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Immiscible fluid displacement with average front velocities in the capillary-dominated
regime is studied in a transparent Hele-Shaw cell with cylindrical posts. Employing various
combinations of fluids and wall materials allows us to cover a range of advancing contact
angles 46◦ � θa � 180◦ of the invading fluid in our experiments. In parallel, we study
the displacement process in particle-based simulations that account for wall wettability.
Considering the same arrangement of posts in experiments and simulation, we find a
consistent crossover between stable interfacial displacement at θa � 80◦ and capillary
fingering at high contact angles θa � 120◦. The position of the crossover is quantified
through the evolution of the interface length and the final saturation of the displaced
fluid. A statistical analysis of the local displacement processes demonstrates that the shape
evolution of the fluid front is governed by local instabilities as proposed by Cieplak and
Robbins for a quasistatic interfacial displacement [Cieplak and Robbins, Phys. Rev. Lett. 60,
2042 (1988)]. The regime of stable front advances coincides with a corresponding region
of contact angles where cooperative interfacial instabilities prevail. Capillary fingering,
however, is observed only for large θa , where noncooperative instabilities dominate the
invasion process.

DOI: 10.1103/PhysRevFluids.1.074202

I. INTRODUCTION

Flows of immiscible fluids through a porous matrix are involved in many industrial and
technological applications, for example, fuel cells [1–3], secondary oil recovery, and ground water
flow [4–7]. Pressure-driven fluid displacement has been studied experimentally in flat beds of
spherical particles [8–11], various model sandstones [12–14], and effectively two-dimensional
microfluidic networks [15–18]. Despite these enormous activities to experimentally monitor and
model immiscible flows in porous media, many details of the displacement process on the pore scale
and their implications on the overall dynamics of the invading front remained unclear [19,20]. Only
recently, the competition between wetting forces and viscous stresses on the pore scale has been
investigated in experiments [11] and two-dimensional simulations [21], but the coherent description
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of immiscible fluid displacement from pore scale to sample scale at various wetting conditions is
still lacking. This applies, in particular, to the industrially relevant case of small average velocities
of the invading front [7]. Open questions concern the interplay of wettability, geometry, and disorder
of the porous matrix in the displacement process [2,10,21–27], as well as the role of inertia during
local interfacial instabilities at the progressing front [28–31].

Several fundamental aspects of immiscible two-phase flow in porous solids have been studied
in effectively two-dimensional model systems [15–17,21–23,32–34]. In a pioneering experimental
work, Lenormand et al. [15] and later Zhang et al. [16] monitored local displacement processes in flat
and transparent micromodels of two-dimensional channel networks that allowed real-time imaging
of the advancing interfaces by optical microscopy. According to these works, the displacement of a
wetting by a nonwetting fluid can be grouped into different regimes according to the global capillary
number Ca ≡ Uμi/γ and the viscosity ratio M = μi/μd of the invading (i) and defending (d)
fluid [15,16]. Here U denotes the average front velocity and γ the interfacial tension of the fluid-fluid
interface, while μi and μd are the dynamic viscosities of the respective fluids. For sufficiently small
capillary numbers Ca � 1, the entire displacement process is dominated by interfacial forces and is
largely insensitive with respect to the average displacement velocity U and fluid viscosities μi and μd .

In the limit of slow invasion, the evolution of the interface can be regarded as quasistatic for most
of the time. Periods of gradual changes of the meniscus geometry are interrupted by sequences of
fast instabilities of the fluid interface. For the case of invading fluids forming a high contact angle
with the walls (drainage), the condition that a meniscus undergoes an instability and advances into an
empty pore is independent on the configuration of neighboring menisci [15,32]. For the case of small
contact angles (imbibition), however, the instabilities leading to interfacial advance are governed by
the state of two or more adjacent menisci bounding the same pore [32,35]. The proposed cooperative
nature of the latter type of instabilities manifests in a largely reduced roughening of the invading
interface and is also identified as one of the main causes of a low residual saturation of the defending
fluid.

A numerical model to describe slow quasistatic fluid invasion into a porous matrix for different
wetting conditions was proposed by Cieplak and Robbins [22,23]. Arrays of circular disks with
randomized radii but centered on a triangular or square lattice serve as model porous media with
regular pore geometry. Front progression is described by a sequence of mechanically stable meniscus
configurations attained during the slow rise of the driving pressure difference P between the invading
and the defending fluid. Configurations of individual menisci are governed by the magnitude of P

that fixes the in-plane radius r ∝ P/γ of all menisci being part of the invading front. As the pressure
difference P increases, these menisci are subject to certain types of cooperative and noncooperative
interfacial instabilities that trigger sudden local advancements of the front [22–24]. Both types of
instabilities are controlled, besides the Laplace pressure P , by the local disk configuration and contact
angle θ . The crossover between compact displacement patterns for imbibition and capillary fingering
observed for drainage is explained through a competition between different types of interfacial
instabilities [22–24]. Conclusions about the fluid dynamics of the rearrangements following these
instabilities as well as the new stable configuration attained after the instability cannot be reached
within the model of Cieplak and Robbins.

The aim of the present article is twofold. First, we want to explore whether the mechanisms
put forward by Cieplak and Robbins hold true in a “real system” that is quasi-two-dimensional but
exhibits the full fluid dynamics. This is studied both in experiments and in simulations. Second, we
investigate whether the reported transition occurs as well in other types of randomness. While Cieplak
and Robbins studied arrangements of circular obstacles with randomized radii but centered on regular
lattices, we investigate the effect of positional randomness. To this end, we consider immiscible
two-phase flow in a transparent microfluidic Hele-Shaw cell that is decorated with cylindrical posts
of uniform diameter [see Fig. 1(a)]. Using different device materials and combinations of defending
and invading fluids in our experiments, the advancing contact angle θa of the invading fluid is
systematically varied from about 46◦ to about 180◦. Displacement patterns for contact angles lower
than 46◦ showed a strong dependence on the global shape of the Hele-Shaw cell and are thus discarded
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FIG. 1. (a) Sketch of the Hele-Shaw cell with cylindrical posts employed in our experiments. The
experimentally captured area has a width of W ∗ = 800 μm and an extension of L∗ = 600 μm. (b) Definition
of the advancing contact angle θa with respect to the invading fluid. (c)–(e) Time series showing the evolution
of the displacement pattern for different contact angles θa with an area fraction of posts φ = 0.15 in simulations
(left rows) and experiments (right rows). The invading fluid is injected from the left, with a similar velocity in
all experiments shown here. Images are labeled with the respective saturations S of the displaced fluid.

from further analyses. Our fluid dynamics simulations, however, cover the full range of contact angles
from complete wetting (θa = 0◦) to completely nonwetting (θa = 180◦) invading fluids.

