCl. Because
of this difference the diameter of the needle used to dispense the drops has been modified in order to
obtain droplets of equal size for all water-glycerol mixtures. However, the collapse of the two sets of
data suggests that the equilibrium surface tension is not relevant to account for the sheet expansion.
This is presumably due to the fact that on the time scale needed to reach the maximal expansion (at
most 4 ms), the surface tension of the air-liquid interface does not have time to reach its equilibrium

value. This time scale can be estimated as td = π
4D

(�eq

CB
)
2
, where D is the diffusion coefficient of the

surfactant molecules, �eq is the surface concentration of the surfactant at equilibrium, and CB is the
bulk surfactant concentration [32]. For CpCl, �eq = 5 × 10−10 mol/cm2 and D = 8.6 × 10−6 cm2/s
in water (η0 = 1 mPa s) [33], yielding, for a bulk concentration of 5.88 mM, td = 0.7 ms in pure
water. Hence, because D is expected to scale as the inverse of the viscosity, the time scale needed to
reach the equilibrium surface tension exceeds the time scale needed to reach the maximal expansion
of the sheet for viscosity higher than ∼5 mPa s. Consequently, for high viscosity the relevant surface

FIG. 4. Time evolution of the sheet diameter for glycerol-water mixtures of various viscosities as indicated
in the legend.
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FIG. 5. Maximum diameter (normalized by its value at low viscosity) as a function of zero-shear viscosity
(bottom x axis) and Ohnesorge number (top x axis) for several classes of samples, as indicated in the legend.
The symbols are data points and the lines are theoretical and semiempirical modeling for viscous samples and
viscoelastic samples for which De � 1 (see the text).

tension of the water-glycerol-CpCl mixtures is expected to be that of water-glycerol mixtures, as
observed experimentally. Note finally that surface tension gradients are presumably not relevant in
our experiments. Indeed, because of Marangoni stresses, such gradients would cause perforation of
the sheet [22,34], which is never observed in our experiments.

The normalized maximal diameter d̃ is also plotted as a function of the Ohnesorge number Oh
(Fig. 5, top x axis). The Ohnesorge number is a dimensionless number that represents the ratio of
internal viscous dissipation to surface tension energy Oh = η0√

ργ d0
, where ρ is the sample density,

η0 its zero-shear viscosity, γ the surface tension, and d0 the drop diameter. Accordingly, for small
Oh (Oh � 0.1), the maximal expansion of the sheet is governed by a balance between inertia and
surface tension, whereas the higher Oh is, the more dominant the viscous dissipation is. In the next
section, we provide a model of the sheet expansion where inertia, surface tension, and viscosity are
taken into account.

2. Viscoelastic samples

For viscoelastic fluids, a relevant parameter is the Deborah number De, defined as the ratio
between the characteristic relaxation time of the viscoelastic samples and the lifetime of the sheet
(typically 10 ms). From the viscoelasticity measurements [Fig. 2(a)], one deduces that the only class
of samples for which De is significantly larger than 1 is the microemulsions linked by C18 telechelic
polymers. For the C18-based micelles, De ∼= 1, whereas for the C12-based samples, De � 1.

We first focus on the maximal expansion of the sheet for C12-based micelles and microemulsions
for which De � 1. We find that these samples, although being viscoelastic, behave as purely viscous
samples. This is shown qualitatively in the images displayed in Fig. 3(b) taken at the maximal
expansion of sheets produced with C12-based micelles and more quantitatively in Fig. 5. We indeed
measure that the evolution of the normalized maximal expansion diameter d̃ with the viscosity η0 for
the C12-based micelles and microemulsions nicely superimpose over the whole range of viscosity
investigated with the data acquired for water-glycerol mixtures.

By contrast, viscoelastic samples with characteristic times much larger than the lifetime of
the sheet, such as the C18-based microemulsions, behave in a drastically different fashion. In the
high-Deborah-number regime, we indeed measure that the sheets expand much more than viscous
sheets or sheets produced with a viscoelastic sample with a short relaxation time. Remarkably,
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we find that up to a zero-shear viscosity of 20 Pa s, the maximal expansion of the sheet does
not significantly decrease compared to the case of inviscid fluids, whereas for the other samples
(C12-based micelles and microemulsions and C18-based micelles), the maximum diameter of the
sheet expansion is smaller than the target diameter (d̃ < 0.25). We note moreover that quantitatively
comparable results are obtained for regular microemulsions and for dyed ones.

