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The scaling properties of the mean wall-normal velocity V (x,y) in zero-pressure-gradient
laminar and turbulent boundary-layer flows are investigated using numerical simulation
data, physical experiment data, and integral analyses of the governing equations. The
maximum mean wall-normal velocity V∞ and the boundary-layer thickness δ are evidenced
to be the proper scaling for V over most if not all of the boundary layer. This is different from
the behavior of the mean streamwise velocity U or the turbulent shear stress T = −ρ〈uv〉,
which depend on different characteristic length scales in the regions near and away from
the surface, respectively. The reason for this apparent difference in scaling behaviors is
described physically relative to the downstream development of the U velocity profile and
the mechanisms of boundary-layer growth. Insights pertaining to this are further surmised
from an analytical relationship for the ratio of the displacement to momentum thickness, i.e.,
shape factor H . Integral analyses using the continuity and mean momentum equation show
that U∞V∞/u2

τ = H , where uτ is the friction velocity. Both the laminar similarity solution
and direct numerical simulation data in post-transitional flows convincingly support this
relation. Over the transitional regime, data of sufficiently high quality are lacking to check
if this relation remains valid.
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I. INTRODUCTION

The dynamics and Reynolds number scaling behaviors of the zero-pressure-gradient (ZPG)
turbulent boundary-layer (TBL) flow have received continuous attention for more than a century
[1–5]. Despite the wealth of knowledge accumulated over this time frame, the fundamental
understanding of how the relevant variables describing this canonical flow are interconnected
remains incomplete. In particular, while the scaling properties of the mean streamwise velocity U

and the turbulent shear stress T = −ρ〈uv〉 have been well studied and documented, the properties
of the mean wall-normal velocity V and its scaling behaviors have received little attention. These
behaviors, however, connect to the important processes of freestream momentum entrainment and
boundary-layer growth.

The lack of studies and understanding of V (x,y) can be attributed to at least two inter-related
reasons. One is that, owing to its small magnitude, in physical experiments V is extremely challenging
(practically impossible in many cases) to accurately measure. For example, the maximum mean wall-
normal velocity V∞ is only about 0.33% of the maximum streamwise velocity U∞ in the Reθ � 670
direct numerical simulation (DNS) employed herein. (Reθ = U∞θ/ν, where θ is the momentum
deficit thickness and ν is the kinematic viscosity.) Moreover, the ratio V∞/U∞ diminishes further as
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the Reynolds number increases, in accord with the boundary-layer approximation. Another reason
for the lack of attention to V is the notion that V , due to its small magnitude, plays an insignificant role
in the structure of TBL flows. Consideration of the mean continuity equation ∂U/∂x + ∂V/∂y = 0
is, however, sufficient to appreciate the relevance of V to downstream flow development. Namely,
this equation indicates that accurately predicting V is, for example, a sensitive measure of whether
boundary-layer simulations accurately capture phenomena impacting boundary-layer growth.

In the remainder of this paper we first describe the scaling behaviors of the V profile in the turbulent
regime. This is followed by an integral-based development revealing the relation U+

∞V +
∞ = H (or,

equivalently, V∞/U∞ = 1/2Cf H ). Here a superscript + denotes normalization using the kinematic
viscosity ν and friction velocity uτ = √

τwall/ρ, where τwall is the mean wall shear stress, ρ is the
fluid density, and Cf is the skin friction coefficient. The validity of this relation is analytically
verified for laminar flow and is shown to hold to very good accuracy in the turbulent regime. Over
the transitional regime it is difficult to test the validity of this relation owing to the lack of sufficiently
high quality, and this matter is briefly discussed.

II. SCALING OF V

In the canonical turbulent boundary layer, the mean velocity components and mean stresses
vary in the wall-normal direction. In general, the nature of this variation depends on the Reynolds
number of the flow. Under proper normalization, profiles from different Reynolds number flows
(e.g., at varying x positions) can, however, be rendered invariant over part or all of the flow. These
normalizations are useful in organizing data and naturally improve understanding of flow physics.
Accordingly, investigations into identifying self-similar scalings constitute a persistent focus of wall
turbulence research.