Figures 1(c)–1(e) display examples of three generic displacement patterns, as found in our
experiments and fluid dynamics simulations for different wetting conditions of the invading fluid. A
comparison of the snapshots of fluid distributions between the wetting and the nonwetting invading
fluids nicely illustrates the pivotal role of wettability during interfacial advance. To facilitate a
comparison of the evolving fronts, we labeled the snapshots with the corresponding fraction S ≡
Vd/V ∗ of the volume of the displaced fluid in the field of view Vd relative to the available cell
volume V ∗. For a small advancing contact angle θa � 80◦, as shown in the example Fig. 1(c),
the invading front remains smooth and is able to completely sweep out the defending fluid. At
intermediate advancing contact angles 80◦ � θa � 120◦, including the example in Fig. 1(d), the
front slightly roughens and leaves behind minute amounts of the defending fluid. Here the invading
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fluid already bypasses some regions of increased post density and thus traps small pockets of
the defending fluid. For the case of a large contact angle θa � 120◦ as shown in the examples
Fig. 1(e), we observe ramified displacement patterns, in full agreement with the predictions of
Lenormand [15]. Long fingers of the invading fluid that reconnect to the fluid interface occasionally
create large loops. Because this reconnection occurs in an effectively two-dimensional Hele-Shaw
geometry, a substantial amount of the defending fluid disconnects from the upstream fluid reservoir
and consequently remains trapped between the posts [see Fig. 1(e)]. The spectrum of displacement
patterns for different wettability shown in Figs. 1(c)–1(e) is a consequence of local interfacial
instabilities at the front, which govern the dynamics of the invasion process.

Results of both our experiments and full-scale fluid dynamic simulations corroborate that the slow
interfacial displacement in our model Hele-Shaw cell is indeed controlled by wettability: The contact
angle of the invading fluid with the wall selects which class of interfacial instability dominates the
local interfacial advance. As we are going to demonstrate in this work, the relative frequencies of
these advancing modes are highly sensitive with respect to changes in the wall wettability.

Before presenting the results, we will proceed with a short description of our experimental
setup and protocols in Sec. II and give a brief outline of the method underlying our fluid dynamic
simulations in Sec. III. To capture the different aspects of the displacement processes for small
and large contact angles and to compare the front evolution with the one predicted by the model of
Cieplak and Robbins, we quantify the evolution of the fluid distribution through the length of the fluid
interface (see Sec. IV A). In Sec. IV B we introduce the different classes of local advancing modes,
while in Sec. IV C we discuss the clear correlation between the dominant instabilities observed and
the morphology of the final displacement pattern. We summarize our findings and give an outlook
for future research in Sec. VI.

II. EXPERIMENT

Microfluidic Hele-Shaw cells of a width W = 1000 μm and height H = 30 μm equipped with
randomly placed nonoverlapping cylindrical posts of radius R = 16 μm are fabricated by soft-
lithographic methods [36] [see Fig. 1(a) and also Fig. 8 in Appendix A]. In our experiments
we consider disordered post arrays with area fractions φ = 0.15 and 0.3, corresponding to an
average surface-to-surface separation between two neighboring posts of 〈D〉 = (43 ± 22) μm and
〈D〉 = (27 ± 13) μm, respectively (corresponding to 〈D〉 ≈ 1.4H for the dense and 〈D〉 ≈ 0.9H

for the dilute post configuration). For manufacturing reasons, the minimum value of D is set to
the radius R = 16 μm for both structures. Typical for the lithographic fabrication process, we find
a roughness of the sidewalls of the posts and the microfluidic cell on the order of a few hundred
nanometers, but well below a micrometer. To reduce the influence of undesired boundary effects
at the sidewalls of the cell we enlarge the imaged area of the cell by two rows of posts to each
side. The field of view in our experiments has a width of W ∗ = 800 μm and extends over a length
of L∗ = 600 μm into the downstream channel direction. As device material we use oil resistant
UV-curable adhesives NOA 83H or NOA 61 (Norland optical adhesives). The adhesives are molded
from Sylgard 184 (Dow Corning) masters, which were previously molded from photolithographically
fabricated SU-8 structures (Microchem. Corp.). The adhesive replicas of the device master are bonded
to glass microscopy slides and connected to Teflon tubing. Microfluidic devices fabricated in this
way are connected to either a computer-controlled syringe pump for a controlled volume flux or a
hydrostatic reservoir for a pressure-controlled flow. In the range of the considered front velocities,
the viscous pressure drop in the tubing is smaller than 1% of the pressure drop inside the microfluidic
device and can thus be safely neglected. Whenever air is the invading fluid we take care that the
displacement velocity is sufficiently slow so that compressibility effects can be neglected. Because
of the compliance of the injected gas phase, the latter experiments operate in the pressure-controlled
case for high front velocities. However, a direct influence of compressibility on the flow pattern at
the front can be safely neglected as the Mach number is Ma < 10−6 for all experiments.
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The wetting conditions are varied by combining different device materials, invading, and
defending fluids. In this way, we are able to cover a range of advancing contact angles 0◦ < θa � 180◦
in our experiments. A summary of the respective material parameters is given in Table I of
Appendix A. For each combination of invading and defending fluid, we measure the interfacial
tension γ with the pendant drop method, while the advancing contact angle θa and the receding
contact angle θr with respect to the invading fluid are determined with an optical contact angle
measurement device (OCA 20, dataphysics) on flat samples of the corresponding material. The
results of the measurements are summarized in Table II of Appendix A. As long as all menisci of
the front are only advancing, there will be no impact of the receding contact angle on the evolution
of the front morphology. Thus, we will exclusively refer to the advancing contact angle θa in the
following.

Combinations of fluids with a too small value of the contact angle θa � 45◦ are discarded from our
experimental analysis. In this range of low contact angles the invading fluid preferentially spreads
along the edges of the cell formed by the vertical sidewalls and the bottom or ceiling [37], leading
to an undesired globally concave front morphology and parasitic instabilities.

Prior to a displacement experiment the microfluidic device is completely filled with the defending
fluid. Subsequently, the invading fluid is injected while the displacement pattern is imaged at up to
500 frames per second with a high-speed camera (Photron SA3) mounted to an inverted microscope
(Reichert-Jung MeF3) in transmission mode. The experiment is stopped once a stable fraction of the
defending fluid is reached. All recorded images are first smoothed with an anisotropic diffusion filter
at default settings using the freely available software IMAGEJ. After smoothing, the configuration of
the invading front is analyzed with Image Pro Plus (version 6.3, Media Cybernetics). To this end,
an image of the post array taken before fluid invasion is subtracted from all images. Subsequent
thresholding is employed to identify the cell regions that are occupied by the injected fluid. To
estimate the saturation S of the defending fluid in our experiments and simulations, we divide the
area occupied by the defending fluid by the total available area of the field of view, respectively, of the
simulation box. Because the finite horizontal extension of the meniscus for a contact angle θa 
= 90◦
that scales linearly with the height H of the Hele-Shaw cell, we can expect a small systematic error
in our estimate of S. In the present study, this error is less than 1% and hence much smaller than the
statistical error of the average saturation taken over different experimental realizations.