Interestingly, the behavior of C18-based micelles for which the Deborah number is of the order of
1 is intermediate between that of the C12-based (De � 1) and that of the C18-based microemulsions
(De 	 1), confirming a crucial role of the coupling between the characteristic relaxation time of the
samples and the lifetime of the sheet.

IV. DISCUSSION

We provide here a model of the data obtained for Newtonian viscous samples (micellar- and
microemulsion-based samples below the percolation threshold and glycerol-water mixtures) and also
for viscoelastic fluids prepared with C12 telechelic polymer for which the Deborah number De � 1.
We then discuss the interplay between viscosity and elasticity in the dynamics of viscoelastic sheets.

A. Modeling of the maximal expansion of viscous sheets

We consider here viscous samples and viscoelastic fluids based on C12 polymers. Those
viscoelastic samples, for which De � 1, are found to behave as viscous samples, the dependence
of the maximal expansion of the sheet with the viscosity being equal to that of Newtonian fluids
(Fig. 5).

1. Energy conservation

We use as starting point a standard energy conservation approach. For an inviscid fluid, the kinetic
energy of the drop upon impact is mainly converted into surface energy [20,35]. A rough estimate
of the maximal expansion diameter of the sheet can be derived by balancing the kinetic energy of
the drop and the surface energy at the maximal expansion of the sheet. In the case of a viscous drop,
some energy is dissipated during the process, reducing the inertial expansion. We assume that part
of the impact energy is dissipated by a radial flow in the liquid sheet. Balancing the initial kinetic
energy against the surface energy at the maximal extension of the sheet and the viscous dissipation
energy Ediss yields

1

2
mv2

0 ≈ γπd2
max

2
+ Ediss. (1)

Here m is the mass of the drop, v0 the impact velocity, and γ the surface tension. Note that Eq. (1)
neglects the interfacial energy between the target and the liquid (this is expected to hold as long as
dt � dmax) and assumes that the sheet has a disk shape (the external rim is neglected). We define an
effective velocity veff as the impact velocity of a fictive drop of the same but inviscid fluid that will
lead to the same maximal extension of the sheet. By definition no dissipation occurs in this case and
the energy balance reads

1

2
mv2

eff ≈ γπd2
max

2
. (2)

Note that here we neglect the dissipation that might occur in the rim due to vortical flows [36].
The dissipation energy therefore reads Ediss = 1

2mv2
0[1 − ( veff

v0
)2]. The maximal diameter of the sheet

normalized by its value in the inviscid case is obtained by considering Eqs. (1) (with Ediss = 0) and
(2), yielding

d̃ ≈ veff

v0
. (3)
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2. Theoretical approach

To model the effective velocity, we make a parallel with experiments on so-called Savart sheets,
formed through the impact of a slender jet on a small disk at high Reynolds number [37]. In the
stationary regime, the effect of the disk is to induce a shear viscous dissipation, which alters the
liquid film velocity at the edge of the target, leading to [1,38–40]

veff

v0
≈ 1

1 + β
. (4)

Here veff is the velocity of the liquid film at the edge of the target, v0 is the impact velocity of the liquid
jet, and β is the ratio between the thickness of the viscous boundary layer δ and the thickness of the
fluid sheet at the edge of the target h as calculated from mass conservation. This model ensures that
outside the target region, the flow of the viscous sheet emerging from the impacting jet is identical to
the flow of an inviscid liquid jet, provided the impact velocity v0 is replaced by the effective viscosity
veff . On the other hand, it has been shown theoretically [20] that the kinematic fields of the liquid
sheet arising from the impact of a drop of an inviscid fluid onto a small target are a time-dependent
adaptation of a steady-state axisymmetric solution of Euler equations for a continuous jet impacting
a solid target. These predictions have been confirmed experimentally [21,22]. Hence, following
Refs. [20,37], we assume that the effect of the viscous dissipation after the impact of the drop on the
target with an impact velocity v0 can be evaluated by considering that the flow of the viscous sheet
is equivalent to the flow of an inviscid liquid sheet with an impact viscosity veff given by Eq. (4).
The scaling of the parameter β is however different when one considers a jet and a drop impacting
the target. In the case of a single drop of diameter d0 hitting a target of diameter dt, simple mass
conservation yields, for the thickness of the fluid sheet when it fully covers the target (but does not
yet expands in air),

h ≈ 2
3d0(d0/dt)

