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Molecular dynamics simulations are used to investigate the effective slip boundary
condition for a simple fluid flowing over surfaces with one-dimensional sinusoidal
roughness in the Wenzel state. The effective slip length is calculated as a function
of the corrugation amplitude for flows along two principal orientations: transverse and
longitudinal to the corrugation. Different atomic configurations, bent and stepped, are
examined for strong and weak wall-fluid interactions and high and low wall densities.
Molecular dynamics results for sparse bent surfaces quantitatively agree with continuum
hydrodynamic predictions with a constant local slip length. Increasing the roughness
amplitude reduces the effective slip length and the reduction is larger for transverse flow than
longitudinal flow. Atomic effects become important for dense surfaces, because the local slip
length varies with the local curvature and atomic spacing along the wall. These effects can be
captured by applying a spatially varying boundary condition to the Navier-Stokes equations.
Results for stepped surfaces are qualitatively different than continuum predictions, with the
effect of corrugation rising linearly with corrugation amplitude rather than quadratically.
There is an increased drag for transverse flow that is proportional to the density of step
edges and lowers the slip length. Edges tend to increase the slip length for longitudinal flow
because of order induced along the edges.

DOI: 10.1103/PhysRevFluids.1.074102

I. INTRODUCTION

Progress in the design and fabrication of micro- and nanofluidic devices has raised the importance
of precisely modeling the transport properties of fluids near solid surfaces. Conventional continuum
hydrodynamics treats interfacial effects as boundary conditions applied to mathematically sharp
interfaces. As the system size shrinks to micro- or nanoscales, the classical no-slip boundary condition
for macroscopic hydrodynamics may be violated and fluid flow can be substantially modified by
fluid slip at the solid surface [1–5].

Navier proposed a widely used slip boundary condition for flat and homogeneous surfaces [6],
which postulates that the slip velocity is proportional to the shear rate of the fluid at the surface. The
slip length (also referred to as intrinsic slip length) is introduced as the proportionality coefficient
and is used to characterize the degree of slip. Previous molecular dynamics studies [7–14] have
reported that, at small shear rates, the slip length is determined by the properties of the fluid
(e.g., viscosity, temperature, and fluid structure) and the atomic-scale properties of the interface
(e.g., wall-fluid interaction strength and atomic structure of the surface).

In most real systems, the solid surfaces are rough at small scales. To describe the bulk fluid
flow away from the surface, it is appropriate to define an effective Navier slip boundary condition
to account for the mean effects of the variations in height and local wall-fluid coupling along the
real surface [15–21]. The effective slip length measures the distance from the location of the mean
height of the surface to the virtual plane where the extrapolated velocity from the bulk flow profile
coincides with that of the solid wall. A larger (more positive) effective slip length indicates a smaller
effective drag coefficient between the fluid and wall.
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Because of the potential applications, especially in drag reduction and flow control, the effects of
surface roughness have been extensively studied by means of experiments, simulations, and theory.
Usually, wall roughness decreases the degree of effective slip [15,17,18,22–28]. However, it is well
known that highly hydrophobic rough surfaces may trap gas bubbles in the valleys and form a Cassie
state, which can dramatically enhance the effective slip [20,29–41]. In contrast to the conventional
point of view, it has also been reported that roughness may generate very large effective slip even in
the Wenzel state, where there is no gas trapped in valleys [42,43]. If the corrugations on the surface
are anisotropic, then the effective slip length becomes anisotropic too [39,44–51].

The above work clearly shows that surface roughness can significantly affect the effective wall-
fluid coupling. However, the mechanisms involved are not yet fully understood, due to the complex
interplay of the various atomic and continuum effects associated with the wide range of roughness
length scales.

In this study we use molecular dynamics (MD) simulations to investigate the anisotropic slip
of Newtonian monatomic fluids over surfaces with one-dimensional sinusoidal roughness in the
Wenzel state. Different types of corrugated surfaces are compared: smoothly bent surfaces where
atoms of a crystalline solid are displaced to follow a sine wave and stepped surfaces that are cut
from a crystalline solid. The wavelength is always more than an order of magnitude larger than the
atomic diameter, so effects from atomic discreteness can be separated from those of the large-scale
corrugations. The wall density and the wall-fluid interaction are varied.

The effective slip length is calculated as a function of the corrugation amplitude for flows along
two principal orientations: transverse and longitudinal to the corrugation. Molecular dynamics results
for low-density (sparse) bent surfaces quantitatively agree with continuum hydrodynamic predictions
with a constant local boundary condition. The effective slip length decreases monotonically with
increasing corrugation amplitude and the reduction is larger for transverse flow than longitudinal
flow. Atomic effects become important for close-packed (dense) bent surfaces. Curvature at the
crests of dense rough surfaces produces large variations in the local slip length [52]. The resulting
changes in total effective slip length are captured by supplementing continuum simulations with
local slip boundary conditions obtained for the corresponding curvature and atomic spacing.

Results for stepped surfaces are qualitatively different than continuum predictions. Steps introduce
an extra drag for transverse flow that has no analog in continuum theory and has pronounced effects
when there is significant slip on flat surfaces. In particular, the analytic scaling at small amplitudes
changes from quadratic to linear in the roughness amplitude. This shows that the transverse drag is
proportional to the density of step edges. The slip length for longitudinal flow also scales with the
density of step edges, but tends to increase with roughness rather than decreasing.

The rest of the paper is organized as follows. In Sec. II we describe the details of molecular
dynamics and continuum simulations and how key quantities such as slip length and fluid structure
are defined and measured from the simulations. In Sec. III results for the effective slip length are
presented and the effect of wall roughness is discussed. A summary and conclusions are given in
Sec. IV.

II. SIMULATION METHODS AND ANALYTICAL MODELS

A. Molecular dynamics simulations

Standard molecular dynamics is used to simulate simple fluid flows over rigid solid walls.
The simulations are performed with the open source package LAMMPS from Sandia National
Laboratories [53]. A truncated Lennard-Jones (LJ) potential is used to model the interactions between
fluid atoms

VLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

− Vc for r < rc, (1)

where r is the distance between the two atoms and ε and σ define the characteristic energy and
length scales of the fluid, respectively. To save computational cost, VLJ is truncated at a distance
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FIG. 1. Geometry of the MD simulation. Fluid is confined between rigid walls. The bottom wall has a
sinusoidal corrugation z(x) = Asin(2πx/λx) with mean height zero. The surface of the flat top wall is placed
at z = H and a no-slip boundary condition is enforced there by choosing a strong wall-fluid interaction. Flow
is generated by moving the top wall along either the x or the y axis.

rc = 2.2σ and Vc is chosen so that VLJ(rc) = 0. Wall (w) and fluid (f ) atoms also interact through
a truncated LJ potential with parameters εwf and σwf and the same cutoff distance rc,wf = 2.2σ .