III. NUMERICAL MODEL

Numerical simulation of immiscible fluid displacement in Hele-Shaw cells with cylindrical
posts arranged in the same geometry as in the experiments described above are carried out with
a multicolor stochastic rotation dynamics (SRDmc) algorithm [38–40]. Similar to the majority of
off-lattice particle-based simulation methods, including the standard SRD algorithm for single phase
fluids [41,42], the present algorithm provides an effective scheme to exchange linear momentum
between fluid particles. The dynamics of the particles consists of a sequence of streaming and
collision steps. During streaming, particles move deterministically between time t and t + �t ,

xi(t + �t) = xi(t) + vi(t)�t, (1)

with xi and vi , the corresponding position and velocity of particle i, respectively. In order to exchange
linear momentum, the particles are sorted into cubic collision cells of side length a where the number
of particles per cell fluctuates around an average value 〈N〉. The particle velocities vi(t + �t) after
the collision are related to the precollisional velocities v′

i(t + �t) through

vi(t + �t) = u(t + �t) + �{v′
i(t + �t) − u(t + �t)}, (2)

where u is the center-of-mass velocity of fluid particles in the corresponding collision cell and �

denotes the collision operator. The collision operator locally conserves linear momentum and mass
which implies that averaged quantities such as density and flow velocity obey macroscopic transport
equations. Additionally, to conserve locally the kinetic energy inside a collision cell we apply a cell
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level thermostat as described in Ref. [40]. For an extensive overview on the SRD method the reader
is referred to [43,44].

Numerically efficient nonlocal collisions render the multiparticle simulation approach particularly
suited for applications where details of interactions between fluid particles are largely irrelevant.
Compared to molecular dynamics (MD) and dissipative particle dynamics [45–47] simulations,
particle-based simulation methods like SRD require significantly less time averaging, or coarser
time steps, to obtain reliable estimates of fluid motion in the continuum limit.

To simulate the flow of two immiscible fluids in our displacement experiments we adapt the
(SRDmc) collision operator of Inoue et al. [38] that actively drives a segregation between fluid
particles with different colors (i.e., species). For the particular purpose of the present work, we
extend Inoue’s (SRDmc) algorithm to account for different relative adhesion of the fluids to the
walls of the flow cell. The distribution of local capillary and viscous stresses in the fluids is directly
obtained from averages of the momentum flux over a dense mesh of small control planes. For details
of the simulation method and our implementation of wall wettability, we refer the reader to Ref. [40].

To simulate forced fluid displacement from a quasi-two-dimensional Hele-Shaw cell with
cylindrical posts, we set up a flat simulation box of length L = 200 a, width W = 150 a, and height
H = 3 a. Flat cylindrical posts with in-plane centers coordinates (x,y) are placed in the interval
[55 a,155 a] × [0,W ] and the radius of the posts is set to R = 3 a. The positions of post centers,
however, are chosen to be identical to those in the Hele-Shaw cell used in our experiments. Periodic
boundary conditions are applied into the vertical z direction to eliminate the constant offset of the
pressure difference between the two fluids caused by the out-of-plane curvature of the meniscus. A
no-slip boundary condition is enforced on the sidewall of the posts.

The pressure difference P between the invading and the displaced fluid is created in a narrow
stripe between x = 0 and x = 40 a upstream of the cylindrical posts through a constant force f on the
fluid particles into flow direction. Fluid particles that leave the simulation box at the downstream end
x = L experience an acceleration in the x direction entering the box from the upstream side at x = 0.
A dense row of posts with a small radius R = 0.5H and surface-to-surface distance 〈D〉 ≈ 0.57H

placed behind the inflow region acts as a barrier for the nonwetting fluid. The pressure difference P

driving the invasion is now controlled through the magnitude of the force f , which is slowly ramped
up in time. In order to remain close to a quasistatic situation, the force is incremented by a small
step only after the averaged flow rate of the displaced fluid has fallen below the threshold value.
This value was determined by the average flux out of the domain at x = L at thermal equilibrium
without driving. In all particle-based methods a pressure difference amounts to a difference in bulk
densities between the fluids. For the particular protocol, this density difference across the whole
region of interest is always smaller than 15% and does not affect the local interfacial tension and
bulk viscosities of the fluids [40].

IV. RESULTS

The influence of wettability on the displacement of immiscible fluids becomes apparent in
particular for small interface velocities where capillary stresses dominate over viscous stresses.
The typical magnitude of the ratio of viscous stresses to capillary stresses is expressed by the
dimensionless capillary number. In our experiments, the average velocity of the front varies from
U = 8 × 10−5 to 4.3 mm/s, which corresponds to capillary numbers Ca = ηU/γ ranging from
2.8 × 10−9 to 1.5 × 10−4, respectively. The capillary number in our simulations is found between
8 × 10−3 and 2 × 10−2, i.e., the values are systematically higher than in our experiments. Values of a
modified capillary number Ca∗ that accounts for the cell geometry [17] are always below Ca∗ ≈ O(1)
in our experiments. In our simulations, however, this modified capillary number reaches Ca∗ ≈ O(10)
and viscous effects may come into play during displacement. Nonetheless, a noticeable influence of
the fluid viscosities on the distribution of the defending fluid is observed neither in experiments nor
in numerical simulations up to the respective maximum velocities. Numerical values of the modified
capillary number Ca∗ corresponding to our experiments and simulations are given in Appendix B.
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FIG. 2. (a) Evolution of the interfacial length L in units of the width W ∗ of the field of view for different
advancing contact angles θa as a function of the injected volume V in units of the volume V ∗ of the captured
area. (b) Fitted slope of the curves in (a) in the range 0.2 � V/V ∗ � 0.6 as a function of the contact angle θa .
Error bars of θa represent the standard deviation of several measurements, whereas the error bars of the slope
(V ∗/W ∗)(dL/dV ) represent the error of the fit. The shaded area highlights the crossover from stable interfacial
advance to capillary fingering.