The scaling properties of the mean streamwise velocity U and turbulent shear stress T have been
studied extensively. Classical analyses inform us that the friction velocity is the proper velocity
scale everywhere. The inner normalized mean streamwise velocity is commonly defined as U+ =
U (x,y)/uτ and the inner normalized turbulent shear stress as T + = T (x,y)/ρu2

τ . On the other hand,
two characteristic lengths are traditionally employed for the profiles of U and T , inner scaling for the
region close to the surface and outer scaling for the region away from the surface. The characteristic
length scale in the inner region is the viscous length scale ν/uτ and the inner normalized distance
from the surface is commonly defined as y+ = y/(ν/uτ ). Over a region near the wall, profiles of
U+ (or T +) from different Reynolds numbers fall onto a single curve when plotted versus y+.

Under initial consideration, one might expect that inner scaling should also apply to the mean
wall-normal velocity profile in the inner region. To explore this, Fig. 1(a) plots V + from different
Reynolds numbers as a function of y+. The data of Fig. 1 come from the DNS-based studies of
Simens et al. [6] and Schlatter and Örlü [7]. Distinct from U+ or T +, the V + profiles from different
Reynolds numbers do not fall on a single curve, indicating that inner normalization does not scale the
data. With increasing Reynolds number, Fig. 1(a) shows that V +

∞ becomes smaller. The dependence
of V +

∞ on the Reynolds number is clarified below.
In the outer region (away from the surface), it is generally accepted that the proper length scale is

the boundary-layer thickness δ or some other integral measure of the layer thickness. For example,
T + data from different Reynolds numbers closely follow a single curve in the region beyond the
peak in T when plotted against η = y/δ. Figure 1(b) plots V + against y/δ. These V + profiles clearly
do not merge, suggesting that uτ is not the proper velocity by which to scale the mean wall-normal
velocity in the outer region.

Guided by the above observations, a number of other normalizations were investigated. Overall,
these efforts uncovered that the V data appear to follow a single curve when normalized by the
maximum mean wall-normal velocity V∞ and plotted versus η. This normalization is illustrated
in Fig. 2. Here it is seen that the V/V∞ profiles from different Reynolds numbers convincingly
follow a single curve when plotted versus y/δ. To better show the behavior of this normalization
in the inner region, Fig. 2(b) replots the same data on log-linear axes. By noting that the onset
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FIG. 1. Scaling of the mean wall-normal flow. (a) Inner normalized V + versus y+ on log-linear axes to
better show the near surface region. (b) Inner normalized V + versus outer normalized distance from the surface
η = y/δ. The DNS data are from Refs. [6,7].

of the asymptotic four-layer regime associated with the ordering of terms in the mean momentum
balance [8] is established in the boundary layer for Reθ � 900 [9], the data of Figs. 2(a) and 2(b)
evidence that the V/V∞ versus y/δ normalization is operative over the entire boundary layer, with
the small deviations coming from profiles at or near the four-layer onset. In this regard, it is relevant
to specifically note that deficit profiles in the form of [V∞ − V (y)]/uτ and [V∞ − V (y)]/V∞ reveal
that the former clearly fails to scale the data, while the latter is effectively an alternate way of
representing the normalization of Fig. 2.

III. INTEGRAL ANALYSIS OF ZERO-PRESSURE-GRADIENT BOUNDARY-LAYER FLOWS

Physical insights into the above scaling behaviors are gained via analysis of the momentum
and continuity equations. This leads to the above-noted relation U+

∞V +
∞ = H . The analysis now

presented is shown for the turbulent flow case. Owing, however, to the integral properties associated
with the turbulent shear stress gradient profile, this same relation is also recognized to hold for the
laminar flat plate flow.
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FIG. 2. Plot of V/V∞ versus η = y/δ on (a) linear-linear axes and (b) log-linear axes.
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Under the boundary-layer approximations the continuity and streamwise mean momentum
equations for the canonical ZPG TBL are

∂U

∂x
+ ∂V

∂y
= 0, (1)