2. (5)

On the other hand, the thickness of the viscous boundary layer reads δ =
√

ηT

ρ
, with T ≈ dt

2v0
the

time needed to reach the edge of the target. Hence

δ ≈
√

ηdt

2ρv0
. (6)

In the case of a single drop the adimensional parameter β = δ
h

therefore reads

β ≈ 3

2
√

2

1√
Re

(
dt

d0

)5/2

, (7)

where Re = ρv0d0/η is the Reynolds number. In our experimental conditions, β varies from 0.03 to
0.96. From Eq. (2) one therefore derives a simple expression for the maximal extension of the sheet

dmax

d0
≈

√
We

6

1

1 + β
, (8)

where We = ρu2
0d0/γ is the Weber number, ρ the mass density of the liquid, and γ the surface

tension.
Once written for parameters normalized by their values in the inviscid case, Eq. (8) reads

d̃ ≈ 1

1 + β
≈ 1

1 + α
√

η
, (9)

with

α = 3

2
√

2

1√
ρv0d0

(
dt

d0

)5/2

. (10)
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FIG. 6. Effective velocity of the sheet measured at the edge of the target veff as a function of the zero-shear
viscosity η0, for the viscous samples and the viscoelastic samples for which De � 1 on a lin-log scale. The
inset shows the same data plotted as a function of

√
η0 on a lin-lin scale.

Equation (9) shows that the maximal extension continuously decreases with the square root of the
sample viscosity. We check quantitatively this simple prediction with the experimental results
obtained from water-glycerol mixtures and C12-based viscoelastic fluids of various viscosities
(Fig. 5). The dashed line in Fig. 5 is the theoretical prediction (9) using the calculated value
α = (1 ± 0.1) (Pa s)−0.5 [Eq. (10)]. Error bars for α come from uncertainties on the drop diameter.
Note that here we have taken an average value for the water-glycerol density (1125 kg/m3) and
have neglected the increase of the density as the mixture gets enriched in glycerol, this increase
(at most 20%) being negligible compared to that of the viscosity (three orders of magnitude). We
find that the theoretical model provides a correct order of magnitude of the normalized diameter but
systematically underestimates the dissipation. A fit of the experimental data using α as unique fitting
parameter yields α = (1.46 ± 0.13) (Pa s)−0.5 but does not provide a significantly better account of
the viscosity dependence of the normalized maximal diameter (dotted line in Fig. 5).

3. Semiempirical approach

To better account for the viscosity dependence of the maximal expansion, we still use a similar
approach based on energy conservation and consider that a viscous sheet expands as an inviscid one
but with an effective impact velocity veff reduced compared to the real one. This velocity is assumed
to be the velocity at the edge of the target and is reduced compared to the initial velocity of the sheet
due to viscous dissipation on the surface of the target. Instead of using a theoretical model for veff as
above [Eq. (4)], we here measure directly veff as the time derivative at short time of d, the diameter
of the sheet: veff = 1

2 ( ∂d
∂t

)t→0. We show in Fig. 6 veff for all the viscous samples and viscoelastic
samples with De � 1. Data for all samples reasonably collapse and show a continuous decrease
with the sample viscosity. We find that a linear dependence of veff with

√
η0 accounts fairly well for

the dependence of veff with the sample viscosity (Fig. 6, inset). Note that other simple functional
forms, for instance, a linear dependence with the viscosity or the theoretical expectation (4), are
significantly worse. A fit of the experimental data with the functional form veff = v∗(1 − λ

√
η0)

yields v∗ = (3.2 ± 0.1) m/s and λ = 1.24 ± 0.10 (Pa s)−0.5. Note that v∗ is 20% smaller than the
impact velocity (v0 = 4 m/s), indicating that some dissipation also occurs in the inviscid case. From
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FIG. 7. Images of a viscous sheet taken at the maximal expansion for a drop of water-glycerol mixture with
a zero-shear viscosity of 227 mPa s impacting at the same velocity (a) a silicon wafer covered with a thin layer
of liquid nitrogen and (b) a small solid target. The scale bars are 6 mm.

