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We formulate and study computationally the low Mach number fluctuating hydrodynamic
equations for electrolyte solutions. We are interested in studying transport in mixtures
of charged species at the mesoscale, down to scales below the Debye length, where
thermal fluctuations have a significant impact on the dynamics. Continuing our previous
work on fluctuating hydrodynamics of multicomponent mixtures of incompressible
isothermal miscible liquids [A. Donev et al., Phys. Fluids 27, 037103 (2015)], we now
include the effect of charged species using a quasielectrostatic approximation. Localized
charges create an electric field, which in turn provides additional forcing in the mass
and momentum equations. Our low Mach number formulation eliminates sound waves
from the fully compressible formulation and leads to a more computationally efficient
quasi-incompressible formulation. We demonstrate our ability to model saltwater (NaCl)
solutions in both equilibrium and nonequilibrium settings. We show that our algorithm is
second order in the deterministic setting and for length scales much greater than the Debye
length gives results consistent with an electroneutral approximation. In the stochastic
setting, our model captures the predicted dynamics of equilibrium and nonequilibrium
fluctuations. We also identify and model an instability that appears when diffusive mixing
occurs in the presence of an applied electric field.
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I. INTRODUCTION

At macroscopic scales, fluid dynamics is governed by partial differential equations that
characterize the behavior of the fluid in terms of smoothly evolving fields that represent density,
momentum, and other characteristics of the fluid. However, at atomic scale fluids are discrete
systems composed of individual molecules whose dynamics are governed by complex interaction
potentials. The discrepancy between these two descriptions is manifest at the mesoscale. While
it is possible to model a fluid using macroscopic field variables at the mesoscale, we know that
they are no longer smooth fields; instead they fluctuate even for systems that are at thermodynamic
equilibrium.

Fluctuations in systems at equilibrium are well understood; for systems that are not close to
a critical point, basic statistical mechanics provides a complete characterization. In this setting
fluctuations are benign; they are simply small stochastic variations about the mean behavior.
However, in systems that are out of equilibrium, fluctuations can have a significant impact on
macroscopic behavior. A macroscopic gradient is sufficient to significantly affect the mesoscale
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dynamics as manifested by the enhancement of fluctuations, in both magnitude and their range
of influence. In addition, some quantities that are uncorrelated at equilibrium (e.g., fluctuations
of concentration and fluid velocity) are found to be correlated in nonequilibrium systems; these
correlations can produce macroscopic effects, such as the giant fluctuation phenomena, which are
observed in laboratory experiments [1,2].

In principle, the effects of fluctuations can be studied using all-atom molecular simulations.
In practice, however, this type of microscopic modeling will be infeasible, even on proposed
exascale architectures, for many mesoscopic problems of interest. A more efficient and tractable
numerical approach for mesoscopic fluids is fluctuating hydrodynamics [3,4]. This theory extends
conventional hydrodynamics by including a random component to the dissipative fluxes. The form of
these stochastic fluxes is obtained from irreversible thermodynamics and the fluctuation-dissipation
theorem.

In a series of papers, we developed numerical methodology for fluctuating hydrodynamics of
multicomponent mixtures of compressible fluids [5] and quasi-incompressible miscible liquids [6–8].
We used low Mach number asymptotics to derive an alternative set of hydrodynamic equations that
do not contain fast acoustic waves. For flows in the low Mach number regime, where the characteristic
fluid velocity is small compared to the sound speed (U � 0.1c), sound waves are sufficiently weak
that they do not change the thermodynamics of the system. Thus, for these classes of problems a low
Mach number approach can be an order of magnitude or more computationally efficient than a fully
compressible approach. Our method correctly captures the predicted dynamics of equilibrium and
nonequilibrium fluctuations and is able to model experimentally observed phenomena such as mixed-
mode instability and diffusive layer convection between layers of salt solution and sucrose [6,9].

In this paper we extend our multicomponent fluctuating hydrodynamics approach [6] to include
charged species. Transport phenomena in electrolytes are important for studying both naturally
occurring and synthetic systems. In living cells this is of particular interest since transport is known
to rely strongly on membrane potentials and the electrodiffusion of ions [10]. Being able to model
such systems with the inclusion of their inherent statistical fluctuations would not only be a way
to increase our understanding of cellular mechanisms, but also provides a path towards better
modeling tools for bioengineering applications. Fields such as microfabrication would also benefit
from such numerical tools. For instance, the synthesis of nanowires often relies on electrodeposition
processes and, while the deposition techniques by themselves are well developed, nonhomogeneous
growth rates induced by random fluctuations have been reported [11]. Batteries and fuel cells are
another example of applications relying on ionic transport. In all these examples the length and time
scales involved are usually intractable for direct modeling methods such as molecular dynamics. By
contrast, fluctuating hydrodynamics provides a naturally suited framework. In addition, while there
are alternative numerical approaches (e.g., lattice Boltzmann for fluctuating hydrodynamics [12]
and for electrolytes [13]), the methodology presented here is based on well-established schemes in
computational fluid dynamics.

In this paper we model strong electrolyte solutions, such as salt (NaCl) dissolved in water. The
electric field, resulting from an applied field and internal free charges, acts upon the charged species
resulting in additional forcing in the mass and momentum equations. We consider isothermal systems
and neglect magnetic effects by using the quasielectrostatic approximation. Dreyer et al. [14] have
presented a closely related deterministic formulation (which, like our formulation, is fully consistent
with nonequilibrium thermodynamics [15]) of the complete hydrodynamic equations for an ideal
ternary mixture containing a neutral solvent. Our formulation does not assume ideality and treats all
species on an equal footing, allowing for the modeling of mixed solvents (e.g., ethanol and water)
with arbitrary mixtures of solute ions of differing valences. In modeling the transport of ions in
electrolytes it is often assumed that the solution is locally neutral, as in the Nernst-Hartley theory of
diffusion [10,16]. Since we are interested here in resolving scales comparable and even smaller than
the Debye length, local electroneutrality is not imposed in our model since, at such small scales,
there are significant fluctuations in the total charge density. In this paper we focus on hydrodynamic
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transport so chemical reactions (e.g., disassociation and recombination in weak electrolytes) are
omitted; see [17] for a discussion of how to include chemistry.

This paper is divided into the following sections. In Sec. II we show how the presence of charged
species and therefore of a nonzero electric field modifies the multispecies fluctuating transport
equations. In Sec. III we discuss the structure factor calculations [18] that we later use to validate
the algorithm. In Sec. IV we describe a numerical scheme for solving the resulting equations. In
Sec. V we provide numerical examples intended to verify both the correctness and accuracy of the
code. In particular, we apply the code to a model of seawater and first check that the code is second
order in space and time in the deterministic setting. Next we show that our algorithm correctly
captures equilibrium fluctuations by calculating the associated structure factors. We then study the
phenomenon of giant fluctuations that emerge in the presence of an imposed concentration gradient.
We finally observe the mixing instability that emerges in a interfacial mixing system subjected to a
potential gradient normal to the interface.

II. FLUCTUATING HYDRODYNAMICS FOR ELECTROLYTES

In this section we present our model equations for multicomponent electrolyte fluids. We
consider a system consisting of a fluid mixture of neutral and charged species. We define
component mass densities ρ = (ρ1, . . . ,ρN ), with total mass density ρ = ∑N

k=1 ρk and mass fractions
w = (w1, . . . ,wN ) = ρ−1(ρ1, . . . ,ρN ). The mole fractions can be expressed in terms of mass fraction
as x = (x1, . . . ,xN ) = m̄( w1

m1
, . . . , wN

mN
), where mk is the mass of a molecule of species k and

m̄ =
(

N∑
k=1

wk

mk

)−1

(1)

is the mixture-averaged molecular mass. Note that n = ρ/m̄ is the total number density.
In the presence of charges, we define the charge per unit mass for each component as z =

(z1, . . . ,zN ). Thus, the component charge density for free charges is qf
k = ρkzk and qf = ∑N

k=1 qf
k

is the total charge density for free charges. Note that zk = QkF/mkNa , where Qk is the valence of
species k, F is Faraday’s constant, and Na is Avogadro’s number.

A. Mass transport

From our previous work on neutral multicomponent transport [6], the evolution of the mass
densities ρk(r,t) is given by

∂ρk

∂t
+ ∇ · (ρkv) = −∇ · F k, (2)

where v(r,t) is the fluid velocity and the F k are the barycentric species fluxes. Note that by
summing (2) over species we obtain the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0, (3)

since
∑N

k=1 F k = 0. In fluctuating hydrodynamics the barycentric species flux has two contributions

F k = F k + ˜F k , which are the deterministic flux F k and the stochastic flux ˜F k . The stochastic flux
is a mean zero Gaussian random field that generates fluctuations of the mass densities.