U
∂U

∂x
+ V

∂U

∂y
− ν

∂2U

∂y2
− 1

ρ

∂T

∂y
= 0. (2)

Note here that the appropriate equation for laminar flow is recovered by setting ∂T /∂y = 0. Defining
the normalized variables as

U ∗ ≡ U

U∞
, V ∗ ≡ V

U∞
, T ∗ ≡ T

ρU 2∞
, η ≡ y

δ
, (3)

the normalized continuity and momentum equations respectively become

dδ

dx
η
∂U ∗

∂η
− ∂V ∗

∂η
= 0, (4)

−U ∗ ∂V ∗

∂η
+ V ∗ ∂U ∗

∂η
− ν

δU∞

∂2U ∗

∂η2
− ∂T ∗

∂η
= 0. (5)

Integrating these equations from η = 0 to η = 1 yields

U∞
V∞

dδ

dx
= 1

1 − ∫ 1
0 U ∗dη

, (6)

− dδ

dx

(
1 −

∫ 1

0
U ∗2dη

)
+ V∞

U∞
+ u2

τ

U 2∞
= 0, (7)

where the appearance of the friction velocity follows from its relation to the wall shear stress. The
definition of displacement thickness δ1 is

δ1 ≡
∫ ∞

0
(1 − U ∗)dy ≈ δ

∫ 1

0
(1 − U ∗)dη = δ

(
1 −

∫ 1

0
U ∗dη

)
(8)

and the definition of momentum thickness θ is

θ ≡
∫ ∞

0
U ∗(1 − U ∗)dy ≈ δ

∫ 1

0
U ∗(1 − U ∗)dη = −δ

(
1 −

∫ 1

0
U ∗dη

)
+ δ

(
1 −

∫ 1

0
U ∗2dη

)
.

(9)
Thus the shape factor H becomes

H ≡ δ1

θ
= 1

1−∫ 1
0 U∗2dη

1−∫ 1
0 U∗dη

− 1
. (10)

Combining Eqs. (6), (7), and (10) then yields

U+
∞V +

∞ = H. (11)

Provided the boundary-layer approximation holds, Eq. (11) is valid for any ZPG boundary layer,
including laminar, transitional, and turbulent flows. We now employ further analysis and data
comparisons to examine the veracity of Eq. (11).
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FIG. 3. Comparison of U+
∞V +

∞ and H with (a) DNS data of [6,7] and (b) experimental [12,13] and other
DNS data [14].

IV. TESTING U+
∞V +

∞ = H

A. Laminar flow

For the case of the laminar flat plate boundary layer, we turn to the well-known results derived
from the similarity solution of the Blasius [10]. Here the relationships for the displacement and
momentum thicknesses are respectively given by

δ1

x
= 1.72√

U∞x/ν
,

θ

x
= 0.664√

U∞x/ν
(12)

and thus H � 2.59. Similarly, the relationships for the skin friction and the ratio of freestream
velocity components are respectively given by

Cf = 2

U+2∞
= 0.664√

U∞x/ν
,

V∞
U∞

= V +
∞

U+∞
= 0.8604√

U∞x/ν
. (13)

Combining these relations yields

U+
∞V +

∞ � 2.59 = H. (14)

This provides an analytical verification of the relation U+
∞V +

∞ = H for the laminar case.

B. Turbulent flow

Data for H and U+
∞V +

∞ in transitional and turbulent flows are accessible from numerical
simulations and reasonably from some physical experiments. This section examines data from the
low-Reynolds-number turbulent regime. Through the transitional regime, the balance of terms across
the boundary layer undergoes a complex evolution with Reynolds number, but eventually settles into
an organized structure in which the leading terms are well defined on four distinct layers [8]. This
structure is obtained at Reθ � 900 (δ+ � 370), and for all higher Reynolds numbers the leading
balances defining each layer follow well-characterized scaling behaviors and become increasingly
exact as Reθ → ∞ [11]. Figure 3(a) compares DNS data of U+

∞V +
∞ and H in the turbulent regime.