A. Displacement pattern

The crossover between stable interfacial advance and the formation of ramified fluid morphologies
is apparent from the snapshots shown in Fig. 1. To reach a quantitative analysis of the displacement
patterns of the invading fluid, we have to identify suitable order parameters that are sensitive to this
crossover. A clear distinction between stable and ramified displacement patterns can be based on the
temporal evolution of the total length L of the fluid-fluid interface, where we include the interface
of entrapped pockets of the defending fluid. For a stable interfacial advance, the interface length L
fluctuates around a constant value being close to the width W ∗ of the field of view. In the case of a
branched displacement pattern, i.e., at high contact angles of the invading fluid, the total length of
the interface should increase with time t at a rate dL/dt > 0.

Figure 2(a) exemplifies the evolution of the interface length L in units of the width W ∗ for three
contact angles that are representative for a wetting, an intermediate, and a nonwetting condition.
Because the injection rates for various experimental realizations and simulations differ, the rescaled
length L/W ∗ in Fig. 2(a) is plotted as a function of the injected volume V normalized by the
total volume V ∗ (see Sec. II). During an initial phase V � 0.2V ∗, we observe the buildup of an
invading front at the upstream side of the field of view. Only the data for V � 0.2V ∗ are specific
for the contact angle θa and further analyzed. For contact angles θa � 80◦, the interface length L
as a function of V/V ∗ displays a plateau in both experiments and simulations. For contact angles
θa � 80◦, the interface length increases almost linearly with the fraction of the injected volume
V/V ∗. The corresponding average slope dL/dV increases as the contact angle becomes larger. To
quantify the increase of the normalized interfacial length L/W ∗ with V/V ∗, we fit the data in the
range of injected volume 0.2 � V/V ∗ � 0.6 with a linear relation. Within this range of volumes,
the interface of the invading fluid has not yet left the field of view at the downstream end. In contrast
to the experimental data, we observe a slightly sublinear growth of L with V in our numerical data.

Figure 2(b) displays the magnitude of the slope plotted against the contact angle θa . The onset
of a progressive lengthening of the front during invasion can be located at θa ≈ 80◦. At high
contact angles θa � 120◦, however, the slope saturates to a constant value. Changes in the growth
of interfacial length and the corresponding front morphology also imply changes in the saturation
of the defending phase that remains in the cell after fluid invasion. Figure 3(a) provides examples of
the general form of the saturation S of the defending fluid as a function of the injected volume V/V ∗
for different contact angles θa . Because the volume of the incompressible fluids is conserved, the
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FIG. 3. (a) Saturation Sd of the defending fluid as a function of the pore volume V/V ∗ of the invading
fluid. A first kink at S = Sf corresponds to the breakthrough where the invading fluid reaches the downstream
boundary of the field of view. A second kink followed by a plateau of the saturation is observed at the residual
saturation S = Sr . (b–e) Examples of displacement patterns at residual and final saturation from experiments
(b) and (c), respectively, and for simulations in (d) and (e).

saturation of the defending fluid decreases linearly with the injected volume of the invading fluid as
long as the invading front is located completely within the field of view. Hence, the saturation S of
the defending fluid, when plotted against the specific volume V/V ∗ of the injected fluid, decreases
linearly with a slope −1, irrespective on the contact angle θa [see the plots in Fig. 3(a)]. However,
after a certain volume V has been injected, the front of the invading fluid reaches the boundary
of the field of view. This breakthrough occurs at the final saturation Sf where the saturation curve
S(V/V ∗) departs from the linear decrease and starts to flatten before it finally levels off in a plateau,
defining the residual saturation Sr of the defending fluid. In contrast to the residual saturations Sr ,
the final saturation Sf is governed solely by the arrangement of the posts within the field of view
and is therefore insensitive to the particular downstream boundary conditions of our experiments or
simulations. Thus, we will restrict our following discussion and in particular the comparison of the
experimental and numerical results to the final saturation Sf of the defending fluid.

As expected from the evolution of the interface length, the final saturations Sf observed in
our experiments and numerical simulations reveal two distinct wettability regimes [see Figs. 4(a)
and 4(b)]. In the regime of small contact angles θa � 80◦ the displacement pattern is smooth and
none or only a minute amount of the defending fluid remains in the field of view at the end of
the experiment. However, in the regime of large contact angles θa � 120◦, capillary fingers appear
during the evolution of the displacement pattern that cause a certain fraction of the defending fluid
to be retained in the array of posts at the end of the experiment. In both wetting regimes, the
respective displacement patterns are insensitive with respect to the contact angle and independent
of the displacement rate for sufficiently small interface velocities, as considered here.

The two observed regimes of final saturations at small and large contact angles and their crossover
are still present in denser posts arrays with a higher area fraction of φ = 0.3 [see Fig. 4(b)]. The
experimentally determined final saturation Sf for the dense array with φ = 0.3 appears to be
systematically larger by a constant off-set ∼ 0.15 when compared to the final saturations in a dilute
post array with an area fraction φ = 0.15 for the same contact angle θa .

B. Local advancing modes

The outstanding role of wettability in immiscible fluid displacement can be understood by
considering the local invasion processes on the level of a few neighboring menisci. To characterize
and to further describe the motion of the fluid interface in our experiments and simulations, we
classify each interfacial instability leading to a local interfacial advance. Since we are working
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FIG. 4. (a) Final saturation Sf of the defending fluid as a function of the contact angle θa with respect to
the invading fluid. Experimental data for post arrays with area fraction φ = 0.15 (squares) in comparison to
numerical data (solid line) for the same arrangement of posts. The shaded region emphasizes the extension of
the crossover for contact angles 80◦ � θa � 120◦, respectively. (b) Experimentally measured final saturation
for φ = 0.15 (squares) and φ = 0.3 (circles) of the posts. Error bars on the abscissa (θa) and ordinate (Sf )
represent the standard deviation of several measurements.

exclusively in the limit of quasistatic interfacial displacement and due to our temporal and spatial
resolution, we can directly observe the four fundamental modes of local fluid advance, as initially
introduced by Cieplak and Robbins [22,23]. The salient features of these interfacial instabilities
are illustrated by overlays of snapshots of two meniscus configurations, one shortly before and a
second during the instability in Fig. 5. Besides the burst and touch instability of a single meniscus,
the invading interface can undergo two types of coalescence instabilities that involve two adjacent
menisci.

In an ideal, pressure-controlled setup, a single meniscus spanning the gap between two posts
becomes unstable and progresses whenever the meniscus contour exceeds a maximum in-plane
curvature. In this case, any further advance of the three-phase contact line is accompanied by
a decreasing curvature of the meniscus and thus a local decrease of the Laplace pressure. This
decrease of the Laplace pressure drives a flow of the invading fluid until a new, stable interfacial
configuration has been reached. Owing to the sudden fluid invasion after the breakthrough, this
instability has been termed a burst. The typical evolution of a meniscus geometry before and during
a burst instability is shown in Fig. 5(a).