1. General formulation

From [6], the deterministic fluxes are given by

F k = −ρwk

N∑
j=1

χk,j

(
dj + ζj

T
∇T

)
, (4)
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where χ is the symmetric multicomponent diffusion matrix, the dj are the thermodynamic driving
forces, ζj are the thermal diffusion ratios, and T is the temperature. This flux is formulated here
in its Fickian form, however, as outlined in [6], the diffusion matrix χ is best obtained by way of
Maxwell-Stefan (MS) theory [19]. Note that mass diffusion in electrolytes is qualitatively different
than in neutral mixtures (see, e.g., [20–22]) and in Sec. II A 2 we discuss some of the commonly
used approximations. The MS diffusion coefficients can in principle be obtained from molecular
dynamics simulations, however, unlike for uncharged mixtures, they show a rather strong dependence
on concentration [23].

For neutral fluids the thermodynamics driving forces include contributions from compositional
gradients and barodiffusion (pressure gradients). When charges are included, the driving force also
includes an electrostatic term so that

dj =
N∑

i=1

�ji∇xi + φj − wj

nkBT
∇P + dE

j , (5)

where φj are the volume fractions [defined after Eq. (23)], P is the pressure, kB is Boltzmann’s
constant, and � is the matrix of activity coefficients (note that this matrix is the identity matrix
for ideal mixtures �ij = δij ). The pressure (i.e., equation of state) and activities (i.e., chemical
potentials) include all the contributions from short-range molecular interactions, while dE

j gives the
diffusion driving force due to the long-range electrostatic interactions (details given below).

The stochastic fluxes, which are derived from fluctuation dissipation, are given by

˜F k = −
√

2kB

N∑
j=1

BkjZj , (6)

where Z(r,t) denotes a collection of N spatiotemporal white noise random fields, i.e., a random
Gaussian field with uncorrelated components

〈Zk;α(r,t)Zk′;α′ (r′,t ′)〉 = δk,k′δα,α′δ(r − r′)δ(t − t ′), (7)

where α,α′ refer to x,y,z components. Finally, B is a “square root” of the Onsager matrix
(ρm̄/kB)WχW , where W is a matrix with elements of w on the diagonal. The matrix B can
be computed using a square root χ1/2 of χ (computed via a Cholesky or eigenvalue factorization),
namely,

B =
√

ρm̄

kB

Wχ1/2, (8)

so that B BT = (ρm̄/kB)WχW .
The system is treated in the quasielectrostatic approximation [10,24], that is, the magnetic field

is assumed constant, so Faraday’s law for the electric field E is ∇×E = 0. This approximation is
accurate when the ratio of the length scale to the time scale of interest is much smaller than the speed
of light, which is the case for electrolytes [10]. The fluid mixture has permittivity ε = εrε0, where εr

is the relative permittivity (also called the dielectric constant) and ε0 is the vacuum permittivity. By
Gauss’s law,

∇ · (ε E) = −∇ · (ε∇�) = qf, (9)

where � is the scalar electric potential and E = −∇�. We assume that the variation of permittivity
is negligible and take ε to be constant, so ε∇2� = −qf .

For charged species, there is an additional contribution of the electric field to the diffusion driving
force [14,15], leading to an additional contribution to the deterministic flux

dE
j = m̄wj

kBT

(
zj −

N∑
i=1

wizi

)
∇�. (10)
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Note that, when evaluating F k , we can simply use the expression

dE
j = m̄wjzj

kBT
∇�, (11)

since the vector w is in the null space of χ [6].
In the isothermal low Mach number model used in this paper, we neglect the barodiffusion and

thermodiffusion terms. With these approximations, we can express the vector of species fluxes as

F = −ρWχ

(
�∇x + m̄W z

kBT
∇�

)
−

√
2kB BZ. (12)

In the low dilution limit where charge species are in trace quantities with one solvent species for
which xN → 1, we can omit the solvent from consideration and assume that � is the identity matrix
(ideal solution). In this limit it can be shown that the (N − 1)×(N − 1) subblock of χ , corresponding
to the solutes, is approximately a diagonal matrix with entries

χkk = mkDk

m̄wk

, k = 1, . . . ,N − 1, (13)

where Dk is the tracer diffusion coefficient of species k in the solvent. If we neglect gradients
of pressure and temperature, for dilute solutions we recover the Nernst-Planck model [14,25] for
k = 1, . . . ,N − 1,

F k = −Dk∇ρk + Mkρk E, (14)

where

Mk = Dkmkzk

kBT
(15)

is the electrical mobility. Since mkzk is the molecular charge, (15) is the Einstein relation. Note that,
as discussed at length in [14], the Nernst-Planck model is inconsistent with mass conservation and
one should retain the solvent in the description as well, except, perhaps, for very dilute solutions.

2. Electroneutral approximation

The electrostatic interactions between ions in the solution are screened by clouds of opposite
charges. The length scale associated with this screening is the Debye length λD; at length scales
much larger than λD , the fluid is neutrally charged. For dilute strong electrolytes Debye-Hückel
theory [10,26] gives

λD =
(

εkBT∑N
k=1 ρwkmkz

2
k

)1/2

. (16)

The typical value of the Debye length in electrolytes is on the order of nanometers and in this work we
aim to describe electrolytes down to microscopic scales below λD , where fluctuations are important.
It should be noted, however, that when the Debye length is comparable to the molecular scales, the
(fluctuating) continuum model used here may be inappropriate as complex chemical effects such as
solvation layers may be important. It may be possible to ameliorate this problem by adjusting the
activity and transport coefficients appropriately, but this is likely problem specific.

At length scales larger than the Debye length, the diffusive motions of the ions are strongly
coupled by the affinity to maintain electroneutrality [27], qf = ρ

∑N
k=1 wkzk = 0. To a rough

approximation, in the electroneutral limit one obtains for the species densities Fick’s law with
effective diffusion coefficients, known as the Nernst-Hartley diffusion coefficients [10,28,29].
Note that this is essentially equivalent to ambipolar diffusion in plasmas, which results from the
quasineutrality approximation for ion and electron transport. A more careful mathematical derivation
that shows that this common effective diffusion approximation is incomplete can be found in Sec. 5.2
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in the review in [27]. Adding fluctuations to the electroneutral approximation is not as trivial as
simply adding the same unmodified stochastic fluxes ˜F k given in (6); the stochastic fluxes must
also be projected onto the charge-neutrality constraint. In particular, the fluctuating electroneutral
equations ought to be in detailed balance with respect to a Gibbs-Boltzmann distribution with free
energy (dominated by entropy of mixing for ideal solutions) constrained by wkzk = 0, rather than
the original free energy of the solution without the neutrality constraint. In this work we consider
the full dynamics rather than the electroneutral approximation; a more detailed discussion of the
electroneutral limit is beyond the scope of the present work.

B. Momentum transport

The momentum transport equation has the general form

∂(ρv)

∂t
+ ∇ · (ρvvT ) = −∇P + ∇ · τ + ∇ · σ + ρg, (17)

where τ is the viscous stress tensor, σ is the Maxwell stress tensor, and g is the gravitational
vector. Similar to the species fluxes, the viscous stress tensor has deterministic and stochastic
contributions τ = τ + τ̃ . Since the Maxwell stress tensor expresses reversible work, there is no
stochastic contribution to σ .

Assuming that the viscous stress tensor is unaffected by the electric field, then both τ and τ̃ are
the same as for neutral fluids. We use the formulation as given in [3–5] and ignore bulk viscosity
effects, so τ = η∇̄v ≡ η[∇v + (∇v)T ], with viscosity η. The stochastic contribution to the viscous
stress tensor is formally modeled as

τ̃ =
√

ηkBT (W + WT ), (18)

where W(r,t) is a standard white noise Gaussian tensor with uncorrelated components

〈Wk;α(r,t)Wk′;α′ (r′,t ′)〉 = δk,k′δα,α′δ(r − r′)δ(t − t ′). (19)

In the absence of a magnetic field [30],

σ ij = εEiEj − 1
2εE2δij . (20)

For a dielectric fluid with constant permittivity, ε∇ · E = qf , so the resulting force density on the
fluid is

f E = ∇ · σ = qf E = −qf∇�, (21)

which is simply the Lorentz force.