The equations of motion are integrated using the velocity-Verlet algorithm with a time step
�t = 0.005τ , where τ = σ

√
m/ε is the characteristic time scale and m is the mass of a fluid atom.

Fluid temperature is maintained at T = 1.1ε/kB by imposing a Langevin thermostat on all fluid
atoms in a direction perpendicular to the bulk flow and flow gradient. For example, for flows along
the x (y) direction and walls separated in the z direction, the Langevin thermostat is applied in the
y (x) direction (Fig. 1) [7,54]. The thermostated equation of motion in the y direction is given by

mÿ = fLJ − m�ẏ + F (t), (2)

where fLJ is the total LJ force from all other particles. The damping rate � controls the heat
flux between the system and the heat bath and F (t) is a random force sampled from a Gaussian
distribution with zero mean and variance 2m�kBT/�t . We use a damping rate � = 0.5τ−1, which
effectively eliminates viscous heating without causing any substantial disturbances to the atomic
motions. In this regime of low damping rate, the thermostat has negligible impact on the effective
slip boundary condition on flat surfaces [7,55,56]. We confirmed that this remains true even for
y direction flows, where weak secondary momentum transfer can occur along the thermostated x

direction. In particular, varying � by a factor of 2 or switching to an isotropic momentum-conserving
dissipative particle dynamics thermostat [57–59] with a damping rate 0.5τ−1 had negligible impact
on the effective slip length (<3%).

The density of the bulk fluid is fixed at ρ = 0.81σ−3. For the low-shear-rate regime studied here
(<0.04τ−1), the bulk fluid is Newtonian with shear viscosity μ ∼ 2.13ετσ−3. We verified that the
slip length is insensitive to shear rate in this regime [7,8,12,17,56].

As illustrated in (Fig. 1), fluid is confined in a channel between two solid walls. Periodic boundary
conditions are imposed along the x and y directions with the spatial periods denoted by Lx and Ly ,
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FIG. 2. Snapshots of the fluid atoms near (a) a flat surface and near three corrugated surfaces of different
types: (b) type I, (c) type II, and (d) type III. The fluid and solid atoms are colored in cyan (light) and red (dark),
respectively. The wall parameters are a0 = 0.75σ , εwf = 1.8ε, and σwf = 1σ and the corrugation amplitude A

is around 4σ . The systems are at equilibrium.

respectively. With the bottom wall kept stationary, Couette-type shear flow is generated by moving
the top wall along either the x or y direction at a speed Uw = 1στ−1, so the flow boundary conditions
are measured separately for the two directions. As described below, the interactions between the
fluid and top wall are chosen so that there is no slip.

Wall atoms are fixed rigidly to lattice sites.1 If not stated elsewhere, each flat wall consists of
three (001) layers of an fcc crystal with nearest-neighbor spacing a0 [Figs. 1 and 2(a)]. The x axis
is aligned with the [110] vector of the fcc lattice (nearest-neighbor direction). The nominal position
of the wall surface is defined by the height of wall atoms in the layer closest to the fluid. The top
wall is flat and the surface is placed at height z = H . If the bottom wall is flat, its surface is located
at z = 0σ .

Three different methods are used to create sinusoidal bottom walls, resulting in three types of
atomic scale structures, as depicted in Fig. 2.

(i) A type I wall [Fig. 2(b)] is constructed by displacing the solid atoms of a flat wall along the z

direction by a distance �z(x) = A sin(2πx/λx) [15]. The parameters A and λx denote the amplitude
and wavelength of the corrugation, respectively. As shown in Fig. 2(b), the displacement deforms
the lattice structure of the wall. The lateral spacing between the nearest-neighbor atoms along the
surface layer increases with the absolute value of the local slope.

1Including thermal oscillations about lattice sites changes numerical values but not trends, including the
relation between slip and in-plane order discussed in Sec. II B [7].
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TABLE I. Parameters of the five groups of solid bottom walls presented in this paper, i.e., the lattice constant
of the flat wall a0, the interaction energy εwf , the interaction length σwf , and the intrinsic slip length Ls,0 at
(001) and (111) surfaces along the [110] direction.

Ls,0/σ

Index a0/σ εwf /ε σwf /σ (001) (111)

A 1.20 0.4 1 0.56 1.54
B 1.20 1.8 1 −1.11 −0.29
C 1.20 0.00024 2.00 7.35 13.18
D 0.75 0.4 1 10.96 22.66
E 0.75 1.8 1 0.73 8.42

(ii) A type II wall [Fig. 2(c)] is also made by curving a flat wall along the x direction so that
the atoms of the surface layer adjacent to the fluid follow the curve z(x) = A sin(2πx/λx), but the
lateral spacing between neighbors is kept constant. The atomic arrangement along the y direction
remains unchanged. Additional rows of atoms along the x direction are included in each layer, to
ensure that the surface layer has a locally square structure with nearest-neighbor spacing a0 as in the
original flat surface [17,52]. The number of rows must be an integer and the period Lx is increased
to 48.17σ to allow us to sample more amplitudes in the range of interest.

(iii) A type III wall [Fig. 2(d)] is carved out from an fcc crystal with the same atomic arrangement
as the flat wall. All atoms above the sinusoidal wave z(x) = A sin(2πx/λx) are removed [60]. Special
care is taken to choose the height of lattice planes so that the heights of surface steps are symmetric
about the x-y plane (z = 0).

The type I and II surfaces are referred to as bent surfaces, while the type III surfaces are called
stepped surfaces. At zero amplitude A = 0σ , the fcc (001) flat surface is recovered for all three
types. If not stated elsewhere, H = 30σ , Lx = Ly = 24.08σ , and λx = 24.08σ . Varying λx by a
factor of 2 produces similar trends in the effective slip length.