Alternatively to the burst instability, the meniscus may touch a post that lies ahead of the front
before the largest possible curvature is reached [see Fig. 5(b)]. Once the meniscus touches the post,

FIG. 5. Optical micrographs of meniscus instabilities in a Hele-Shaw cell decorated with an array of
cylindrical posts for different wall wettability observed in our experiments: (a) burst, (b) touch, (c) coalescence
where the three phase contact lines touch first, and (d) coalescence where the fluid-fluid interfaces touch first.
Images of the meniscus configuration at the point of instability overlay the respective meniscus configurations
after the instability (background). The dashed lines represent the position of a stable meniscus before instability.
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it splits up into two menisci. Within a very short time the two newly formed menisci establish the
material contact angle with the wall. In the course of this rearrangement, termed touch instability,
the new menisci pull the invading fluid forward into the two empty gaps that are adjacent to the
touched post. Similar to the burst instability, only a single meniscus is involved in a touch instability
and the condition of a touch can be related to a maximum Laplace pressure of a single meniscus
assigned to each individual gap. In contrast to the burst, this pressure maximum depends not only
on the relative orientation of the meniscus with respect to the gap, but also on the relative position
of the posts that are located ahead of the meniscus. The respective conditions for the occurrence of a
touch or a burst instability are both independent of the state of the neighboring gaps, i.e., on whether
these gaps are filled, empty, or partially wet by the invading fluid.

Besides undergoing a burst or touch instability, a meniscus can also collide with another meniscus
and eventually coalesce to form a single meniscus. Coalescence events involve the menisci of two
adjacent gaps and are thus fundamentally different from bursts and touches. As illustrated in Fig. 5(c),
one can distinguish two types of coalescence events. In most cases the coalescence is triggered by a
collision of the three-phase contact lines of the menisci that are located on the same post. In a few
cases, particularly for high contact angles of the invading fluid, the two neighboring menisci touch
and merge into a single meniscus, as illustrated in Fig. 5(d). Like for the burst and touch instabilities,
the appearance of coalescence events is controlled by the contact angle with the sidewalls of the
posts, the Laplace pressure, and the local post geometry.

C. Statistics of advancing modes

A quantitative analysis of the instabilities controlling the advancement of the invading fluid
requires an unambiguous identification of the local front morphology. For low contact angles of the
invading fluid, in particular, we need to find an unequivocal criterion to decide whether an observed
meniscus shape is transient or represents a stable configuration. In practice, this task turns out to
be difficult. Only stable meniscus configurations are consistent with the assumption of a quasistatic
fluid invasion as demanded by the model of Cieplak and Robbins. Transient meniscus shapes that
are far from a circular arc observed in experiments and simulations cannot be assigned to any of the
advancing modes described in Sec. IV B. To reach a quantitative description, we adopt the rule that
all meniscus shapes that exhibit local curvatures of both signs at the point of instability are counted
as a transient shape.

Given that the topology of the invading interface at certain point in time is uniquely determined
by the set of all pairs of posts that are connected by a meniscus, we can compute the number of
menisci that have decayed due to touches Nt , bursts Nb, or coalescences Nc. A finite number of
menisci Na remains arrested until the end of the fluid invasion, i.e., until the front has reached
its final stable configuration. Hence the total number of menisci observed during invasion is N =
Nt + Nb + Nc + Na + N∗, where N∗ is the number of transient meniscus configurations that could
not be assigned to one of the advancing modes discussed above.

Figure 6(a) summarizes the relative frequencies Nξ/N that a meniscus progressed as a
consequence of a certain advancing mode ξ ∈ {t,b,c} and the fraction Na/N of menisci that remained
arrested for the series of contact angles θa of the invading fluid. In the range of small contact angles
θa � 80◦, exclusively touch and coalescence events are recorded. The relative frequency of arrested
menisci at low contact angles is zero. At intermediate contact angles 80◦ � θa � 120◦ the relative
frequencies of touches and coalescences are continuously decreasing. In contrast, burst instabilities
appear for the first time at a contact angle of approximately 80◦. The relative frequency of bursts
Nb/N is continuously increasing in the range of intermediate contact angles. Simultaneously with
the increase of bursts, the relative frequency of menisci that remain arrested increases from 0 to
around Na/N ≈ 0.4. In the range of large contact angles θa � 120◦ the relative frequency of arrested
menisci plateaus at Na/N ≈ 0.4. Also the relative frequency of burst instabilities remains roughly
constant at Nb/N ≈ 0.45. The plot in Fig. 6(a) also demonstrates that the relative frequency for
coalescences reaches a plateau at Nc/N ≈ 0.1 for contact angles θa � 120◦, while touch instabilities
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FIG. 6. (a) Relative frequency Nξ/N of meniscus instabilities and arrested menisci as a function of the
contact angle θa . (b) Average width 〈D〉ξ of gaps where the meniscus decayed by a certain instability ξ and
where the meniscus remained arrested as a function of θa . The values 〈D〉ξ are normalized with the average
gap size 〈D〉 of all pairs of cylindrical posts that were at least transiently connected by a meniscus. The
experimental results are shown as symbols, i.e., coalescences ( ), touches ( ), bursts ( ), and arrested menisci
( ). Corresponding results of simulation are shown as lines in the respective colors. To improve the significance
of our statistic, bursts and touches are grouped to noncooperative instabilities ( ) in (b); all gaps that are filled
at the end of an invasion are displayed as (�). Error bars on the abscissa (θa) represent the standard deviation
of several measurements; error bars on the ordinate represent the respective statistical errors of the shown
quantity. Shaded areas in (a) and (b) illustrate the crossover from the nonwetting to the wetting regime [see also
Figs. 2(b) and 4].

completely vanish for θa � 80◦, simultaneously with the onset of bursts. At low contact angles, the
coalescence starts from the three phase contact line [see Fig. 5(c)]. The complementary situation
where the coalescence starts on the menisci occurs only for sufficiently high contact angles [see
Fig. 5(d)]. Already at contact angles θa � 80◦, coalescences of the former type are fully suppressed
because the meniscus does not protrude sufficiently far into the gap to touch a neighboring meniscus.