C. Low Mach number model

In this paper we will focus on systems with ions dissolved in a neutral liquid solvent. For these
systems, the characteristic fluid velocity is small compared to the sound speed (i.e., the Mach number
Ma = U/c � 0.1) and sound waves do not significantly affect the thermodynamics of the system.
In this setting, we can use a low Mach number approximation, which can be derived from the fully
compressible equations by performing an asymptotic analysis in Mach number [31,32]. The low
Mach number model removes acoustic wave propagation from the system, resulting in a system that
can be efficiently integrated over advective time scales.

In our isothermal low Mach number model [6,7], the momentum equation is recast as

∂(ρv)

∂t
+ ∇ · (ρvvT ) = −∇π + ∇ · τ + ∇ · σ + ρg, (22)

where π is a perturbational pressure defined as the deviation between the total pressure and the
thermodynamic pressure and scaling with the square of the Mach number, and the mass density
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equations (2) and (12) are unchanged. In order to mathematically close the evolution equations
of momentum and mass densities, we require an additional relationship between the variables.
Typically, this is accomplished by supplying an equation of state; here we instead require that the
total mass density is a specified function of the local composition. In particular, we consider mixtures
of incompressible fluids that do not change volume upon mixing. This leads to a constraint of the
form [6]

N∑
k=1

ρk

ρ̄k

= ρ

N∑
k=1

wk

ρ̄k

= 1 → ρ(w) =
(

N∑
k=1

wk

ρ̄k

)−1

, (23)

where ρ̄k is the (potentially hypothetical) pure-component density of species k. This equation plays
the role of the equation of state and gives volume fractions φk = ρk/ρ̄k . As detailed in Sec. V, (23)
can accurately approximate any mixture, at least over a limited range of concentrations, with the
appropriate choice for the constants ρ̄k . We can recast (23) into a divergence constraint on the
velocity field. Taking the Lagrangian derivative of ρ,

Dρ

Dt
=

N∑
k=1

∂ρ

∂wk

Dwk

Dt
, (24)

and substituting in the density equation (3), species equation (2), and derivatives of ρ with respect
to wk defined by (23), we arrive at the velocity constraint [6]

∇ · v = −∇ ·
(

N∑
k=1

F k

ρ̄k

)
≡ −∇ · (FT ν̄), (25)

where ν̄ = (ρ̄−1
1 ,ρ̄−1

2 , . . . ,ρ̄−1
N ) is the vector of species specific volumes.

Note that if the species fluxes vanish (e.g., immiscible mixtures) or the species are mechanically
equivalent (i.e., ρ̄i = ρ̄j for all i,j ) the model recovers the familiar incompressibility constraint
∇ · v = 0. As discussed in [7], the constraint on the velocity field ensures that the densities remain
on the equation of state (23).

We would like to point out that the inclusion of an energy evolution equation, as well as the
incorporation of a generalized equation of state, is a subject for future work. The model would
be similar to other low Mach number models with energy evolution [33,34] except that we would
need to include an Ohmic heating term due to the motion of charges in the presence of an electric
field. Altogether, our model equations consist of density transport (2), with mass fluxes (12), and
momentum evolution (22), all constrained by the equation of state (25).

III. STRUCTURE FACTORS

Some of the key measurements we use to validate our numerical methodology involve the
structure factor in both equilibrium and nonequilibrium systems. These results will also elucidate
the role of the Debye length and the relation between fluctuating hydrodynamics and the classical
Debye-Hückel theory.

We will need some matrix notation and relationships in our derivation. The Jacobian of the
transformation from mass to mole fractions is given by

∂x
∂w

= (X − xxT )W−1, (26)

where capital W and X are diagonal matrices with elements w and x. Using this, the diffusive flux
can be recast in terms of gradient of mass fractions

ρWχ�∇x = ρWχ�(X − xxT )W−1∇w. (27)
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For dilute solutions, we can eliminate the solvent from consideration and use the same equations,
approximating X − xxT with X = m̄M−1W and expressing

WχW ≈ m̄−1 M DW , (28)

where we have used (13). Here M is a diagonal matrix containing the molecular masses on the
diagonal and D is a diagonal matrix containing the tracer diffusion coefficients on the diagonal.

A. Equilibrium fluctuations

A key quantity in the stochastic setting is the spectrum of fluctuations at equilibrium, specifically,
the static (equal time) structure factor for mass fractions

Sij
w (k) = 〈[δ̂wi(k,t)][δ̂wj (k,t)]∗〉, (29)

where δw = w − weq is the fluctuation about the equilibrium state weq, a caret denotes a Fourier
transform, an asterisk denotes complex conjugation, and k is the wave vector. The static structure
factor can be measured in experiments using light-scattering and neutron-scattering techniques;
it is directly related to the pair correlation functions that are used, for instance, to determine
thermodynamic quantities such as the isothermal compressibility. In the absence of charged species,
S

ij
w (k) is independent of k [6], but in an electrolyte this is not the case.

To obtain an expression for Sw we linearize (2) and (9) about an equilibrium state that is charge
neutral and has zero velocity. For this analysis, the perturbational quantities are denoted by δ. The
remaining quantities refer to the constant value at equilibrium. For the electric field we have

− ε∇2(� + δ�) = (ρ + δρ)zT (w + δw)

= ρ zT w + (δρ)zT w + ρ zT δw + O(δ2). (30)

Charge neutrality gives � = 0 and zT w = 0, so to leading order

−ε∇2δ� = ρ zT δw. (31)

If we now linearize (2) we obtain

ρ∂tδw = −ρWχ

(
�∇2δx + m̄W z

kBT
∇2δ�

)
− ∇ · ˜F . (32)

Expressing the flux in terms of mass fractions as in (27), using (8), and combining with the equation
of the perturbational electric potential, we obtain

ρ∂tδw = −ρWχ

(
�(X − xxT )W−1∇2δw − m̄ρW zzT

kBT ε
δw

)
− ∇ · (

√
2kB BZ). (33)

Taking the Fourier transform, we have

∂t δ̂w(k) = Wχ

(
k2�(X − xxT )W−1 + m̄ρW zzT

kBT ε

)
δ̂w(k) − i

√
2

n
kT Wχ1/2

̂Z (34)

= Mδ̂w(k) + N ̂Z, (35)

where M and N are two constant matrices. This is the equation for a multivariate Ornstein-
Uhlenbeck process with stationary covariance that satisfies [35]

MSw + SwM∗ = −NN ∗, (36)

supplemented by the constraint that Sw is symmetric and that the row and column sums of Sw are
zero because the mass fractions sum to one.
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It can be shown that the solution to (36) for a system in thermodynamic equilibrium is a simple
rank-1 correction of the static structure factor without the charges,

Sw = S0 − 1

k2λ2
D + 1

S0 zzT S0

zT S0 z
, (37)

where a generalized Debye length can be written in matrix form as

λ−2
D = ρ2

εkBT
zT S0 z. (38)

Here the structure factor for a mixture of uncharged species (i.e., for z = 0) is [6]

S0 = lim
kλD→∞

Sw(k) = m̄

ρ
(W − wwT )[�(X − xxT ) + 11T ]−1(W − wwT ), (39)

where 1 is the vector of 1’s. Note that

lim
kλD→0

Sw(k)z = 0, (40)

as expected in the limit of electroneutrality. Also note that the equilibrium static structure factor
is a purely thermodynamic quantity that is independent of the dynamics, notably, it is independent
of the diffusion matrix. It can therefore also be derived from a free energy argument, in which an
electrostatic contribution to the free energy is combined with the entropy of mixing (not shown in
this paper).

For an electrolyte solution that is close to ideal, the explicit formula for S0 is simpler [cf. (D3)
in [6]], and substituting this in (37) gives the equilibrium structure factor for a charged ideal mixture

Sw = ρ−1(I − w1T )

[
W M − 1

k2λ2
D + 1

W M zzT MW
zT (MW )z

]
(I − 1wT ), (41)

where M is a diagonal matrix containing the molecular masses m on the diagonal. If one is interested
only in the solvent species in a dilute solution, the structure factor for the solvent species is given by
the above formula without the projectors I − w1T and I − 1wT ; for a binary solution the resulting
structure factor is in agreement with Berne and Pecora [36]. For an ideal solution the Debye length
is given by (16), which can be written in matrix notation as

λ−2
D = ρ

εkBT
zT (MW )z. (42)

It is significant that (38) allows one to generalize the definition of the Debye length to nonideal
electrolyte mixtures.