Eq. (3) one therefore predicts

d̃ = veff/v
∗ = 1 − λ

√
η0. (11)

We plot in Fig. 5 Eq. (11) with the numerical value of λ extracted from the fit of the effective velocity
(Fig. 6). In spite of its simplicity, we find that the semiempirical approach provides good agreement
of the experimental data, especially in the regime of relatively high viscosity, where the theoretical
model fails. We note also that 1 − λ

√
η0 in Eq. (11) is the limit of 1/(1 + λ

√
η0) for λ2η0 � 1, a

functional form that corresponds to the theoretical model (9).
To confirm the crucial role played by the viscous dissipation on the surface of the small target, we

have performed an experiment where we expect to suppress any dissipation on a solid surface. To
do so, a drop impacts (with the same velocity as for previous experiments on a solid target) a surface
covered by a thin layer of liquid nitrogen, allowing the drop and the sheet to float above a gaseous
cushion. Comparative images of the sheets at maximal expansion are shown in Fig. 7: For the same
mixture of water and glycerol with a zero-shear viscosity of 227 mPa s, dmax = 10.0 mm when
the drop impacts the small solid target, whereas dmax reaches 25.1 mm on nitrogen. This expansion
is comparable to that of a fluid with a very low Newtonian viscosity, demonstrating that viscous
dissipation on the solid target governs the expansion dynamics.

B. Viscoelastic sheets

Our experimental observations show, for samples with zero-shear viscosity larger than ∼30 mPa s,
a clear link between the capability of a sheet to expand and the linear rheological properties of the
fluid. A simple yet quantitative way to account for the samples’ viscoelasticity is to consider the
dynamic viscosity. Note that this approach is similar to that followed by de Gennes to describe the
fracture dissipation process for complex fluids in the framework of the trumpet model [31,41–43].
For a Maxwell fluid, the dynamic viscosity is η′ = G′′/ω = G0τ

1+(ωτ )2 . Taking as the characteristic
relaxation time tmax the time at which the sheet reaches its maximal expansion, η′ = η0

1+De2 , with
De = τ/tmax. Interestingly, if the data of the maximal expansion are plotted as a function of η′ instead
of η0 we find that the data for C18-based micelles (for which De ≈ 1) and C18-based microemulsions
(for which De 	 1) almost collapse with the data gathered for Newtonian fluids and C12-based
samples (Fig. 8). This suggests that the deviation from the Newtonian behavior, which is observed
for viscoelastic samples whose relaxation time is comparable to or larger than the lifetime of the
sheet, can be accounted for by the sample linear viscoelasticity.

For C18-based microemulsions, the characteristic relaxation time being much larger than the
lifetime of the sheet (De 	 1), the dynamic viscosity is much smaller than the zero-shear viscosity,
indicating that dissipation is negligible, and the samples behave as almost purely elastic. Based
on previous experiments in different experimental conditions, we know that, for those kinds of
samples, fracture processes occur: Cracks have indeed been observed in the gap of a shear cell (pure
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FIG. 8. Same data as in Fig. 5 but plotted as a function of the dynamic viscosity.

shear flow [30]), in a pendant drop experiment (pure extensional flow [30]), and in a Hele-Shaw
cell (complex flow involving both shear and extensional flows [44,45]). Fracture occurs when the
sample is deformed at rates larger than the inverse of its viscoelastic relaxation time. It is therefore
instructive to evaluate the deformation rates involved upon the sheet expansion. The extension rate
of the fluid upon the expansion of the sheet ε̇ can be computed as ε̇ = 1

d
∂d
∂t

. Note that at short times,
ε̇ = 2

dt
veff , with dt = 6 mm the target diameter and veff the effective velocity determined above

(Fig. 6), yielding a rate ε̇ ≈ 1000 s−1 at short time that steadily decreases with time until vanishing
when the sheet reaches its maximal expansion. We can also evaluate the shear rate involved as the
drop hits the target. A simple estimation, by considering that shear flow only occurs when the fluid
interacts with the solid surface, gives γ̇ ≈ veff