Figure 6(b) displays averages corresponding to the gap distance 〈D〉ξ for different advancing
modes ξ ∈ {t,b,c} or arrested menisci ξ = a. In the range of intermediate contact angles where
Nt/N and Nb/N are small, the statistics of either the touch or burst events, respectively, display
strong fluctuations [see Fig. 6(a)]. To improve the significance of averages 〈D〉ξ in Fig. 6(b), we
thus grouped touches and bursts into the class of noncooperative instabilities, i.e., events involving
a single meniscus, while coalescence events of two neighbored menisci are classified as cooperative
instabilities. A comparison to Fig. 6(a) reveals how the frequencies of certain meniscus instabilities
and of arrested menisci correlate with the gap opening 〈D〉. In the range of contact angles θa � 80◦
the normalized average width of gaps that are filled at the end of an invasion remains constant
at 〈D〉f = 1 [see Fig. 6(b)]. In other words, all pairs of posts that were connected by a meniscus
during the invasion for some time are filled with the invading fluid at the end of an experiment or
simulation run. Coalescence events dominate the advancement for θa � 80◦ and almost the entire
defending fluid of the cell is displaced by the invading fluid. At higher contact angles θa � 80◦, i.e.,
above the onset of bursts, parts of defending fluid are trapped between the posts, which implies that
a certain fraction of the gaps remains unfilled at the end of the invasion. Inspection of Fig. 6(b)
reveals that the final average size of the gaps that are filled increases and plateaus at a value that
is roughly 〈D〉f ≈ 1.3〈D〉. However, considering only those gaps filled by noncooperative events,
we even find a slightly larger average gap opening 〈D〉b ≈ 1.4〈D〉. Defending fluid between posts
with an average distance 〈D〉a ≈ 0.6〈D〉 will never be displaced by the invading fluid. The smallest
gaps in an array of posts are never filled and potentially block complete areas from invasion. Gaps
involved in coalescence events display an average opening 〈D〉c/〈D〉 � 1 in the range of contact
angles θa � 120◦ and 〈D〉c/〈D〉 ≈ 1 for large contact angles θa � 120◦.
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V. DISCUSSION

Despite its immediate relevance in many industrial applications, a direct observation of the
wettability-controlled crossover between stable and unstable immiscible displacement at low
capillary numbers has been the subject of only a few experimental studies [2,11,48] and numerical
models [21–27,49]. The majority of the latter works assumed triangular or square arrays of posts
with randomized radii [22–26], in contrast to long-range disordered post arrangements considered in
Ref. [49] and in the present study. The minimal surface-to-surface separation of neighboring posts in
our Hele-Shaw cell is set to the diameter of the posts and is therefore larger than the typical distances
of disks investigated in Refs. [21,22,26]. The relatively low area fraction of posts in the present work
is necessary to reach the optical resolution that allows a further quantitative image analysis.

Small surface-to-surface separation and a regular geometry of the disk centers effectively limits
the number of possible static meniscus configurations that need to be considered in a numerical
implementation of models assuming quasistatic meniscus shapes [21,22,26]. Hence, a high area
fraction of posts is advantageous in simulations that are based on a discrete representation of the
invading interface. For large distances between the posts, however, only a small fraction out of the
large set of potential quasistatic meniscus configurations of the interface can be represented in a
network of predefined cells and gap openings. In this case, further ad hoc assumptions are required
to predict the path of the invading fluid [49].

With the aim of following the morphological evolution of the front for identical post arrays in
experiments and simulations, we solve the full fluid dynamics problem of the displacement process.
In contrast to discrete network models, a full-scale simulation of the two-phase flow naturally
respects all possible meniscus configurations that could be attained during invasion. Moreover, the
meniscus shapes in a full fluid dynamics description may depart from the circular arc geometry
assumed in the quasistatic model of Cieplak and Robbins. None of the aforementioned quasistatic
models are able to reach conclusions about the transient meniscus shapes that occur immediately
after a burst, touch, or coalescence instability.

Full-scale simulations of the progressing front account for the viscous pressure drop in the
bulk fluids, a point that has been excluded from the original quasistatic model of Cieplak and
Robbins. The recent model of Holtzman and Segre studied in Ref. [21] combines the quasistatic
Laplace pressure-controlled geometrical approach of Cieplak and Robbins with a network model
that includes pressure gradients of viscous flows. The relation between the local Laplace pressure of
a meniscus and the filling degree of the corresponding throat [21] is still based on the assumption
of circular arcs. Ad hoc assumptions are applied regarding the final meniscus states attained after
an instability. As compared to network models, full-scale simulations of the fluid dynamics of
immiscible displacement in Hele-Shaw cells are computationally demanding.

Although the modified capillary number Ca∗ reaches up to O(10) in our simulations of the invasion
process, we never observe a Saffman-Taylor instability [50] and the subsequent formation of fingers.
To suppress a Saffman-Taylor instability of the invading interface or, conversely, a front stabilization,
we set the viscosity contrast between the defending and invading fluid to the marginally stable case
M = 1 in all simulation runs. Because the modified capillary number Ca∗ is always smaller than
unity in our displacement experiments, we can safely discard viscous fingering as the cause for
ramified displacement patterns. Similarly, a stabilization of the invading front by viscous forces is
also ruled out.

The morphology of the displacement pattern and the final saturation of the defending fluid in
our experiments and simulations are obviously governed by the prevalence or absence of certain
interfacial instabilities at the front. For invading fluids with a small contact angle θa � 80◦, it is
much more likely that a meniscus of the invading interface coalesces with a neighboring meniscus
rather than decay in a burst or a touch instability. Accordingly, the tendency of the invading interface
to remain in a straight configuration in the range of small contact angles θa � 80◦ can be explained
by the cooperativity of coalescence events. In this regime of small contact angles, the length of the
interface fluctuates around a constant value (see Fig. 2).
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FIG. 7. Sketch of a meniscus configuration. The interface between posts 2, 3, and 4 forms a local recess
where the corresponding menisci are oriented towards each other. Here a coalescence event that smoothens the
invading interface (indicated by the dashed line) is strongly favored.

A comparison of the statistics of meniscus advancing modes in Fig. 6(a), the growth rate of the
interface length in Fig. 2(b), and the final saturations in Fig. 4 reveals that the extensions of the regime
of touch and coalescence events at low contact angles, as well as the regime of bursts at high contact
angles, coincide with the respective regimes of low and high final saturation. For the experimental
data corresponding to contact angles of θa = 95◦ and θa = 100◦ we observe a systematic shift
of the experimental data compared to the numerical data towards a higher contact angle in both
Figs. 2(b) and 4. In the same range of contact angles one can also notice a slight deviation in the
statistics of interfacial instabilities (see Fig. 6). However, except for contact angles in the range of
this crossover, we find excellent quantitative agreement of both growth rates of interfacial length and
final saturations between the respective results of our experiments and numerical simulations. This
match supports our hypothesis that only the advancing contact angle has a noticeable influence on the
dynamics of fluid invasion. Advancing and receding contact angles are identical in our simulation,
which implies that a qualitative difference from the displacement process could only be expected if
some parts of the interface in our experiments were also retracting into the direction of the invading
fluid.