In the context of electrolytes, the specific charge z̄ = zT w is an important scalar quantity whose
structure factor Sz̄ is related to Sw by

Sz̄(k) = 〈[zT δ̂w(k,t)][zT δ̂w(k,t)]∗〉 = zT Sw z. (43)

Using the generalized definition of the Debye length (38) allows us to conveniently express it as

Sz̄(k) = (zT S0 z)
k2

λ−2
D + k2

= εkBT

ρ2

k2

1 + k2λ2
D

. (44)

The fact that Sz̄(k) tends to zero for small wave numbers is a manifestation of the transition to the
electroneutral regime at large length scales.

B. Relation to Debye-Hückel theory

In this section we relate the results derived in Sec. III A to Debye-Hückel (DH) theory, relying
heavily on the excellent review article by Varela et al. [37]. It has been known for some time that
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DH theory can be related to fluctuating field theories that include long-range Coulomb interactions
(see Sec. 4 in [37] for a review). In the Gaussian approximation to the fluctuations one recovers the
classical Debye-Hückel theory, showing that it accounts for the corrections to the thermodynamic
properties of the electrolyte mixture due to the charge fluctuations occurring at length scales below
the Debye length. In this section we show the connection between classical DH theory and linearized
fluctuating hydrodynamics1 by deriving two key results of DH theory. Only a few simple steps are
required, demonstrating the analytical power of the fluctuating hydrodynamic approach. One of the
key predictions of DH theory, leading to the introduction of the concept of screening and the Debye
length, is the DH formula for the pair correlation function between solvent species i and j ,

gij = 1 + hij = 1 − qiqj

4πεkBT r
exp

(
− r

λD

)
, (45)

where qk = mkzk is the molecular charge. We now show that it is relatively straightforward to obtain
this result from the structure factor (41) obtained by fluctuating hydrodynamics. First, in order to be
consistent with the classical derivation [37] we assume that the solution is ideal and eliminate the
solvent species from consideration, giving the solute structure factor

S̃w = ρ−1W M − 1

εkBT
(
k2 + λ−2

D

) WqqT W . (46)

We can convert this into the structure factor for mole fractions used in [37] by noting that x =
m̄M−1w,

S̃x = 〈(δ̂x)(δ̂x)∗〉 = m̄2 M−1 S̃w M−1, (47)

to obtain [compare to Eq. (180) in [37]]

S̃ij
x = n−1xiδij − 1

εkBT
(
k2 + λ−2

D

)xixjqiqj . (48)

The pair correlation function is related to the structure factor via the formula [see Eq. (179) in [37]]

ĥij (k) = S̃
ij
x − n−1xiδij

xixj

= − 1

εkBT
(
k2 + λ−2

D

)qiqj . (49)

The DH equation (45) now follows from a simple conversion of ĥ(k) from Fourier space to real
space, demonstrating that (41) is consistent with the standard DH theory. Another key result of
DH theory is that the change in (renormalization of) the internal energy density due to electrostatic
interactions is

ue = − kBT

8πλ3
D

∼ 1√
T

. (50)

From this relation one can obtain the corrections to all other thermodynamic quantities such as the
Gibbs free energy density and the osmotic pressure contribution to the equation of state [37]. Here
we show how to obtain this relation from (44), thereby demonstrating that it generalizes beyond
just ideal solutions. In DH theory one obtains this relationship by integrating the pair correlation
function (45) times the Coulomb potential. This calculation is actually simpler and more transparent
in Fourier space. In real space, the electrostatic contribution to the internal energy density is

ue = ρ

2V

∫
〈[zT δw(r)]δφ(r)〉d r. (51)

1We believe that nonlinear corrections predicted by nonlinear field theories are also consistently captured by
nonlinear fluctuating hydrodynamics, but this merits further study.

074103-10



LOW MACH NUMBER FLUCTUATING HYDRODYNAMICS FOR . . .

Recalling the Poisson equation relating δφ with δw and using Parseval’s formula to convert this into
an integral in Fourier space, we obtain

ue = ρ2

2(2π )3ε

∫
k−2 zT 〈(δ̂w)(δ̂w)T 〉zdk = ρ2

(2π )2ε

∫ ∞

0
Sz̄(k)dk. (52)

As written, the integral diverges, however, the same problem also appears in the real space derivation,
as reviewed in [37]. Because of global electroneutrality, the nonconvergent part of the integral is
actually zero and one should only include the contribution to Sz̄ [see (44)] that comes from the
electrostatic interactions while excluding the part coming from equilibrium fluctuations in the
absence of charges, just as we subtracted the equilibrium piece n−1xiδij from S̃

ij
x in (49). This gives

ue = ρ2

(2π )2ε

∫ ∞

0
(Sz̄ − zT S0 z)dk = − kBT

(2π )2λ2
D

∫ ∞

0

1

1 + k2λ2
D

dk = − kBT

8πλ3
D

, (53)

in agreement with the DH theory expression (50). These results demonstrate that our fluctuating
hydrodynamics formalism reproduces Debye-Hückel theory. Finally, note that the theory presented
here is specifically for three-dimensional systems. In two dimensions, the above integrals diverge
logarithmically in the infinite system size limit due to the pathological logarithmic divergence of the
Coulomb potential in two dimensions.

C. Structure factor for the giant fluctuations in nonequilibrium systems

In this section we derive the theoretical values for the structure factors of the giant fluctuations
that develop in nonequilibrium systems, following similar calculations we performed in Refs. [5,17].
It is known that a multispecies mixture subjected to concentrations gradients develops long-range
correlations and that the structure factor of the fluctuations of the concentrations varies according to a
power law k−4 [4]. These giant fluctuations arise due to the advection of the concentration fluctuations
by the random velocity field and therefore these simulations require the complete hydrodynamic
solver including the fluctuating momentum equation. We seek to examine how a system of charged
species deviates from this law. We assume that there is a macroscopic gradient of mass fractions in
the y direction for all solute species

gk = ∂wk

∂y
(54)

and we seek to determine the structure factor of the fluctuations with respect to the wave number
perpendicular to the gradient k⊥ = √

k2
x + k2

z . Without loss of generality, we can set kz = 0
henceforth.

Linearizing (2) about the nonequilibrium state results in

ρ(∂t δw + gδvy) = −∇ · δF̄ − ∇ · F̃ . (55)

Following Ref. [4], we can obtain a system involving only δvy by applying a ∇×∇× operator to the
momentum equation, leading to

ρ∂t (∇2δvy) = η∇2(∇2δvy) + ∇ × ∇ × (∇ · τ̃ ·;y), (56)

where τ̃ ·;y is the second column of the matrix τ̃ .
In the limit of large Schmidt number (overdamped or steady Stokes limit), we can neglect inertia

and set the left-hand side equal to 0. The Fourier transform of (56) simply becomes, when ky = 0,

δ̂vy = i

√
2kBT

η

1

kx

V(t), (57)

where
√

2V = Ŵx;y + Ŵy;x is a white noise Gaussian process.
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Inserting Eq. (57) into the Fourier transform of Eq. (55) finally yields

∂t δ̂w(kx) = Mδ̂w(kx) + NẐ(t) + N advV̂(t), (58)

with

N adv = −i

√
2kBT

η

1

kx

g, (59)

where M and N are given in Eqs. (34) and (35). Since V and the components of Z are uncorrelated,
the structure factor for the giant fluctuations is the solution to

MSw + SwM∗ = −NN ∗ − N advN ∗
adv. (60)

In the remainder of this section we will focus on the nonequilibrium contribution Sneq to the structure
factor due to advection, obtained by solving

MSneq + SneqM∗ = −N advN ∗
adv. (61)

We have solved these equations for the case of a low-dilution solution of two charged species in
a neutral solvent, using the symbolic algebra software MAPLE. The general solution is analytically
complex and we omit it here for brevity, but note the following observations. First, for scales much
smaller than the Debye length, the charges have no effect and one recovers the well-known k−4

x

spectrum for the giant fluctuations in a low-density solution of uncharged species [4,6]:

Sneq(kxλ � 1) = S(n) = kBT

k4
xη

⎡⎣ g2
1

D1
2 g2g1

D1+D2

2 g2g1

D1+D2

g2
2

D2

⎤⎦. (62)

Note that the nonequilibrium concentration fluctuations in the different species are strongly correlated
to each other since they are both driven by the same velocity fluctuations [38]. For scales much larger
than the Debye length, one can use the electroneutral approximation and treat both ions as one species
diffusing with an effective ambipolar diffusion coefficient that is a weighted harmonic average of
the self diffusion coefficients of the two ions [28],

Damb = D1D2(m1z1 − m2z2)

D1m1z1 − D2m2z2
, (63)

and use the well-known theory for a mixture of two uncharged liquids [4]. For scales comparable
to the Debye length, the general result is tedious and we evaluate the complex analytical formulas
numerically. In the next section (in Fig. 4) we show comparisons between the theoretical results and
results obtained from the simulation method presented in Sec. IV.