The lateral separation of the nearest-neighbor atoms in the surface layer is an important parameter
of the wall, because it determines the characteristic length of the atomic scale roughness in the wall
potential experienced by fluid atoms. It regulates not only the degree of local slip, but also how
the slip varies in response to wall curvature [7,52]. In this study we investigate effective slip
boundary conditions for both sparse (a0 = 1.2σ ) and close-packed (a0 = 0.75σ ) walls, where the
lateral spacings at the original flat surfaces are respectively larger and smaller than the characteristic
spacing of the fluid atoms. Our previous studies of curved surfaces showed that these wall spacings
provide interesting limiting cases of high and low density [52]. The different sets of wall-fluid
interaction parameters studied are listed in Table I. If not mentioned otherwise, σwf = 1σ . When
εwf is decreased or σwf is increased, the wall-fluid coupling is weakened and slip is enhanced. The
top wall is kept at a0 = 1.2σ . No-slip boundary conditions are always enforced at top surfaces by
using large values of εwf .

B. Fluid structure near the wall

In general, two types of structure are induced in a fluid in contact with a solid surface: density
layering perpendicular to the surface and epitaxial ordering within the layers. Examples of the
layering effect near flat walls are presented in Fig. 3 for the various wall parameters listed in Table I.
The fluid density profiles oscillate near solid walls and gradually relax to the uniform bulk value far
away from the walls. Several layers can be identified with peaks in the profiles that are separated
by density minima [7,10,13,52,61–70]. The position and strength of the first peak are determined
mainly by the wall-fluid interaction and the relative spacing of fluid atoms and the minima in the
wall potential. However, the strength of the layering effect does not necessarily correlate with the
degree of fluid slippage at the solid surface [7,11–13,15,71–75].
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FIG. 3. Fluid density as a function of distance from the wall surface for flat surfaces with the parameters
tabulated in Table I: A (solid green line), B (dotted blue line), C (solid magenta line with crosses), D (dashed
black line), and E (dash-dotted red line). The hydrodynamic boundary condition is defined relative to the height
of the first density peak d1,0 for each case.

Previous studies have shown that the flow boundary condition for a simple fluid is instead
correlated with the amount of epitaxial order within the first fluid layer induced by the atomic-scale
roughness in the wall potential [7,11–13,15,52,71–75]. To describe the in-layer structure at a flat
surface, the two-dimensional (2D) static structure factor S1(�q ) is calculated as a function of wave
vector �q for the first layer of fluid atoms:

S1(�q ) = S1(qx,qy) =
∣∣∣∣∣∣
∑

j

exp[i(qxxj + qyyj )]

∣∣∣∣∣∣
2/

N1, (3)

where xj and yj are the 2D coordinates of atom j and N1 is the number of fluid atoms in the
first layer. The allowed wave vectors are determined by the periods of the system in the x-y plane
�q = (2πh/Lx,2πk/Ly), where h and k are integers. The periodic potential of the wall induces Bragg
peaks at the corresponding reciprocal lattice vectors �Gm,n of the wall. For the fcc (001) surface,
�Gm,n = (2πm/a0,2πn/a0). More generally, if the nearest-neighbor spacings along x and y (denoted
by ax and ay , respectively) are different from each other, �Gm,n = (2πm/ax,2πn/ay).

The structure factors for flat walls shown in Sec. III A are obtained in the equilibrium state.
Structure factors are typically evaluated every 0.05τ and temporally averaged over up to 500τ .

C. Determining intrinsic and effective slip lengths

For a Newtonian fluid flow past an impenetrable solid surface, Navier’s slip model assumes that
the drag per unit area on the fluid from the solid surface is proportional to the relative velocity �ut

of the two, which is also referred to as the slip velocity. This drag force is balanced by the viscous
shear stress 
nt of the fluid at the surface, where n represents the normal direction to the surface
(pointed into the fluid) and t denotes the direction of the slip velocity that is tangential to the surface.
The drag coefficient is typically written as μ/Ls ,

μ

Ls

�ut = 
nt , (4)

where μ is the Newtonian viscosity and the intrinsic slip length Ls quantifies the degree of slip.
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FIG. 4. Velocity profiles for four cases: flat surfaces at a0 = 1.20σ and εwf = 1.8ε (magenta downward
triangles) and a0 = 0.75σ and εwf = 0.4ε (red upward triangles) and sinusoidal surfaces with A = 4σ , a0 =
0.75σ and εwf = 0.4ε in the transverse (blue squares) and longitudinal (cyan diamonds) directions. Solid
colored lines show fits to Eq. (7) and dotted vertical black lines show the positions z = 0 and H .

For a flat surface, the viscous stress is related to the strain rate by Newton’s law


nt = μ
∂ut

∂n
. (5)

Combining Eqs. (4) and (5), one arrives at the conventional Navier slip boundary condition

�ut = Ls

∂ut

∂n
. (6)

Here the slip length Ls corresponds to the distance below the surface where the relative velocity
of the fluid extrapolates to zero. For flow along a curved surface, an extra term associated with the
surface curvature emerges naturally in the strain rate and thus Eq. (6) needs to be modified [21,76].

For planar Couette flow between two flat surfaces, the incompressible Newtonian Navier-Stokes
equations reduce to μ∂2ux/∂z2 = ∂
xz/∂z = 0. Solving this equation, one arrives at a linear
velocity profile

ux = A1z + A2. (7)

The two constants A1 and A2 are determined by the boundary conditions at the wall-fluid interfaces.
Mean velocity profiles from two different flat surfaces are presented in Fig. 4 and manifest very

different behaviors at the stationary bottom surface. For the close-packed surface with a0 = 0.75σ

and εwf = 0.4ε, the remarkable velocity difference at the wall signifies a substantial slip. For the
sparse surface with a0 = 1.20σ and εwf = 1.8ε, the fluid velocity vanishes inside the fluid, indicating
that the fluid atoms in contact with the surface are locked to the wall [7]. This corresponds to a stick
boundary condition. In the bulk region several atomic diameters away from wall, both of the profiles
can be well fitted by the linear velocity profile [Eq. (7)].

Evaluating the slip length from the fitted linear velocity profile [Eq. (7)] requires a definition for
the position of the hydrodynamic boundary. We choose the height of the density peak associated
with the first fluid layer (Fig. 3) d1,0 as the hydrodynamic boundary [52]. The intrinsic slip length at
the bottom surface is then obtained from the fit coefficients as

Ls,0 = d1,0 + A2/A1. (8)

The subscript 0 denotes that Ls,0 is measured at the flat surface. Because of the fourfold symmetry
of the fcc (001) surface, the slip boundary condition is equivalent along both x and y. In past studies
of intrinsic slip boundary conditions, other locations have also been adopted for the hydrodynamic
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boundary, e.g., the wall surface [11,77], the middle between the wall surface and the first fluid density
peak [7,74,75,78], and half an atomic diameter from wall [12,79]. These common choices for the
reference plane differ by less than the layer spacing, resulting in a corresponding small ambiguity
in the intrinsic slip length determined by Eq. (8).