The coalescence of two neighboring menisci into a single meniscus is strongly favored whenever
the coalescing menisci are oriented toward each other (see Fig. 7). As a consequence of this bias,
any local recess of the interface that may have formed due to other capillary instabilities such as
bursts and touches is quickly erased as the interface progresses. Similarly, coalescence instabilities
are unlikely to occur in configurations where two menisci are oriented away from each other like in
a local protrusion of the invading fluid. This particular dependence of the coalescence events on the
relative orientation of neighboring menisci readily explains the tendency of the interface to remain
in an overall straight configuration when coalescence dominates. Observing the invasion process in a
coarse-grained picture, i.e., on a length scale much larger than the scale of the posts, the cooperative
invasion modes suppress the buildup of large excursions of the interface similar to a global interfacial
tension [51]. In contrast to the true microscopic interfacial tension of the menisci, this effective
tension is inherently linked to the invasion dynamics. Despite this dynamically generated stiffness
of the moving interface, we can expect that the noise caused by subsequent pinning and depinning
events will, to a certain extent, progressively roughen the invading interface [33,34,52].

In the opposite limit of large contact angles θa � 120◦ of the invading fluid, the interface remains
pinned at the posts in the majority of cases. Instead of coalescences, the dominant modes of interfacial
advance observed in our experiments and simulations are burst instabilities. Because burst events
are uncorrelated and randomly distributed over the invading interface in a disordered post array, the
dynamics of a slow fluid displacement can be described by an invasion percolation model [53,54]. As
expected for an invasion percolation process, we observe a strong fingering of the interface and thus
an increase of its length with the injected volume (cf. the plots of interface length against the injected
pore volume in Fig. 2). The linear growth of the interfacial length in the regime of contact angles
θa � 120◦ is consistent with the formation of a ramified displacement pattern [53,54]. Percolation
theory predicts that the surface of the invading clusters, i.e., the number of dangling bonds, grows
linearly with the number of occupied bonds for asymptotically large clusters [55,56]. The slight
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sublinear trend observed in our numerical simulations hints at a finite-size effect related to the lateral
confinement.

In accord with the statistics of the local advancing modes of the interface shown in Fig. 6(a), the
average gap width 〈D〉f of filled gaps for θa � 120◦ is significantly larger than the average gap width
〈D〉 over all advancing modes including arrested menisci and transient configurations. This finding
can be easily explained from the dominance of burst instabilities at high contact angles. Bursts occur
at the gap with the lowest critical Laplace pressure. Since the contact angle is the same on all posts,
the lowest critical pressure is found at the gap with the largest opening. The burst criterion explains
the strong correlation of progressing menisci and large gaps. This correlation can be observed only
if the meniscus does not undergo a different type of instability before the burst criterion is reached.

A preference of coalescences to occur at small gap openings in the range of large contact angles
θa � 120◦, as revealed by Fig. 6(b), is rather a consequence of the competition with burst instabilities
that have a clear preference to occur at gaps with openings above average. Coalescence events are
favored by small contact angles but, in principle, can be observed over the full range of contact angles.
Our experiments and fluid dynamics simulations indicate that the coalescence of the three-phase
contact line of the menisci in fact plays “. . .the crucial role in changing the growth pattern as θa is
varied” as already suggested by Cieplak and Robbins in Ref. [23].

Judging from the final saturation Sf as a function of the contact angle θa shown in Fig. 4,
the crossover between cooperative and noncooperative modes of interfacial advance is unchanged
between area fractions φ = 0.15 and 0.3 of the posts. This finding is at variance with data reported for
the quasistatic model in Refs. [22,23], showing that the transition between a smooth and a ramified
invading interface occurs at smaller contact angles in disk arrays with higher area fractions. Given
the finite height of the Hele-Shaw cell, the particular three-dimensional geometry of the meniscus
can easily cause systematic deviations from the effectively two-dimensional model, particularly for
high area fractions and aspect ratios of the posts. Enlarged final saturations observed in arrays of
denser posts could also be a particular consequence of the pore-scale fluid dynamics leading, e.g., to
a number of smaller fluid pockets of the defending phase even at low contact angles θa � 80◦ where
coalescence is the dominant mode of interfacial advance.

VI. CONCLUSION AND OUTLOOK

The present experimental and numerical results demonstrate that wettability is a key parameter
to understand the displacement of a defending fluid by an invading immiscible fluid from a
quasi-two-dimensional Hele-Shaw cell with cylindrical posts. Fluid displacement patterns recorded
in experiments display excellent agreement with those found in fluid dynamics simulation of the
invasion process for identical positions of the posts. Supported by this perfect match, we propose
two regimes of displacement pattern in terms of wettability. In each of the two regimes, the final
saturation of the defending fluid is widely independent on the contact angle θa . In the regime of
wetting invading fluids θa � 80◦, the interface remains smooth while the defending fluid is displaced
almost completely from the cell. In the poorly wettable regime θa � 120◦, the interface evolves into
a ramified geometry and a significant amount of defending fluid is trapped between the posts and
remains in the cell. The global dynamics of the displacement and with it the final amount of the
defending fluid can be understood in terms of local interfacial instabilities.

Both observed displacement patterns can be related to the dominance of either cooperative or
noncooperative meniscus instabilities in the course of front progression. A statistical analysis of
the appearing instabilities clearly shows that the prevalence of the cooperative coalescences at
low contact angles of the invading fluid (imbibition) leads to a stable interface advance and low
residual saturations. For high contact angles of the invading fluid, we observe that noncooperative
burst instabilities dominate the interface advance and, consequently, capillary fingering and larger
residual saturations. In accord with the model of Cieplak and Robbins [22,23], we observe that
already small changes of the advancing contact angle in the crossover between the two regimes
can lead to large changes in the displacement patterns. The results presented in this work provide
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clear evidence that the wettability-controlled transition between a smooth interfacial advance and
capillary fingering is not restricted to post arrays with positional order, as originally considered in
Refs. [22,23].

So far, a noticeable roughening of the invading interface in the regime of stable advance could be
observed neither in our experiments nor in the corresponding full-scale fluid dynamics simulations.
Hence, we expect that the influence of the quenched disorder in the Hele-Shaw cell introduced by the
posts will become apparent only in systems with larger extensions. It will be particularly interesting
to quantify the buildup of interfacial roughness in the narrow crossover between the stable interfacial
advance and capillary fingering.