If the two species have the same diffusion coefficient (even if they have different masses), we
obtain that Sneq = S(n), that is, the charges do not affect the giant fluctuations. When the diffusion
coefficients are different, all of the components of the nonequilibrium structure factors still have
the same power law divergence k−4

x at all wave numbers, however, the coefficient in front of k−4
x

changes for kxλ � 1. For example, for D2 = rD1 and equal masses m2 = m1, the ratio between the
cross correlation of the nonequilibrium fluctuations with and without charges is given by

S12
neq

S12
(n)

= 4k2
xλ

2r + r2 + 2 r + 1

4
(
k2
xλ

2 + 1
)
r

. (64)

IV. NUMERICAL METHODS

The core numerical methodology is similar to our previous work for neutral binary and
multicomponent diffusive mixing [6–8]. The overall numerical framework is a structured-grid
finite-volume approach with cell-averaged densities and face-averaged (staggered) velocities. We
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summarize the temporal discretization below and refer the reader to our previous works for details
of the spatial discretization, noting that we choose standard second-order stencils for derivatives and
spatial averaging to satisfy fluctuation-dissipation balance. The main addition here is the electrostatic
contribution to the mass fluxes and the Lorentz force in the momentum equation.

Recall that our model equations consist of density transport (2) and momentum evolution (22)
subject to the constraint on the velocity field (25). The overall approach is a second-order predictor
corrector for species densities and velocity, developed in our prior work [8]. The only change from
the case of uncharged species is that computing the mass fluxes explicitly requires first solving a
Poisson equation for the electric potential, which is a standard procedure done efficiently using a
cell-centered multigrid solver. Nevertheless, for the benefit of the reader, below we reproduce a
complete description of the time stepping algorithm used in the simulations reported here. We note
that this algorithm is suitable for finite Reynolds number simulations that introduce a limitation on
the time step size based on stability restrictions. It is important to note that in [8] we also describe an
overdamped algorithm in which we neglect the inertia of the fluid and solve a steady Stokes problem
for the velocity instead of an unsteady one. That algorithm can also trivially be generalized to the
charged case since the mass fluxes are computed explicitly in both algorithms.

In order to advance the velocities semi-implicitly subject to the constraint on the velocity field,
we have previously developed a generalized Stokes solver for this constrained evolution problem
(see [8,39]). We advance the solution (v,ρ) from tn to tn+1 = tn + �t using the following time-
advancement scheme, where the superscript on each term denotes its temporal location.

(i) Obtain the electric potential by solving the Poisson equation

ε∇2�n = −(qf )n (65)

and then compute the predictor mass fluxes

Fn =
[
−ρWχ

(
�∇x + m̄W z

kBT
∇�

)]n

−
√

2kB

�t�V
BnZn:n+1, (66)

with cell volume �V . We use the notation Zn:n+1 to refer to the collection of random fields associated
with this time step. Note that this step is only needed when the algorithm is initialized. Thereafter,
the mass fluxes and electric potential have already been computed during step (vi) of the previous
time step.

(ii) Update the species densities using a forward Euler predictor step

ρ
∗,n+1
k = ρn

k − �t∇ · Fn
k − �t∇ · (ρkv)n. (67)

(iii) Calculate corrector mass fluxes by first solving the Poisson equation

ε∇2�∗,n+1 = −(qf )∗,n+1 (68)

and then evaluating the fluxes explicitly,

F∗,n+1 =
[
−ρWχ

(
�∇x + m̄W z

kBT
∇�

)]∗,n+1

−
√

2kB

�t�V
B∗,n+1Zn:n+1. (69)

(iv) Compute a predicted velocity using a Crank-Nicolson discretization by solving [39] the
following Stokes system for velocity v∗,n+1 and pressure π∗,n+1,

ρ∗,n+1v∗,n+1 − ρnvn

�t
+ ∇π∗,n+1 = −∇ · (ρvv)n + ρn g + 1

2
∇ · (η∇̄vn) + 1

2
∇ · (η∇̄v∗,n+1)

+∇ ·
√

ηkBT

�t�V
(W + WT )n:n+1

− 1

2
(qf∇�)n − 1

2
(qf∇�)∗,n+1, (70)

∇ · v∗,n+1 = −∇ · (FT ν̄)∗,n+1. (71)
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(v) Correct the species densities using a trapezoidal corrector

ρn+1
k = ρn

k − �t

2

(∇ · Fn
k + ∇ · F∗,n+1

k

) − �t

2
[∇ · (ρkv)n + ∇ · (ρkv)∗,n+1]. (72)

(vi) Solve the Poisson equation

ε∇2�n+1 = −(qf )n+1 (73)

and calculate updated mass fluxes, noting that we use a new set of stochastic fluxes, formally
associated with the next time step,

Fn+1 =
[
−ρWχ

(
�∇x + m̄W z

kBT
∇�

)]n+1

−
√

2kB

�t�V
Bn+1Zn+1:n+2. (74)

(vii) Correct the velocity using a Crank-Nicolson discretization by solving the following Stokes
system for velocity vn+1 and pressure πn+1:

ρn+1vn+1 − ρnvn

�t
+ ∇πn+1 = −1

2
∇ · (ρvv)n − 1

2
∇ · (ρvv)∗,n+1 + 1

2
(ρn + ρn+1)g

+ 1

2
∇ · (η∇̄vn) + 1

2
∇ · (η∇̄vn+1) + ∇ ·

√
ηkBT

�t�V
(W + WT )n:n+1

− 1

2
(qf∇�)n − 1

2
(qf∇�)n+1, (75)

∇ · vn+1 = −∇ · (FT ν̄)n+1. (76)

Numerical stability

Since we treat the viscosity implicitly and all other terms explicitly, the largest stable
computational time step is dictated by one of three different effects: the advective Courant-Friedrichs-
Lewy (CFL) condition, the explicit mass diffusion condition, and a stiffness associated with the
electrostatic driving force in the density equations. Here we comment on the stability criteria related
to each term. Consider the mass density evolution equations

∂(ρw)

∂t
+ ∇ · (ρwv) = ∇ ·

(
ρWχ�∇x + ρm̄

kBT
WχW z∇�

)
. (77)

The presence of the convective term requires the classical advective CFL time step constraint

�t <
�x

|vmax| , (78)

where vmax is the largest magnitude velocity in the simulation. Given (27), the explicit mass diffusion
time step constraint is

�t <
�x2

2dβmax
, (79)

where d is the dimensionality of the problem and βmax is the largest eigenvalue of Wχ�(X −
xxT )W−1. For dilute solutions, the diffusive flux can be simplified using (28) to

ρWχ�∇x ≈ ρ D∇w (80)
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to obtain the familiar stability restriction

�t <
�x2

2d max1�k�N−1 Dk

. (81)

For the electrostatic driving force, note that ∇2� = −ρwT z/ε. If we assume that the prefactor
multiplying the potential gradient in (77) is roughly constant over a small region, we can replace the
divergence of the potential gradient with the charge and rewrite this term as

∇ ·
(

ρm̄

kBT
WχW z∇�

)
≈ − ρm̄

εkBT
WχW z(zT ρw). (82)

If we consider the electric potential term in isolation, we can recast the equation as a simple ordinary
differential equation dw/dt = −αw, where the matrix α is defined by

α = ρm̄

εkBT
WχW zzT . (83)

For our explicit temporal discretization, in order to avoid instability and negative densities, we need
a time step that satisfies the stability condition �t < 1/αmax, where αmax is the largest eigenvalue of
α. Since α is a rank-1 matrix, its only nonzero eigenvalue corresponds to the eigenvector WχW z
and an eigenvalue

αmax = ρm̄

εkBT
zT WχW z. (84)

For dilute solutions, we can use (28) to obtain

αmax = ρ

εkBT
zT M DW z. (85)

If we assume all ions have the same diffusion coefficient, D ≈ D0 I , and use (42), we can express
this in the physically intuitive form αmax = D0λ

−2
D , giving an estimate for the stability restriction on

the time step

�t <
λ2

D

max1�k�N−1 Dk

. (86)

It is important to note that the electrostatic time step restriction is not a function of grid spacing or
the length scale of the problem, whereas the advective and mass diffusion time steps scale with �x

and �x2, respectively. Thus, given the same fluid, if the length scales of the problem are sufficiently
large, the time step will be dictated by the electrostatic driving force condition, unless one makes
use of the electroneutral approximation. Here we resolve the Debye length �x < λD , which implies
that (81) is more strict than (86), justifying our explicit treatment of the electrostatic potential.