Figure 4 also illustrates two mean velocity profiles over a sinusoidal type I surface with A = 4σ .
For transverse flow (along x), the mean velocity vanishes below a height of about 4σ , indicating that
fluid is trapped in the region between the crests of the sinusoidal surface and moves with the solid.
This corresponds to an effective stick boundary condition. For longitudinal (y-direction) flow, the
resistance from the sinusoidal corrugation is weaker. The flow is noticeable below the tops of the
crests and even below z = 0σ , corresponding to an effective slip boundary condition. In the bulk
region a few atomic diameters above the top of the bottom surface, both of the two flow profiles are
nicely fitted by the linear solution for flat surfaces, i.e., Eq. (7).

The effective slip lengths Leff,x and Leff,y are determined using Eq. (8) and fits to the linear regions
of flow profiles. Consistent with the intrinsic boundary conditions for flat surfaces, the horizontal
plane z = d1,0 is defined as the effective hydrodynamic boundary. Therefore, Leff,x = Leff,y = Ls,0

at flat surfaces where the wave amplitude becomes zero.
In the limits of interest here, linear response and creeping flow, the effective flow boundary

condition at an arbitrary direction relative to the sinusoid can be determined by combining the
transverse and longitudinal results [1,18,80]. In general, the drag coefficient at the wall can be
described as a tensor whose components depend on the orientation of the sinusoidal roughness
and crystalline lattice and the symmetry of the lattice [7,52,81]. Choosing the x and y directions
to be along twofold axes of the substrate lattice and transverse and longitudinal to the sinusoidal
modulation ensures that the off-diagonal matrix elements of the drag tensor vanish in our geometry.
The solutions for motion of the top wall in different directions can be obtained by a simple
superposition of the results for the transverse and longitudinal components of the top wall velocity
with the corresponding slip length. The anisotropy in slip length will cause the direction of flow
to rotate towards the direction with the largest slip length as the distance to the bottom surface
decreases. We confirmed that this superposition was valid for several of the cases considered below.
Deviations like those seen for flat surfaces with varying slip length in Ref. [79] were only found
when the velocity difference at the wall was high enough (>0.05σ/τ ) that the boundary condition
became nonlinear [8] or the shear rate was high enough to cause shear thinning in the bulk.

In simulations, the velocity profiles are averaged within horizontal bins of thickness �z = 1σ

for a time period of 500τ at steady state. The resulting flow profile is fit to Eq. (7) over the region
more than 4σ from the top of the surfaces. We verified that changing this condition by ±σ does
not produce any noticeable changes. The slip length is then obtained from the fitted coefficients and
further averaged over 20 consecutive time intervals.

In this study the Reynolds number, given by Re = ρHUw/μ, is always around or below
10 [8,15,82]. We checked that in this low-Re regime, increasing the height H of the top wall
(doubling in the MD simulations or increasing by a factor up to 10 in the continuum simulations)
does not affect the measured effective slip length.

D. Continuum simulations

To isolate the effects from the atomic wall structure, continuum simulations are also performed
for the same fluid flows. The effective slip lengths are calculated from the steady-state solutions of
the incompressible Newtonian Navier-Stokes (NS) equations

ρ �u · �∇ �u = −�∇p + μ∇2 �u, (9)

�∇ · �u = 0. (10)

The stress-based slip boundary condition of Eq. (4) is applied at the wall. The equations are
solved numerically using an adaptive finite-element mesh with the software COMSOL MULTIPHYSICS
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5.1. The mesh cell size is smallest (edge <0.5σ ) near the walls and largest (edge ∼1σ ) in the bulk.
We verified that further mesh refinement changed the effective slip length by less than the errors in
atomistic simulations (∼0.1σ ). As for atomic simulations, the effective slip length is evaluated from
linear fits to the flow profiles away from the wall and Eq. (8). The reference hydrodynamic plane is
z = 0.

Flows along the x direction are described by the two-dimensional NS equations in the x-z
plane [15–17]. A periodic boundary condition is imposed along the x direction with a period of λx .
The top wall is at z = H , moving at a speed Uw along x with a no-slip boundary condition. The
stationary substrate is given by z(x) = A sin(2πx/λx).

For the flows along the y direction, the NS equations are solved in the three-dimensional domain
that is created by extruding the two-dimensional domain in the y direction. A periodic boundary
condition is imposed along the y direction with a period of 5σ . The top wall is moving at the speed
Uw along y.

Unless otherwise specified, the boundary condition applied to the bottom surface has a constant
local intrinsic slip length determined from MD simulations for the corresponding flat wall. For
the cases of stick boundary conditions (Ls,0 < 0), the bottom surface is shifted upward to z(x) =
A sin(2πx/λx) + |Ls,0| and a no-slip boundary condition is applied on the shifted surface. The
continuum solutions then represent a numerical solution of the same system studied analytically in
the models of the next section without assumptions like small surface slope used in these analytic
models. We also present continuum solutions for spatially varying local slip lengths along the wall
and show that they are needed to explain deviations between simulations and analytic models.

E. Analytical models

Panzer and co-workers [21,76] analytically investigated the influence of weak sinusoidal
corrugations on the effective slip length in the regime of Stokes flow. The key control parameter is
the normalized amplitude KA, where K = 2π/λx is the wave number and KA equals the maximum
slope of the sinusoidal surface. Assuming the local intrinsic boundary condition to be the same as at
a flat surface, they derived an approximation for the transverse slip length Leff,x :

Leff,x = Ls,0ω∞(KA) − KA2ω0(KA)/(1 + 2KLs,0)

1 + K3A2Ls,0
, (11)

where

ω0(KA) = 1 − (KA)2/4 + 19(KA)4/64

1 + (KA)2 − (KA)4/2
(12)

and

ω∞(KA) = 1 − 5(KA)2/4 + 61(KA)4/64

1 + (KA)2 − (KA)4/2
, (13)

up to terms of order (KA)6.
In the same limit, Kamrin et al. [18] also derived second-order asymptotic solutions for the

effective slip lengths along both the transverse and longitudinal directions. If a small constant slip
length Ls,0 is applied along the surface, the approximate expressions are given by

Leff,x � Ls,0 − KA2, (14)

Leff,y � Ls,0 − 1
2KA2. (15)

As the amplitude increases, Leff,x decreases twice as fast as Leff,y . The quadratic decay in the
transverse direction has also been derived in Refs. [83–85].
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FIG. 5. (a) and (b) Effective transverse slip length Leff,x as a function of normalized roughness amplitude