The competition between cooperative and noncooperative pore invasion will affect, in principle,
slow immiscible fluid displacement in any two- and three-dimensional porous matrices. One of the
important questions arising in this context is whether the wettability-controlled crossover between
stable interfacial advance and capillary fingering applies also to real three-dimensional porous media.
Even for the most simple three-dimensional experimental system, a disordered bed of uniformly
wettable spherical beads, it is already a formidable task to determine the spectrum of possible local
interfacial configurations for a given Laplace pressure and contact angle. Compared to the effectively
two-dimensional Hele-Shaw cell, the catalog of interfacial instabilities that can lead to a local fluid
advance in dense beds of spherical beads is considerably more complex and further simplifications
are necessary to formulate a tractable model that is able to provide quantitative predictions.

ACKNOWLEDGMENTS

The author would like to thank Jean-Christophe Baret, Benoit Semin, Julie Murison, Anne
Muggeridge, Bilal Rashid, and Jean-Babtiste Fleury for fruitful discussions. Generous support was
granted by the ExploRe program of BP plc.

APPENDIX A: MICROFLUIDIC DEVICE AND FLUID PROPERTIES

To achieve an initial straight interface of the invading fluid into the structured area, the main inlet
channel is branched twice injecting the invading fluid via four inlets into the post array (see Fig. 8).
A subsequent gap of 100 μm after the branched inlet channels allows the four interfaces to merge

600 µm 200 µm 

1 mm 

FIG. 8. Sketch of a microfluidic device with an area fraction of posts φ = 0.15. The total width of the
channel is 1000 μm. The dashed rectangle indicates the field of view in our experiments with a width of
800 μm and an extension in channel direction of 600 μm. The average surface-to-surface separation between
two neighboring posts is 〈D〉 = (43 ± 22) μm.
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TABLE I. Fluid density and viscosity.

Fluid Density Viscosity
(g/cm3) (mPa s)

air 1.18 0.017
water 0.99 0.9
dodecane 0.75 1.5
FC-75, FC-70 1.76,1.94 1.4,27.2
silicon oil AK10, AK50 0.93,0.96 9.3,48
silicon oil AK100, AK500 0.96,0.97 96,485

before entering the post array in the Hele-Shaw cell. The region of the post array that is captured in
the experiments is indicated by the dashed box in Fig. 8, which has a width of 800 μm and extends
about 600 μm in the channel direction. A gap of 200 μm is inserted behind the array of posts to
guarantee defined end conditions.

To systematically vary the wettability different combinations of fluids, including air, water,
dodecane (Merck), fluorinated oils (3M), and silicon oils (Wacker Chemie), as invading and
defending fluids were used in combinations with the two device materials NOA 83H and NOA
61 (Norland Optical Adhesives). In one case we added 0.0037 wt.% of the surfactant sodium
dodecylbenzenesulfonate (SDBS) (Sigma Aldrich) to the water to fine-tune the wettability. To
optically distinguish the invading from the defending fluid, we added 3 wt.% of the dye erioglaucine
(Sigma Aldrich) to water and 0.6 wt.% of the dye Oil Red O (Sigma Aldrich) to dodecane. The
applied combinations of fluids and the relevant physical properties, as given by the respective
manufacturers, are summarized in Tables I and II.

APPENDIX B: MODIFIED CAPILLARY NUMBER

For viscosity ratios M > 1, an estimate can be obtained from a comparison of two pressure scales.
In the case of a nonwetting invading fluid, the width of the front ξf can be related to the distribution
of threshold values P max of the Laplace pressures that a meniscus has to exceed to invade the space
downstream of the gap. The relevant contribution to the Laplace pressure P max for this instability is
related only to the in-plane curvature of the meniscus. Given the surface-to-surface distances D of

TABLE II. Interfacial tension γ for the applied fluid-liquid combination and their advancing (θa) and
receding (θr ) contact angles on the respective NOA surfaces.

Injected Defending Device θa θr γ

fluid fluid material (deg) (deg) (mN/m)

dodecane air NOA 83H <20 ≈ 0 (25 ± 1)
watera air NOA 61 (46 ± 6) <20 (35 ± 1)
waterb air NOA 83H (79 ± 4) <20 (70 ± 1)
waterb FC-75 NOA 83H (95 ± 4) <20 (28 ± 1)
waterb FC-70 NOA 83H (100 ± 3) <20 (35 ± 2)
waterb silicon oil NOA 83H (117 ± 6) <20 (28 ± 2)
waterb dodecane NOA 83H (125 ± 4) <20 (26 ± 1)
dodecanec water NOA 83H (131 ± 6) <20 (48 ± 1)
air dodecane NOA 83H ≈180 >160 (25 ± 1)

aWater with 3 wt.% erioglaucine and 0.0037 wt.% SDBS.
bWater with 3 wt.% erioglaucine.
cDodecane with 0.6 wt.% Oil Red O.
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a pair of neighboring posts, we have P max ≈ −2γ cos θa/D. The viscous pressure drop P visc across
the front must be just as large as to fill the large gaps at the tip of the front and the small gaps in the
back of the front at the same time. Neglecting the increase of viscous pressure drop caused by the
cylindrical post (which is ideally the case for H � D), we estimate P visc ≈ μiUWξf /〈D〉H 2 for
the “bare” Hele-Shaw geometry without posts, where we use an upper bound WU/〈D〉 on the local
flow velocity at the invading front.

Effects caused by the viscous pressure drop are irrelevant whenever the longitudinal dimensions
of the Hele-Shaw cell L are much smaller than ξf . Employing the width of the distribution �D

of gap separations D to estimate the difference between the largest and the smallest value of the
threshold pressure P max, we finally arrive at the condition

Ca∗ ≡ 6μi〈D〉LWU

γ | cos θa|�DH 2
� 1 (B1)

to operate in the regime where the final pattern of the displaced fluid is independent of the injection
rate of the invading fluid.

In the quasi-two-dimensional flow of the simulations, the hydraulic resistance of an array of
cylinders [57] gives rise to the modified capillary number

Ca∗ = 4μiU 〈D〉LW

f
( 〈B〉

2R

)
γ | cos θa|�D〈B〉2

, (B2)

where 〈B〉 = 〈D〉 + 2R is the average center-to-center distance of two posts and the expression f (x)
in the denominator of (B2) takes on the form

f (x) = ln x − 1

2

x4 − 1

x4 + 1
. (B3)

For the standard post arrangement used in experiments and simulations with area fraction of φ =
0.15, we have �D ≈ 〈D〉/2, where 〈D〉 is the mean surface-to-surface separation between two
neighboring posts. Since W ≈ 30H and L ≈ 20H we find Ca∗ ≈ 9 × 103Ca for the experiments
and Ca∗ ≈ 2.9 × 103Ca for the corresponding numerical simulations. In both cases, we assume
|cos θa| ≈ 0.8 as a lower bound, since capillary fingering is not observed for contact angles below
θa � 120◦.
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