V. NUMERICAL EXAMPLES

We now present some numerical examples that verify the accuracy of our approach. Here we
simulate salt (NaCl) dissolved in water at a molarity comparable to seawater. This model consists of
three species: positively charged Na, negatively charged Cl, and neutral water. Parameters for this
model are given in Table I. Here D1 and D2 are the diffusion coefficients for sodium and chloride
ions in water [40] in the infinite dilution limit and D3 is the self-diffusion coefficient of water used
in our neutral fluid study [6].

We define two mixtures

w(1) = (
w

(1)
Na,w

(1)
Cl ,w

(1)
H2O

) = (0.010 88,0.0168,0.972 32), (87)

w(2) = (
w

(2)
Na,w

(2)
Cl ,w

(2)
H2O

) = (0.001 088,0.001 68,0.997 232) (88)
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TABLE I. Fluid parameters in rationalized CGS units. The viscosity is η = 1.05×10−2 g/cm s for saltwater.
The temperature is 300 K, we assume ideal diffusion so the matrix of thermodynamic factors � is the identity,
and the relative permittivity is εr = 78.

Species Sodium ion Chlorine ion Water

mk (g) 3.82×10−23 5.89×10−23 3.35×10−23

zk (C/g) 4.2×103 −2.72×103 0
ρ̄k (g/cm3) 3.17 3.17 1.0
Dk (cm2/s) 1.33×10−5 2.03×10−5 2.30×10−5

and define our initial conditions for each test using these mixtures. These two mixtures have Debye
lengths of λ

(1)
D = 0.44 nm and λ

(2)
D = 1.40 nm. The characteristic velocities in our examples are

small enough that each simulation is limited by either the electrostatic or mass diffusion time step
restriction. For mixtures of fluids containing (87) and (88), the maximum allowable time step due
to the electrostatic stability condition is

�t <
1

αmax
= 1.16 × 10−10 s. (89)

The maximum allowable time step given by the mass diffusion stability condition is

�t <
�x2

2dβmax
= �x2

2d(2.03 × 10−5 cm2 s−1)
. (90)

Thus, in two dimensions (d = 2), for �x � 10−7 cm, the time step is limited by the electrostatic
driving force, whereas for �x � 10−7 cm, the time step is limited by mass diffusion.

The procedure for determining the pure component densities used in our low Mach velocity
constraint (25) ρ̄k from experimental data is explained in [6]. For saltwater we estimate the values
by taking the solutal expansion coefficient to be 40 cm3/mol as given in Table I of [9] and using
the theory for density dependence on concentration for dilute solutions used in [6]. The body force
acceleration g is zero in all of the following examples.

As in [41] we estimate the Maxwell-Stefan binary diffusion coefficients using the approximation

D13 = D1, D23 = D2, D12 = D1D2

D3
. (91)

The diffusion matrix χ is computed from Dij and w using the iterative procedure presented in
Appendix A of [6]. Note that the validity of the assumptions used to derive (91) are questioned
in [23], however, in the end, all that matters is that for a dilute solution, ignoring the solvent species,
one obtains the familiar Fick law for each of the solutes, without cross diffusion.

Note that the Schmidt number for this solution is Sc = η/ρDk,max ≈ 500, which is quite large.
Therefore, there will be some benefit in using the steady Stokes approximation of the momentum
equation and the associated overdamped algorithm described in [6]. Here we use relatively small time
steps in order to control the error in the fluctuation spectrum at large wave numbers and therefore
continue to use the inertial formulation of the momentum equation. Nevertheless, we can expect
to see some (small) errors at the very largest wave numbers since the viscous Courant number is
typically much larger than 1 (see the right panel of Fig. 3 in [6]).

A. Deterministic tests

To validate the implementation of the numerical method in a deterministic setting, we diffuse a
strip of saltwater into a less-salty ambient. The two-dimensional domain is square with side length
L = 3.6×10−5 cm (a factor of ∼250 larger than λ

(2)
D ) and periodic boundary conditions. We initialize
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TABLE II. L1 errors comparing successively refined solutions and convergence rate for the diffusing
saltwater deterministic example. Similar convergence rates are obtained for other norms.

Variable L1
128–256 error Rate L1

256–512 error Rate L1
512–1024 error

ρ 6.01 × 10−15 2.01 1.49 × 10−15 2.01 3.71 × 10−16

w1 3.38 × 10−15 2.01 8.37 × 10−16 2.00 2.09 × 10−16

w2 5.22 × 10−15 2.02 1.29 × 10−15 2.00 3.22 × 10−16

w3 8.59 × 10−15 2.01 2.13 × 10−15 2.00 5.31 × 10−16

qf 2.90 × 10−7 1.97 7.38 × 10−8 2.00 1.85 × 10−8

v 1.09 × 10−13 2.02 2.69 × 10−14 1.99 6.77 × 10−15

a horizontal strip in the center of the domain with a width equal to L/2 to a saltier concentration,
with a smooth transition at each interface. Specifically, we use

w(y) = w(2) + (w(1) − w(2))

4

[
1 + tanh

(
y − 9.0×10−6

5.625×10−7

)][
1 + tanh

(
2.7×10−5 − y

5.625×10−7

)]
. (92)

1. Convergence test

We perform a deterministic convergence test using the initial conditions described above. We
perform simulations using 1282, 2562, 5122, and 10242 grid cells (�x ≈ 2.81, 1.41, 0.70, and
0.35 nm), with corresponding time steps of �t = 0.1, 0.05, 0.025, and 0.0125 ns. We note that for
the coarsest simulation we are very close to the electrostatic stability limit of 0.116 ns and for the
finest simulation we are very close to the mass diffusion stability limit of 0.0151 ns. We run each
simulation to 10 ns. We compute the error in each simulation by comparing it to coarsened data from
the next-finer simulation. In Table II we show the L1 norm errors and convergence rates for the total
density, concentrations, charge, and y velocity at the final time. As expected, the method is clearly
second order in all variables.

2. Electroneutral approximation

In order to see the effect of including charged species as compared to charge-neutral fluids, we
consider the coarsest resolution setup from the previous section. We now run the 1282 simulation
using the same �t = 0.1 ns, but to a final time of 1 μs. We run a second simulation with the
exact same configuration, but set z = 0. Finally, we run a third simulation with the exact same
configuration, but set z = 0 and modify the self-diffusion coefficients of both ions to be equal to the
effective diffusion coefficient (63), which here reduces to

Damb = 2DNaDCl

DNa + DCl
≈ 1.61×10−5 cm2/s, (93)

which is what the electroneutral approximation gives as the apparent diffusion coefficient of
NaCl [10].

In Fig. 1(a) we plot the initial configuration of wNa as a function of y, and the final configurations
for the three simulations. For a problem in which the problem domain is a factor of ∼250 larger
than the Debye length λ

(2)
D , we can graphically see that the electroneutral approximation matches

the charged species code, but not the charge-neutral simulation. In Fig. 1(b) we show the difference
between the peak values in the three simulations as a function of time and show how the peak
values over time are consistent with the effective diffusivities. In particular, for the neutral and
electroneutral cases, we know that at late times this logarithmic quantity decays linearly in time,
with a slope proportional to the diffusivity. In the charged case, this behavior is preserved, with an
“effective” diffusivity within 0.25% of that given by the electroneutral model. The values of the
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FIG. 1. Comparison of diffusing saltwater with and without the effect of charges, as well as a comparison to
the electroneutral approximation. A strip of saltwater is placed in the center of the domain and allowed to diffuse
deterministically. Shown on the left is the initial configuration and later-time profiles for the three simulations.
On the right is the logarithm of the difference between the maximum and minimum of the concentration versus
time. The slopes of these lines are consistent with the effective diffusivities used in the neutral and electroneutral
cases.

diffusivity extracted from the slopes, 1.33×10−5 cm2/s in the neutral case and 1.61×10−5 cm2/s in
the electroneutral case, are in agreement with the simulation parameters.

B. Stochastic tests

1. Equilibrium structure factor

We now perform equilibrium simulations of the structure factor in two dimensions and compare
to theory. Our initial state is uniform everywhere given by w(1) in (87); other fluid parameters are
given in Table I. The Debye length is λD = 4.42×10−8 cm, which corresponds to a Debye wave
number of kD = 2π/λD ≡ 1.42×108 cm−1. In Fig. 2 we plot the analytical structure factor for
the Na-Na correlation and include the Debye wave number as a reference. The structure factor is
relatively constant for wave numbers larger than kD .