KA for types I (open symbols) and II (closed symbols) surfaces with (a) a0 = 1.2σ (triangles) and
(b) a0 = 0.75σ (squares and diamonds). Results for the different wall parameters in Table I are indicated
by symbol color and orientation: A (downward magenta triangles), B (upward red triangles), C (right-pointing
blue triangles), D (cyan diamonds), and E (green squares). The dotted colored lines in (a) show the analytical
prediction of Eq. (11). The solid colored lines represent the results from continuum simulations with the same
local boundary condition as for the corresponding flat surface. The black crosses in (b) show the results from
the continuum simulations with a density-corrected locally varying slip length. (c) and (d) Similar results for
the longitudinal slip length Leff,y with (c) a0 = 1.2σ and (d) a0 = 0.75σ . Statistical uncertainties in Leff are
about 0.1σ . Fluctuations in (d) reflect rapid changes in the structure of the first fluid layer.

III. RESULTS AND DISCUSSION

A. Bent surfaces

Figure 5 shows the variation with normalized roughness amplitude KA of the effective
slip length for flow over bent surfaces in the transverse (x) and longitudinal (y) directions.
Some general trends are seen for all cases. For flows transverse to the sinusoidal corrugations,
increasing the amplitude significantly reduces Leff,x . As Ls,0 increases, Leff,x drops more
rapidly with increasing KA. For KA near unity, Leff,x tends to decrease linearly at a similar
rate for all cases, which is consistent with previous continuum studies (both numerical and
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analytical) [26,27,83,84,86,87].2 The slip length in the longitudinal direction Leff,y also decreases
monotonically for most cases, but more slowly than Leff,x .

Despite these common general trends there are important differences in the behavior of dense
and sparse walls. Results for sparse walls are relatively independent of wall type (I or II) and agree
with continuum theory with a constant local slip length. In contrast, there are strong variations
for dense walls that can only be understood by introducing a slip length that varies with the local
curvature.

For the sparse surfaces (a0 = 1.20σ ), the three groups of LJ interaction parameters (Table I) yield
three typical but very different intrinsic boundary conditions at flat surfaces. Slip is pronounced
for εwf = 0.00024ε and σwf = 2σ , where Ls,0 = 7.33σ . For a stronger wall-fluid LJ interaction
εwf = 0.4ε, Ls,0 drops to 0.56σ . The fitted velocity profile goes to zero in the region between
the wall surface and the first fluid layer, indicating that there is little slip. When the interaction
strength εwf is increased to 1.8ε, the first layer of fluid atoms becomes crystallized and locks into
the wall potential minima. The locked first layer then further traps fluid atoms in the second layer
through the fluid LJ interactions [7]. As a result, a negative slip length Ls,0 = −1.11σ is generated,
corresponding to a stick boundary condition (also demonstrated in Fig. 4).

Adding atomic roughness to these sparse surfaces produces very similar decreases in the slip
length for type I and II surfaces. For both transverse and longitudinal flows, these changes are
nicely reproduced by numerical NS solutions that assume that the local slip length remains equal
to that on a flat surface. Moreover, the simpler analytical models described in Sec. II E capture the
trends in Ls . Indeed, the prediction of Panzer and co-workers [21,76] agrees with all simulations for
KA � 0.5 and for almost the entire range of data for εwf = 0.4ε. Although not shown, the Kamrin
et al. predictions agree with the results at εwf = 0.4ε and 1.8ε up to KA ∼ 0.4, for both MD and
continuum simulations.

In contrast, the results for close-packed surfaces (a0 = 0.75σ ) are different for walls of types I and
II and neither is consistent with continuum solutions with a constant local slip boundary condition.
For εwf = 0.4ε (blue diamonds), a large slip length Ls,0 = 10.96σ is measured for the flat surface.
With increasing KA, type II surfaces have systematically larger Leff,x than type I. The numerical
NS solutions yield even higher Leff,x , particularly at large KA. Priezjev et al. [15] found a similar
discrepancy in the same regime of high surface density and weak wall-fluid interactions.

Flat surfaces with εwf = 1.8ε have a nearly no-slip boundary condition (Ls,0 ∼ 0.7σ ) that is
very similar to that for sparse surfaces with εwf = 0.4ε. Thus the continuum NS solutions for rough
surfaces in Fig. 5 are nearly the same. However, roughness causes a much more rapid decrease
in transverse slip length for dense surfaces. By KA = 1, both type I and II dense surfaces have
very negative values of Leff,x that are close to the results for sparse surfaces with εwf = 1.8ε. The
deviations in longitudinal slip are even more dramatic: Leff,y first drops rapidly and then rises and
oscillates. Note that for type I surfaces Leff,y reaches up to ∼5σ , which exceeds the amplitude of
the corrugation.

The results for dense surfaces illustrate the kind of behavior that can occur whenever the curvature
on rough surfaces changes the local slip boundary condition. The results for cylindrical surfaces
in Ref. [52] explain the nature of the changes and why they are stronger for sparse surfaces than
dense surfaces in Fig. 5. As noted in Sec. II B, the viscous coupling between fluid and solid is
strongest when the wall potential produces strong density modulations in the first fluid layer. The
fluid modulations are largest when the spacing between fluid atoms is comparable to the spacing
between minima in the potential from wall atoms. Any mismatch produces a more rapid drop in
coupling for dense surfaces than sparse surfaces. The reason is that fluid atoms can fit more easily
between atoms on sparse walls, so the magnitude of the corrugation in wall potential is larger [52].

2In this limit, a weak vortex may form in the valley if the local slip is small [16,88], but the emergence
of the vortex has little impact on the pattern of behavior of the effective slip length with varying KA in the
low-Reynolds-number limit studied here [88].
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FIG. 6. Results of cylindrical-geometry MD simulations for the behavior of the intrinsic slip length Ls with
increasing curvature κ from 0 to 0.26/σ . Results for two sets of wall parameters in Table I are indicated by
symbol type: C (red squares) and D (blue triangles). The former data are reported in the Supplemental Material
of Ref. [52], while the latter were obtained in the same way using simulations of flow between concentric
cylinders of constant curvature. The relation between Ls and κ is approximated by a linear fit, which is shown
by the solid black lines.