δ
, with δ the thickness over which viscous dissipation

takes place [Eq. (6)]. For C18-based microemulsions above percolation, veff ≈ 3.5 m/s and γ̇ is
in the range 1000–10 000 s−1. Hence, the rates involved are systematically larger than the inverse
of the relaxation time (τ is in the range 0.1–1 s [Fig. 2(a)]), suggesting that fracture processes
may occur. Consistently, the sheets produced with the C18-based microemulsion samples exhibit
systematically a very anomalous aspect. As shown for both dyed and undyed samples (Fig. 9),

FIG. 9. Snapshots of sheets made of C18-based microemulsions (a) without dye and (b) with dye. Images
are taken at the maximal expansion of the sheets. All samples are above the percolation threshold, except the
one with the lower zero-shear viscosity (3.7 mPa s).
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cracks and holes invade the interior of the sheets, while the sheet maintains the integrity of its
contour. Hence, it is tempting to associate the fracture process that occurs in extension and shear
for C18-based microemulsion samples with the cracks observed when the sheet expands. This would
require a theoretical rationalization of the nucleation and instability processes as the sheet expands,
which is beyond the scope of the present paper. Our observations nevertheless clearly emphasize that
the elastic contribution in the viscoelasticity plays a crucial role in the overall way a sheet expands
and is reminiscent of the rupture processes of Savart sheets observed upon collision of viscoelastic
jets [46]. Note that, in sharp contrast, in the low-Deborah-number regime, in which the viscoelastic
sheet behaves as a viscous sheet, the sheet expands in a rather smooth way and always preserves its
integrity (Fig. 3).

V. CONCLUSION

We have investigated how viscous and viscoelastic sheets resulting from the impact of a droplet on
a small target of size comparable to that of the droplet expand in air. We have found that, for viscous
droplets and for small Ohnesorge number Oh, the maximal expansion of the sheet is governed by
inertia and surface tension, whereas for higher Oh viscous dissipation plays an important role. We
have used a simple model of the sheet expansion where inertia, surface tension, and viscosity are
taken into account to compute an energy balance. One of the main ingredients is that dissipation
occurs in the viscous boundary layer at the interface between the surface of the target and the liquid.
Accordingly, we have directly measured the sheet velocity at the edge of the target and related this
velocity to the maximal expansion of the sheet. The quantitative agreement between the model and
the experiments shows that the dissipation mainly occurs on the small surface of the target and that,
when the sheet freely expands in air, dissipation is negligible, in agreement with an experiment
performed with a viscous sample freely expanding on a gaseous nitrogen cushion.

In addition, we have investigated model complex fluids that behave as Maxwell fluids,
characterized by a plateau modulus G0 and a relaxation time τ . We have been able to independently
and finely tune τ and the zero-shear viscosity G0τ , allowing us to decouple the effect of the viscosity
and elasticity on the spreading of viscoelastic sheets. Our experiments have evidenced a key role
of the adimensional Deborah De number defined as the ratio between τ and the typical lifetime of
the sheet. When De � 1, we found that the Maxwell fluids behave as simple Newtonian fluids with
zero-shear viscosity G0τ . For samples for which De > 1, the departure from the Newtonian case
can be accounted for by the sample viscoelasticity. Interestingly, the dynamics of viscoelastic sheets
produced with Maxwell fluids whose characteristic relaxation time is much larger than the lifetime
of the sheet (De 	 1) drastically differs from that of other samples. The sheet expands much more
than viscous sheets with comparable zero-shear viscosity, due to reduced viscous dissipation. In
addition, upon expansion the sheet is highly heterogeneous and displays cracks and holes, revealing
the sample elasticity. Our results therefore show the interplay between the relaxation time of the
viscoelastic fluid and the characteristic time of the experiments, as could also be observed in other
experimental conditions such as the dispensing of a drop from a syringe with a controlled flow
rate [47]. The experimental setup, originally designed by Rozhkov et al. and subsequently modified
by Villermaux and Bossa to limit the bell effect, provides moreover an unusual yet interesting
configuration for testing the rheology of complex fluids as it involves large deformations and highly
extensional flows on very short time scales.
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