For our simulation, the two-dimensional domain is square with length L = 4×10−6 cm and
periodic boundary conditions. For these tests, we adapted the variance of the fluctuations so that
the nonlinear simulation operates in the linear regime assumed for deriving the structure factors in
Sec. III.

The simulation box has 64×64 grid cells (�x = 6.25×10−8 cm) and the time step sizes are
�t = 1×10−11, 2×10−11, or 4×10−11 s. The largest time step we used corresponds to ∼80% of the
explicit mass diffusion stability limit and is ∼400 times the explicit viscous stability limit (recall
that we treat mass diffusion explicitly and viscosity implicitly). We skip the first 105 time steps and
then collect samples from the subsequent 9×105 steps.

When comparing against continuum theory, we account for errors in the discrete approximation
to the continuum Laplacian by using the modified wave number [42]

k̃x = kx

sin(kx�x/2)

kx�x/2
(94)

instead of the unmodified wave number kx .
Figure 2 shows the structure factors for the Na-Na, Na-Cl, and Cl-Cl correlations as a function of k̃x

given k̃y = 0. These are essentially horizontal profiles about the centerline of the two-dimensional
structure factors. In agreement with the theory presented in Sec. III A, for large wave numbers
(kλD � 1) the structure factors approach constants independent of k, as they would be in the
absence of electrostatic effects. For small wave numbers (kλD � 1), the mass fraction fluctuations
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FIG. 2. (a) Analytical static structure factor for Na-Na correlation in saltwater SNa,Na
w (kx,ky = 0). The

vertical bar corresponds to the Debye wave number. The structure factor obtained with uncharged species is
shown for reference. Also shown are the computed and analytical discrete static structure factors Sij

w (̃kx ,̃ky = 0)
in saltwater for (b) Na-Na correlation, (c) Na-Cl correlation, and (d) Cl-Cl correlation. The analytical structure
factors are calculated from the theoretical developments presented in Sec. III A [see Eqs. (36)–(39)].

are constrained by the requirement to be nearly electroneutral, leading to a decrease in the fluctuations
of individual species but an increase in the correlation between the mass fractions of Na and Cl
(which must add to zero for kλD → 0). The numerical structure factors approach the analytic
solution as the time step is reduced. However, at the same time, we also see significant errors at the
larger wave numbers as the time step approaches the stability limit, as expected for any explicit time
stepping method [18]. Figure 3 shows the predicted and measured structure factors as a function of
k = (kx,ky) for the specific charge z̄ = ∑N

k=1 wkzk for saltwater for the smallest time step. Here we
see that indeed for kλD � 1 the charge fluctuations vanish since the system tends to electroneutrality,
in agreement with Eqs. (40) and (44). The agreement between the analytical and computed structure
factors is excellent.

2. Nonequilibrium giant fluctuations

In this section we analyze a system that is out of equilibrium, following the approach of Refs. [5,6].
We first simulate the evolution in time of saltwater (see Table I and the previous section) in a
two-dimensional square domain of side length L = 3.2×10−5 cm. We use 64×64 cells (�x =
5×10−7 cm). The two side boundaries are periodic, while the top and bottom boundaries are fixed
reservoir boundaries for mass fractions, with respective mass fractions given by (87) and (88). A
relatively small time step of 10−10 s (less than 5% the diffusive stability limit) was used in these
calculations to ensure that the temporal integration errors are smaller than the statistical errors.

After waiting for a sufficiently large number of time steps for the fluctuations to become
statistically stationary, we calculate the Fourier spectrum δ̂wi(kx) of the fluctuations of the mass
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FIG. 3. (a) Computed and (b) analytical discrete static structure factor Sz̄(k) in saltwater for the specific
charge z̄ for �t = 1×10−11 s. Note that the lack of perfect rotational isotropy comes from the spatial
discretization errors and the fact that the axes here show the unmodified wave number k rather than k̃.

fractions averaged along the gradient (vertical averages). We then calculate the associated structure
factor S

ij
w (kx) = 〈δ̂wi(kx),δ̂wj (kx)〉. From the seawater parameters that we are using, the Schmidt

number is larger than 500, which allows us to assume that the velocity dynamics is overdamped (see
Sec. III C).

In Fig. 4(a) we show the amplitude of the fluctuations. Although a slope approaching −4 in
logarithmic scale is visible for small wave numbers, the amplitude plateaus for large wave numbers.
This is due to the equilibrium fluctuations in the mass fractions, which, due to the relative weakness of
the mass fraction gradients, tend to hide the nonequilibrium contribution to the fluctuations. We can
alleviate this effect by simulating larger systems, but this is difficult because of our desire to resolve
the Debye length. Instead, we choose to artificially remove the fluctuations in the species fluxes and
only include fluctuations in the momentum flux, thus giving us the nonequilibrium contribution to
the structure factor [see Eq. (61)]. For these simulations we use a domain of side 3.2×10−6 cm and
a time step size of 5 ps.

We note that due to the confinement effect induced by the two reservoirs, the structure factor for
small kx is reduced. This can be approximately accounted for by multiplying the bulk theoretical
results by a confinement factor [43] and defining

Sc(kx) =
(

1 + 4[1 − cosh(kxLy)]

kxLy[kxLy + sinh(kxLy)]

)
Sneq(kx), (95)

where Sc is the corrected quantity accounting for the confinement effect and Ly is the distance
between the two reservoir walls. Note that this approximation becomes exact in the electroneutral
limit, since the equations reduce to those used in [43] for a binary mixture, but with an effective
diffusion coefficient for the solute. Since it is exactly for small wave numbers (large scales) that
the confinement effects are large, we expect the approximation (95) to be a reasonably good
approximation over all wave numbers; this is confirmed by a comparison to our numerical solution.

Figure 4 shows the resulting structure factors SNa,Na
c , SCl,Cl

c , and SNa,Cl
c . In order to enable a more

accurate visualization of the difference between the theory and the code output, these quantities are
multiplied by k̃4

x . To assess the effect of charges, we also plotted the results from the same system
where the charges are artificially set to zero. The difference between the two cases reaches 25% for
the chloride-chloride correlation with excellent agreement between the numerical results and the
theory.
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FIG. 4. (a) Amplitude of the fluctuations of the vertically averaged mass fraction of Na. (b)–(d) Structure
factors Sc of the vertical averages, multiplied by k̃4

x , where k̃x is given by (94). For comparison, the case where
charge effects are ignored is also represented.

C. Electrostatically induced mixing instability

In this section we study the effect of fluctuations and imposed boundary potential on the three-
dimensional mixing of two layers of water with different initial salinity levels. The domain is cubic
with sides of length L = 4×10−4 cm. The saltier water is initially on the lower half of the domain,
with lower and upper concentrations given by (87) and (88). The initial interface is smoothed slightly
in the vertical direction with a hyperbolic tangent profile over a few grid cells. We impose periodic
boundary conditions on the lateral boundaries and no-slip walls on the vertical boundaries with
imposed values of electric potential �. The simulation uses 1283 grid cells (�x = 3.125×10−6 cm)
with a time step of 5×10−11 s, which is roughly 50% of the electrostatic stability limit.

Here we demonstrate that there is an instability brought on by an imposed potential. Initially a
charge separation forms at the interface due to the difference in the diffusivities between the two
types of ions. This charge separation happens even without any imposed potential. The interface
begins to diffuse with slight roughness caused by fluctuations. We observe that in simulations with a
sufficiently large applied potential, the imposed electric field is strong enough to accelerate charges
in localized regions of the interface toward the vertical walls faster than mass diffusion can smooth
the interface and an instability develops. In Fig. 5 we show snapshots at two different times from
simulations with 200 and 100 V potential difference across the boundaries. In the 100-V case, the
instability does not develop, whereas in the 200-V case we see significant interface deformation.