For type II surfaces the spacing between wall atoms is fixed, but the spacing between potential
minima changes with curvature because fluid atoms are at a different radius. For positive curvature
the separation increases, while for negative curvature the separation decreases. These changes are
visible in the snapshots shown in Figs. 2(b) and 2(c). The spacing between fluid atoms is larger near
crests and smaller near troughs. Figure 6 shows the resulting variation in Ls with curvature for the
sparse and dense surfaces with the largest slip lengths in Fig. 5. The dense results are from Ref. [52]
and the sparse results were obtained in the same way using simulations of flow between concentric
cylinders of constant curvature. The largest curvature 0.26σ−1 is close to the curvature at the crest
of sinusoidal surfaces with KA ∼ 1. Note that Ls changes by an order of magnitude for the dense
walls, but is relatively constant for sparse walls.

To show that these curvature effects can quantitatively account for changes in transverse slip
over type II surfaces we repeated the continuum NS calculations with varying local slip lengths. In
all regions of positive curvature we used the linear fit to data shown in Fig. 6. In convex regions
of negative curvature we used the slip length for flat surfaces. While local slip is expected to be
enhanced in these regions [52], flow is already strongly suppressed and changes in Ls have little
effect. Moreover, calculation of Ls for large negative curvatures is impractical since it would involve
Couette flow between two cylinders where the outer has a radius of only three atoms.

Solutions of the NS continuum equations for sparse surfaces with curvature corrected local slip
lengths were nearly identical to those for a fixed length and are not shown in Fig. 5(a). Variations
in local slip do affect the continuum solution for dense walls and the crosses in Fig. 5(b) track the
atomistic results for type II walls. Slip is even smaller for type I walls because the atomic spacing
in the transverse direction grows with the local slope. This further reduces the local slip length and
thus the average effective slip length of the surface. Priezjev et al. also noted that this increase in
spacing reduced the slip length and incorporated it in continuum simulations with a modified slip
boundary condition that was uniform rather than a function of local slope and curvature [15].

Curvature does not change the effective spacing between wall atoms along the longitudinal y

direction. For the case considered here, the nearest-neighbor spacing and the reciprocal lattice vector
�G characterizing the density modulations are both along y. As a result, there is little change in the
local Ls for longitudinal flows at small KA. This explains why type I and II walls have similar
effective slip lengths that are both consistent with the NS solutions for constant local slip. If the
lattice is rotated 45◦, the reciprocal lattice vectors have components along both transverse and
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longitudinal directions. Reference [52] found that curvature then affected longitudinal flow more
than transverse flow. We do not present results for this case because the changes in local slip length
are in between the ones shown in Fig. 5.

Other researchers have considered the case of smooth surfaces with stripes of low and high
slippage. Type I surfaces will have similar oscillations in local slip but with several important
differences. As just noted, the changes in spacing only cause alternations in slip for flow along the
transverse direction. In addition, these variations do not depend on the sign of the slope and so have
a different period than the variations in slope. The combination of two effects with different periods
makes it difficult to make a direct comparison of our results to these previous studies.

For large KA the longitudinal slip length for strongly interacting sparse walls [Fig. 5(d)] shows
a sudden transition to new behavior. This reflects a transition in the structure of the first layer due
to the strong change in local geometry produced by roughness. The strong change in the degree of
epitaxial order is visible in Fig. 6. The large wall-fluid interaction strongly attracts fluid atoms to the
surface, leading to a pronounced layering (Fig. 3). However, little lateral order can be seen within
the first layer above the flat surface [Fig. 2(a)]. This is because the small spacing of the wall potential
minima makes it difficult for the fluid atoms to lock into epitaxial order [7]. The positive curvature
near crests in Figs. 2(b) and 2(c) leads to a larger spacing between minima in the potential from wall
atoms and atoms in the first fluid layer align into lines going into the page. For type I surfaces the
spacing is also increased on sloped regions and there is a corresponding increase in alignment that
is not seen on type II surfaces.

The in-plane structure factor provides a more comprehensive and quantitative description of the
changes in lateral order, but it can only be calculated for a large area with constant wall structure.
To mimic the structure at the crest of the sinusoidal surface profile we create a flat surface with
a rectangular structure. In one direction the nearest-neighbor spacing is the constant longitudinal
spacing a0 = 0.75σ . The spacing in the other direction is increased to the value 0.93σ , near a crest
with KA = 0.75. Similar results were obtained for cylindrical surfaces with the same spacings, so
we expect the results to be representative of the local structure at wave crests.

Figure 7(a) shows the structure factor S1 for the reference flat surface with a square lattice structure.
Normalizing by N1 gives a quantity that reaches unity for a perfect crystal at zero temperature. Only
positive qx and qy are shown since the surface is symmetric about both axes. Two Bragg peaks are
found at the shortest reciprocal vectors �G1,0 and �G0,1. The heights are small (0.03) because the
minima are too closely spaced for fluid atoms to lock into. The two higher peaks with magnitudes
around 0.25 are associated with high-order commensurate phases that are a better match with the
fluid spacing [7]. The first fluid layer has an intermediate viscous coupling to the wall, corresponding
to a slip length close to zero.

Figure 7(b) presents S1(�q )/N1 on a surface with wall atom spacing increased to 0.93σ along
the x direction, reducing the symmetry from fourfold to twofold. Because this increased spacing
is close to the mean spacing between fluid atoms, there is strong epitaxial order reflected in large
peaks at the first and second Bragg vectors. Indeed, the height (0.82) of the first peak at �G1,0 is above
the value for bulk solids at the liquid-solid transition (∼0.6). In contrast, there are no visible peaks
along qy at �G0,1 because the lattice spacing remains small. Instead there is a peak at a high-order
commensurate structure with 16 fluid atoms per 21 wall atoms. This highly anisotropic structure
leads to anisotropic slip boundary conditions. The first fluid layer is locked to the lattice in the x

direction and even the second layer experiences a strong viscous drag. In contrast, the first layer
slides even more easily in the y direction than for the square lattice. The slip length increases by an
order of magnitude to about 5σ .

These changes in fluid structure explain the results for strongly interacting dense surfaces in
Figs. 5(b) and 5(d). The stretched spacing at the crest gives a strong reduction in local transverse slip
length. The strong pinning of atoms at the crest inhibits sliding of the entire first layer. This lowers
Leff,x relative to the continuum NS solution for KA > 0.5 and Leff,x approaches the solution for
strongly interacting sparse surfaces that have a local stick boundary condition. The opposite effect
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FIG. 7. In-plane order as characterized by the normalized structure factor S1(�q )/N1 on flat surfaces where
a0 = 0.75σ and εwf = 1.8ε. Results for (a) the fcc (001) surface and (b) a surface that is uniformly stretched
along x, so the lateral spacing along x is increased from 0.75σ to 0.93σ .

occurs in the longitudinal direction. The sharp increase in the local longitudinal slip length at the
crest leads to a rapid rise in Fig. 5(d). The effect is largest for the type I surfaces where the stretched
spacing extends beyond the crest into regions where the surface slope is high. The high-order
commensurate phases are sensitive to the exact degree of stretching, leading to fluctuations in the
magnitude of the increase as KA rises.