Overall the agreement is seen to be good, with the data scatter likely due to the numerical uncertainty
in the prediction of V +

∞. Unfortunately, the Reynolds-number range of DNS data is rather limited,
while high-quality direct experimental measurements of V are very scarce (virtually nonexistent).
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FIG. 4. (a) Streamwise growth of boundary-layer thickness δ and displacement thickness δ1. (b) Comparison
of U+

∞V +
∞ and H in the transitional regime.

If, however, experimental data are available to extract the boundary-layer thickness growth rate
dδ/dx, Eq. (15) can be used to estimate U+

∞V +
∞:

U∞
V∞

dδ

dx
= δ

δ1
⇒ U+

∞V +
∞ = dδ

dx

δ1

δ

2

Cf

. (15)

In many experimental studies of boundary-layer flows, measurements of δ, δ1, and Cf are provided.
If the mean streamwise velocity profiles are measured at a few streamwise stations under the same
flow conditions, then dδ/dx can be estimated, giving U+

∞V +
∞ from Eq. (15). Österlund [12] measured

mean velocity profiles at five x stations x = 1.5, 2.5, 3.5, 4.5, and 5.5 m under nominally fixed U∞
conditions. Note that the resolution in the streamwise direction is rather coarse. The results from their
data at stations x = 2.5 and 3.5 m are presented in Fig. 3(b). These data reasonably support equality
between U+

∞V +
∞ and H , with the deviation most likely caused by scatter in the approximation of

dδ/dx, which becomes more pronounced at the first and last stations.

C. Transitional flow

Detailed experimental studies over the transitional regime are rare. One of the most comprehensive
studies is the T3 bench test cases of ERCOFTAC SIG10 (T3A and T3B) [13,15]. Data from T3B
case are used in Fig. 4(b) to calculate U+

∞V +
∞ using Eq. (15). The difference is again likely to be

attributable to the error in estimating dδ/dx. For example, the large deviation in the T3B-based
estimate at Reθ � 900 corresponds to the subtle bump in the δ profile at x � 0.9 m in Fig. 4(a). At
lower Reynolds number, the boundary layer is relatively thin and the error in estimating dδ/dx is
also more pronounced. These data indicate that over the transitional regime the estimated U+

∞V +
∞

has a magnitude very similar to H and nominally follows the trend over the transitional regime.
Higher-quality data are, however, needed to check the validity of this relation more directly.

Direct numerical simulation is designed to capture the full physics embodied in the Navier-Stokes
equations and this provides good reason to expect it to provide the most reliable data for V .
Accordingly, DNS should be most appropriate for evaluating whether U+

∞V +
∞ = H . In this regard,

we examined a number of V profiles from transitional regime DNS [14,16,17]. All of these studies,
however, produced questionable behaviors in the V profile that caused us to question whether the
accuracy of transitional regime DNS is, as of yet, sufficient to test the veracity of U+

∞V +
∞ = H . On

the other hand, one might also expect the boundary-layer approximation to break down during at
least some part of the transitional regime, as streamwise gradients in turbulence related terms are
likely to be quite large. Thus, the validity of U+

∞V +
∞ = H in the transitional regime awaits further
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investigation. These phenomena also further emphasize the sensitivities of early boundary-layer
growth and entrainment to the inflow wall boundary condition (see, e.g., [7,18–20]).

V. SUMMARY

The present analyses indicate that the maximum mean wall-normal velocity V∞ and the boundary-
layer thickness δ are the proper parameters for scaling the mean wall-normal profile in the ZPG TBL.
This single scaling appears valid over the entire boundary layer and thus is qualitatively distinct
from the apparent two length scaling behaviors of U and T . Based upon the continuity equation
relating the streamwise rate of change of U to the wall-normal variation of V , this outer scaling
behavior is seen to connect to the streamwise increasing deficit of U momentum relative to U∞.
This interpretation is reinforced by integral analysis of the continuity and streamwise momentum
equations, revealing that the product of U+

∞V +
∞ equals the shape factor H . The DNS data of U+

∞V +
∞

were compared with H data and the present observations in the turbulent regime support their
equality.
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