VI. CONCLUSION AND FUTURE WORK

We have developed a low Mach number fluctuating hydrodynamics formulation for mixtures of
charged species suitable for modeling electrolyte mixtures. The model and algorithms are based on
the ones previously developed in [6–8] combined with a quasielectrostatic approximation for the
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FIG. 5. Mixing instability with varying applied potential difference across the upper and lower boundaries:
200 V at (a) t = 5×10−8 s and (b) 1×10−7 s and 100 V at (c) t = 5×10−8 s and (d) 1×10−7 s. The initial
interface is flat. Shown is a contour of density with value halfway between the density of the saltier water below
and fresher water above.

effect of localized charges. We have verified second-order accuracy in the deterministic setting and
have shown that our code gives results consistent with the electroneutral approximation for simple
diffusion problems at length scales larger than the Debye length. We have also verified that our
model can accurately capture static equilibrium fluctuations, as well as nonequilibrium fluctuations
in the presence of an imposed concentration gradient. Our model predicts an instability between
layers of saltwater and freshwater in the presence of an applied potential difference. This instability
is reminiscent of the electrokinetic instabilities studied in [44,45]. The detailed dynamics of the
instability and the impacts of fluctuations on it and on the effective diffusion coefficient are left for
future investigation.
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As mentioned in Sec. II, our formulation assumes that one can separate the contributions of the
long-range Coulomb electrostatic interactions from those due to short-range molecular interactions.
This is in many ways similar to the assumptions needed to justify fluctuating Ginzburg-Landau
models for multiphase liquid mixtures [46,47], namely, that surface tension arises out of a long-range
attractive potential acting on scales larger than the short-range repulsion (see Appendix A in [47]).
We therefore implicitly assume that the Debye length is substantially larger than the molecular scale.
More specifically, to justify the equations written here from the theory of coarse graining one would
assume that each coarse-graining volume [47] (hydrodynamic cell in our discretization) contains
many molecules and can be described using thermodynamic potentials (notably, chemical potentials)
that refer to the fluid mixture in the absence of electrostatics. This allows us to consider solvents that
are themselves nonideal mixtures and to capture some molecular effects such as solvation layers in
the thermodynamic potentials before the electrostatics is accounted for. It is important to note that,
unlike the majority of theoretical work on electrolytes [37], we do not assume that the solvent-solute
mixture would be ideal if there were no electrostatics.

In Sec. III A we derived a completely general theory for the equilibrium fluctuations in an
electrolyte at equilibrium and in the presence of a concentration gradient. Unlike existing results
in the literature, we did not assume dilute or ideal solutions and considered an arbitrary number of
solvent and solute species. The existing literature does not properly define the Debye length for a
nonideal mixture. Our results describe the fluctuations of concentrations at scales below the Debye
length. As such, they are unlikely to be accessible to experimental confirmation via light scattering
or other techniques traditionally used to study fluctuations. Nevertheless, the analytical results are
important in interpreting results from molecular dynamics simulations [23] aimed at measuring the
transport coefficients from mesoscopic fluctuations [48].

In Sec. V we studied a number of examples involving seawater, which is a not-so-dilute solution
with a rather small value of the Debye length λD ∼ 1 nm. The lack of clear separation between
the Debye length and the molecular scale might put into question the validity of the fluctuating
hydrodynamics (FHD) approach we have used in this work. Note that the average number of
electrolyte molecules in a Debye volume is ND ∼ xnλ3

D ∼ x−1/2, where x is the mole fraction of
either electrolyte. Therefore, for more dilute solutions ND � 1 and the fluctuating continuum level
of description is more appropriate. This may be particularly useful for modeling the long-range
many-body (screened) electrostatic interactions among colloidal particles in dense suspensions or at
low salt concentrations. The FHD formulation developed here can be used to model the ionic solution
and coupled to a description of the colloidal particles, for example, using the immersed-boundary
method [49]. Interestingly, in very dilute electrolytes the FHD description can become inaccurate
due to the fact that there may be only one or no ions in a grid cell. In this case it may be necessary to
describe individual ions as point charges and use the immersed-boundary method to communicate
these to a grid-based solver for the Poisson and Navier-Stokes equations [50]. This would be
necessary to model processes such as ion transport through biological membranes.

There are a number of reasons to be optimistic about the usefulness of FHD even at higher
ion concentrations, where the Debye length (and thus the grid size required for simulations) is
comparable to molecular scales. There is growing evidence that fluctuating hydrodynamics is useful
as a discrete coarse-grained description at very small scales, well beyond what can be justified
mathematically. For example, comparisons to molecular dynamics (MD) simulations [51] have
shown that FHD provides a surprisingly accurate description of fluid interfaces, even though the
thickness of the interface is only a couple of nanometers and each hydrodynamic cell contains
less than ten water molecules. In Sec. II we demonstrated that our analytical results reproduce the
well-known Debye-Hückel theory for dilute solutions. As detailed in the review article in [37],
DH theory is known to be surprisingly successful in describing solutions well beyond the ideal
dilute regimes in which it can be justified, however, the coefficients appearing in the equations must
be taken as effective charges and screening lengths. We expect that a similar conclusion applies
to FHD: if the various transport and thermodynamic quantities are suitably renormalized based
on the hydrodynamic cell size (coarse-graining length), perhaps using a direct comparison to MD
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(see Appendix C in [7] for an illustration), hydrodynamics can efficiently account for the long-range
and long-lived effects that cannot be captured in a reasonable computational effort in direct molecular
simulations.

Nevertheless, the fluctuating hydrodynamic formalism as used here does not take into account
a number of short-range microscopic correlations that will be important when the Debye length
becomes comparable to the ion size. Notably, steric repulsion and the finite size of ions in general
need to be taken into account. This is particularly important near electrodes where ion Stern layers
form with a specific microstructure that depends on the microscopic (nonelectrostatic) interactions
among the ions and between the ions and the boundaries. A promising direction for doing this that
should be explored in the future is dynamical density functional theories (DDFTs) [52–55]. In DDFT
the microscopic interactions are captured via a free energy functional, typically leading to equations
that are nonlocal and difficult to solve numerically.

We showed that at large length scales, the deterministic part of our algorithm is consistent with
results obtained when the electroneutral approximation is used. By replacing the electric potential
term in the diffusion equations with effective diffusion terms, the electroneutral approximation
lifts the time step stability constraint (86) induced by the electric term. For solutions such as
seawater, the electroneutral approximation holds at length scales where fluctuations are not negligible
(100 nm to 1 μm). Yet a theory on how to treat the fluctuations of the charged species within this
approximation is yet to be developed. At experimental scales much larger than the Debye length, the
fluctuations described by our theory renormalize the thermodynamic and transport properties entering
in the electroneutral or ambipolar approximation. Imposing the electroneutral approximation in the
context of fluctuating hydrodynamics requires projecting the stochastic fluxes on the electroneutral
constraint, which is left for future work.

We are developing an implicit discretization for the electric potential driving force in the mass
equations that will allow for longer time integration for problems with larger length scales or for
mixtures with smaller Debye length. Additionally, we will expand the extent of physical phenomena
that are accounted for in our method. First of all, while our previous work for neutral multispecies
mixtures included the use of the energy equation in order to deal in particular with temperature
gradients, we chose here to consider only isothermal systems because we wanted to limit the number
of physical phenomena and parameters that might affect the systems of interest. Including the energy
equation will be a direct extension and should not present conceptual difficulties at this stage. At a
similar level, the equation of state (23) that we use can be generalized to more realistic models.

The isothermal low Mach number model neglects the contributions of barodiffusion and
thermodiffusion. While this is a good approximation for most practical problems, omitting
barodiffusion is not strictly consistent with equilibrium statistical mechanics. This is because
barodiffusion has thermodynamic rather than kinetic origin and is responsible for effects such
as gravitational sedimentation (see Appendix B in [6]). Corrections to sedimentation profiles due
to electrostatic contributions of the osmotic pressure may not be correctly captured in the present
formulation; these issues are left for future exploration.

The permittivity is assumed to be constant in our simulations. In reality, however, the relative
permittivity of a mixture depends on concentration. For example, for seawater it is about 7%
lower than in fresh water, so neglecting these variations is not entirely justified for the simulations
presented in Sec. V C. Furthermore, the dielectric nature of water results in physical phenomena
such as polarization charges and polarization currents [10] whose behaviors are unclear from
the standpoint of fluctuating hydrodynamics and which represent an exciting direction for future
research.

In the longer term we would like to incorporate more realistic microscopic models for electrolyte
behavior. Electrolyte transport is known to be affected by a range of nonlinear phenomena, such as
the electrophoretic effect or the Debye-Onsager relaxation effect [16]. Simulation of electrochemical
processes requires the incorporation of chemical reactions into the models. Molecular-scale
boundary-specific effects play an important role in many cases, as in the simulation of membranes.
Including these types of phenomena may require hybrid algorithms that couple different types
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of physical models and algorithms, such as coupling a molecular simulation to a fluctuating
hydrodynamics solver (see, e.g., [56]).
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