B. Stepped surfaces

Figure 8 presents the effective slip length on the stepped surfaces as a function of KA, for the
x and y directions. The stepped surfaces are generated using sine waves with A increasing from 0
to 4σ in increments of 0.2σ . All atoms on lattice sites below the sine wave are removed. Because
atoms lie at discrete positions, the total height variation has only a few discrete values and different
amplitude sine waves can generate the same surface. In Fig. 8 we use the smallest A that produces a
given atomic configuration and each point in Fig. 8 corresponds to a different configuration. Results
for the type I bent surfaces are also presented for reference.

Surface steps have the most profound affect on flow in the transverse direction. The step edges trap
fluid atoms in the adjacent layer, generating an additional drag force that dramatically reduces the
local slip. As a result, Leff,x drops significantly for slippery surfaces with Ls,0 � σ [right-pointing
triangles in Fig. 8(a) and diamonds in Fig. 8(b)]. This effect is less noticeable for cases with nearly
no slip or stick boundary conditions since the drag is already high when the surface is flat [downward
and upward triangles in Fig. 8(a) and squares in Fig. 8(b)].

For slippery surfaces, Leff,x decreases in a stepwise manner. Each step corresponds to an increase
in the total height change along the surface. To facilitate comparison with bent surfaces, we define an
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FIG. 8. (a) and (b) Effective transverse slip length Leff,x over the bent type I (open symbols) and stepped
type III (closed symbols) surfaces with (a) a0 = 1.2σ and (b) 0.75σ as a function of the normalized amplitude
KA. The various wall parameters from Table I are indicated by symbol color and orientation: A (downward
magenta triangles), B (upward red triangles), C (right-pointing blue triangles), D (cyan diamonds), and E
(green squares). (c) and (d) Effective longitudinal slip length Leff,y for the surfaces in (a) and (b), respectively.
Statistical uncertainties in Leff are about 0.1σ . Fluctuations in (d) reflect rapid changes in the structure of the
first fluid layer.

amplitude Areal = �h/2, where �h is the height difference between the highest and lowest surface
wall atoms. For the (001) surfaces considered here, �h = ma0/

√
2, where m is an integer and a0/

√
2

is the spacing between lattice planes perpendicular to the surface. For KAreal < 1, the surface height
changes in steps of a0/

√
2, and if �h = ma0/

√
2 there are m steps up and m steps down per period.

The discrete changes in Leff,x in Figs. 8(a) and 8(b) correspond to changes in m, indicating that drag
scales with the density of step edges.

Figure 9 shows a quantitative test of the contribution of step edges. For large slip lengths, the
effective damping is inversely proportional to Leff . Flat regions provide a background damping
proportional to σ/Ls,0. The number of atomic steps per unit length is 2m/λx ∝ KAreal. Figure 9(a)
shows that the drag rises linearly with KAreal with results for different λx collapsing onto a universal
curve. Similar results were found for (111) surfaces and other wall interactions. Note that the slopes
are different for sparse and dense surfaces, indicating that each step on a sparse surface produces
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FIG. 9. (a) Plot of σ/Leff,x as a function of KAreal, where Areal is the total roughness amplitude of stepped
surfaces, for three wavelengths: λx = 12.04σ (left-pointing green triangles and orange circles), 24.08σ (right-
pointing blue triangles and cyan diamonds), and 48.17σ (upward red triangles and magenta squares). Symbol
type indicates the wall parameters from Table I: C (triangles) and D (squares, diamonds, and circles). Black
dashed lines are linear fits to the data for each set of wall parameters. (b) Plot of σ/Leff,x as a function of KA2

for the sparse surface with set D wall parameters from Table I. The dotted colored lines show the analytical
prediction of Eq. (11). The solid colored lines represent the results from continuum simulations with the same
local boundary condition as for the corresponding flat surface.

less drag. We find that a number of factors may affect the drag from step edges. For Fig. 9(a), the
main factor is that the larger σwf = 2σ for sparse surfaces rounds out the potential from the step
edge. For the same interaction parameters, lowering the ratio of step height to the height of the first
fluid layer reduces the drag. In all cases studied, the drag scaled linearly with KAreal.

This linear scaling is inconsistent with the analytical results for continuous surfaces [Eq. (11)].
There the damping rises as KA2 as roughness rises from zero. Figure 9(b) verifies this scaling for
type I surfaces. Note that the detailed analytical theory [Eq. (11)] provides a good quantitative fit at
small KA2. The simpler approximation [Eq. (14)] predicts the correct linear dependence on KA2,
but not the change in slope with wavelength. The change in slope comes from terms in KLs,0 in
Eq. (11). Our simulation results verify the analytic form of these terms for bent surfaces. Deviations
from the asymptotic behavior become evident at smaller KA2 as the wavelength decreases because
curvature begins to affect the local slip boundary condition.

Step edges have the opposite effect on longitudinal flow, tending to increase the slip length
compared to bent surfaces. As shown in Figs. 8(c) and 8(d), the effect is particularly pronounced
for surfaces where the damping on flat surfaces is low, i.e., Ls,0 is high. For the two most slippery
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FIG. 10. Effective longitudinal slip length σ/Leff,y as a function of KAreal for three wavelengths: λx =
12.04σ (left-pointing green triangles and orange circles), 24.08σ (right-pointing blue triangles and cyan
diamonds), and 48.17σ (upward red triangles and magenta squares). Symbol type indicates the wall parameters
from Table I: C (triangles) and D (squares, diamonds, and circles). Black dashed lines are linear fits to the data
for each set of wall parameters.

surfaces the slip length can be enhanced by ∼50% at large KA. For the less slippery surfaces the
slip length may increase from nearly zero to 5σ .

We found that step edges lowered the drag for longitudinal flow by changing the structure of the
first fluid layer. Fluid atoms near step edges are ordered into parallel lines. This alignment propagates
away from the edges, increasing density modulations in the transverse direction. In contrast, there
is less order in the longitudinal direction. As noted above and in earlier work [7,52,89–91],
the slip length scales inversely with the degree of epitaxial order at Bragg vectors along the
flow direction. Measurements of S1( �G0,1)/N1 show that the wall-induced Bragg peak along the
longitudinal direction is decreased by step edges. For example, for ewf = 0.4σ and a0 = 0.75σ

(diamonds) the peak in the first fluid layer above the lowest step may be reduced by 40%. There is
a corresponding large increase in slip length for stepped surfaces relatively to bent surfaces. For the
less slippery sparse case (squares) the reduction in Bragg peak is more dramatic because step edges
hasten the transition to the ordered structure shown in Fig. 7. Rapid variations in order with KA

lead to rapid fluctuations in Ls , as seen in Fig. 5(d).
Figure 10 shows the longitudinal slip length for different wavelengths in systems with large

intrinsic slip lengths Ls,0. As for transverse slip, results for all wavelengths collapse when plotted
against KAreal, indicating that slip only depends on the number of edges per unit length. Each edge
induces local transverse order and lowers longitudinal order, leading to a rise in Leff,y . Continuum
theory predicts a very different scaling, with changes in slip varying as KA2.

A new effect was observed at very large KAreal. Adjacent step edges form close-packed (111)
planes. The intrinsic slip length on these planes is larger, as noted previously by Soong et al. [81].
This decrease reflects the smaller spacing between minima in the wall potential, which reduces the
degree of epitaxial locking in the adjacent fluid layer [7,52,91].

IV. CONCLUSION

We have used molecular dynamics simulations to study the effective slip boundary condition
for simple fluid flow over rough surfaces in the Wenzel state and limit of linear response. The wall
roughness was modeled by a one-dimensional sine wave with wavelength much larger than the atomic
diameter. The uncovered atomic effects may also apply to other types of rough surfaces, e.g., surfaces
with small bumps [19]. The behavior of the effective slip length was examined by increasing the
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normalized corrugation amplitude up to KA ∼ 1, for both the transverse and longitudinal directions.
Results for other directions can be obtained by combining these results using the tensoral nature of the
drag between solid and fluid (Sec. II C) [1,18,80]. Different atomic configurations were investigated
for strong and weak wall-fluid interactions and high and low wall densities.

Increasing the roughness amplitude always reduces the transverse slip length Leff,x . In most cases,
it also decreases the longitudinal slip length Leff,y , but at a slower rate. However, in some cases
Leff,y shows a remarkable increase above Ls,0 that is in stark contrast to continuum predictions. The
resulting effective boundary condition is highly anisotropic.

The results for bent surfaces can be understood by supplementing continuum theory with an
appropriate local boundary condition that depends on curvature and atomic spacing [15,52]. For
sparse bent surfaces, curvature has little effect on the local slip boundary condition (Fig. 6). For
these surfaces the numerical solutions of the Navier-Stokes conditions with the flat surface slip
length Ls,0 provide a good description of the slip length at roughness amplitudes up to KA = 1.
Simpler analytic approximations [Eq. (11)] remain accurate to KA ∼ 0.5. The largest deviations are
associated with changes in the spacing between surface atoms, which are present on type I surfaces
and eliminated for type II surfaces.

Larger deviations from simple continuum theory are seen for dense bent surfaces. Previous
work [52] and Fig. 6 show that the local slip length on these surfaces is strongly dependent on
curvature. For the chosen atomic orientation the curvature dependence is strong for transverse flow
and negligible for longitudinal flow. As a result, the effect on the total transverse slip length is larger
in Fig. 5. Including the curvature-dependent slip length in solutions of the Navier-Stokes equation
captures the variation of the total effective slip length for type II surfaces. For type I surfaces the
increase in atomic spacing on sloped surfaces produces an even greater suppression of slip.

The most dramatic deviation from continuum theory for bent surfaces occurs for flow over strongly
interacting type I surfaces. The increase in atomic spacing along the transverse direction leads to
anisotropic reconstruction of the first fluid layer. The layer becomes more strongly locked in the
transverse direction, leading to a lower transverse slip length. However, the order in the longitudinal
direction decreases and there is a dramatic change from a stick boundary condition to a longitudinal
slip length that is larger than the amplitude of the roughness.

Steps lead to a qualitative change in the scaling of slip with surface roughness. There is a new
contribution to drag from step edges that is independent of the slip length on flat surfaces. Results for
transverse flow at different wavelengths collapse when plotted against KAreal, which is proportional
to the density of step edges. This confirms that each edge adds an independent contribution to slip
reduction. In contrast, results for bent surfaces show the scaling predicted by continuum theory, with
drag rising as KA2.

While steps suppress transverse slip, they enhance longitudinal slip. This was found to reflect
alignment of fluid at step edges that suppressed longitudinal order. This contribution to changes in
slip length also collapses when plotted against the step density at low KAreal. Different crystalline
facets with higher or lower Ls,0 may form on rougher surfaces and lead to more complex behavior.
For example, (111) facets (Fig. 2) with a larger slip length formed on the roughest surfaces in Fig. 8.
Changes in the direction of the step edge along the surface will mix the effect of transverse and
longitudinal regions. Since the drag enhancement due to transverse regions is larger, the net effect
is likely to be a reduction in slip length.

We hope that the behavior revealed here will cast light on the behavior of realistic surfaces and
facilitate the design of surfaces for various applications, e.g., drag reduction, flow control, and water
harvesting. Real surfaces are likely to have more complex roughness with a range of wavelengths and
orientations. Our results suggest that the resulting changes in slip will depend strongly on the atomic
structure. The bent surfaces described here may represent various long-wavelength corrugations
or rough amorphous surfaces. Such surfaces could be modeled with continuum theory using an
appropriate local boundary condition determined for small surfaces of fixed curvature. The stepped
surfaces studied here may be more representative of crystals. The results suggest that slip over such
surfaces can be expressed in terms of the local slip length of faceted regions and an additional drag
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due to the density of step edges transverse to flow. This additional term is very sensitive to details of
the atomic structure of the fluid and step edge, as well as the distribution of step edge angles.
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[24] R. Pit, H. Hervet, and L. Léger, Direct Experimental Evidence of Slip in Hexadecane: Solid Interfaces,
Phys. Rev. Lett. 85, 980 (2000).

[25] C. Kunert, J. Harting, and O. I. Vinogradova, Random-Roughness Hydrodynamic Boundary Conditions,
Phys. Rev. Lett. 105, 016001 (2010).

[26] C. Kunert and J. Harting, Roughness Induced Boundary Slip in Microchannel Flows, Phys. Rev. Lett. 99,
176001 (2007).
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