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We study the origins of anomalous dispersion in heterogeneous porous media in
terms of the medium and flow properties. To identify and quantify the heterogeneity
controls, we focus on porous media which are organized in assemblies of equally sized
conductive inclusions embedded in a constant conductivity matrix. We study the behavior of
particle arrival times for different conductivity distributions and link the statistical medium
characteristics to large-scale transport using a continuous time random walk (CTRW)
approach. The CTRW models particle motion as a sequence of transitions in space and
time. We derive an explicit map of the conductivity onto the transition time distribution.
The derived CTRW model predicts solute transport based on the conductivity distribution
and the characteristic heterogeneity length. In this way, heavy tails in solute arrival times and
anomalous particle dispersion as measured by the centered mean square displacement are
directly related to the medium properties. These findings shed light on the mechanisms of
anomalous dispersion in heterogeneous porous media, and provide a basis for the predictive
modeling of large-scale transport.
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I. INTRODUCTION

Anomalous dispersion has been widely observed in transport through heterogeneous porous
media [1–5]. It manifests itself in heavy tails in solute arrival time distributions, or breakthrough and
the nonlinear evolution of the second centered moments of solute distributions. Anomalous dispersion
can be caused by different physical processes, chemical heterogeneity [6,7], the interplay of physical
heterogeneity and diffusion [8,9], and physical heterogeneity alone. Here, we concentrate on the
impact of physical heterogeneity in the distribution of hydraulic conductivity [4,5,10,11]. In highly
heterogeneous fields, fast flow concentrates along highly permeable preferential paths consisting
of connected structures of large hydraulic conductivity [12–14]. The spatial complement to the
flow channels form disconnected zones of slow advective velocities where solutes are delayed. The
interplay of fast channels and slow advection in disconnected zones leads to anomalous dispersion.

The impact of these mechanisms on large-scale transport can be described in terms of continuous
times random walks (CTRW). The CTRW [15,16] has found applications for the modeling of
anomalous diffusion in a wide range of physical systems [2,17–20]. Berkowitz and Scher [2,21], have
realized that the CTRW provides the dynamics needed to characterize non-Fickian hydrodynamic
transport in heterogeneous porous and fractured media. The CTRW describes particle movements
as a random walk in space and time as [9,22]

xn+1 = xn + �n, tn+1 = tn + �n

vn

, (1)

with �n being the transition length and vn being the particle velocity. The spatial jumps and waiting
times may be independent or correlated random variables [23]. The transition times in the CTRW are
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given in terms of the particle velocities vn, whose statistics have typically been estimated by using
particle tracking simulations in the detailed heterogeneous flow [23–26]. The multirate mass transfer
(MRMT) framework models the interplay of fast channels and slow advection by a mobile-immobile
approach. Fast channels define the mobile zone, and regions of slow advection are represented as
immobile. The mobile and immobile regions are connected through linear mass transfer [27–29]
characterized by the memory function. The latter encodes the distribution of residence times in the
immobile zones, which in principle is related to the statistics of slow advection. CTRW and MRMT
have a similar phenomenological basis and both model history-dependent transport dynamics. In fact,
it has been shown [30–32] that both models are under certain conditions mathematically equivalent.
For both modeling approaches, the relation between the (statistical) medium and flow properties
and large-scale transport is of central importance [2,26,33–35]. Oftentimes, the distribution of
transition times (CTRW) and the memory function (MRMT) are estimated on the basis of coupled
flow and transport simulations or from experimental data, for example, breakthrough curves. For
some systems, such as diffusion in quenched random trap models [36] or hydrodynamic transport
under linear retention due to physical and chemical medium heterogeneity, the medium properties
and geometry can be directly linked to the average non-Fickian transport behavior [37–39]. The
objective here is to investigate the quantitative link between the hydraulic conductivity distribution
and large-scale transport in the framework of CTRW and thus elucidate the heterogeneity controls
on anomalous dispersion.

To this end, we consider transport in the flow through heterogeneous porous media which are
organized in assemblies of equally sized conductive inclusions embedded in a constant conductivity
matrix. The conductivities inside the inclusions are constant and distributed between the inclusions.
This type of media serves as models for heterogeneous porous media characterized by finite
correlation length and arbitrary conductivity point distributions. Eames and Bush [40] studied
solute dispersion in such media and derived expressions for the dispersion coefficients. Fiori
et al. [41–43] studied anomalous transport in media consisting of inclusions with log-normal
distributions of hydraulic conductivity and derived semianalytical expressions for solute travel
times. These solutions have been implemented into a time-domain random walk approach, which is
similar to the CTRW [44].

In this paper we investigate anomalous transport and its heterogeneity controls through detailed
numerical simulations of flow and particle transport in realizations of the model porous medium.
The next section introduces the flow and transport model, defines the heterogeneous model medium,
and discusses the flow properties. Section III derives the CTRW model to quantify anomalous
dispersion and the relations between the transition time distribution, particle and flow velocities,
and the hydraulic conductivity distribution. Section IV applies the developed model to predict first
passage time distributions obtained from direct numerical simulations of flow and particle transport
in realization of the heterogeneous model media for power-law and log-normal distributions of
hydraulic conductivity. Section V uses the developed CTRW approach to study the dispersion
properties in highly heterogeneous porous media.

II. FLOW AND TRANSPORT MODEL

In this section we outline the transport and flow models and define the heterogeneous porous
medium model under consideration.

A. Transport

We consider particle transport in the absence of microscale dispersion and focus solely on the
impact of heterogeneous advection on the dispersion of an advected scalar c(x,t). Its evolution in a
divergence-free flow v(x) with ∇ · v(x) = 0 is governed by the Liouville equation

∂c(x,t)

∂t
= −v(x) · ∇c(x,t). (2)
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The coordinate vector is x = (x,y)�, where the superscript � denotes the transpose. We take a
Lagrangian viewpoint in order to derive the effective equations of motion of the dispersed scalar and
start from the equivalent advection equation

dx(t)

dt
= v[x(t)], (3)

which describes the evolution of scalar particles, whose density is denoted by c(x,t). We employ a
stochastic framework to quantify the average transport behavior in the heterogeneous flow field v(x).
This means v(x) is considered a realization of an ensemble of random flow fields whose statistical
properties are discussed in the next section.

In this framework, we study the ensemble transport behavior in terms of the first passage times
at a plane located at x = xc,

τ (xc) = inf {t |x(t) � xc}. (4)

The probability density function (PDF) of first passage times is given by

f (t,xc) = 〈δ[t − τ (xc)]〉, (5)

where the angular brackets denote the combined average over all particles launched in a given
realization and the average over the ensemble of random media. Note that f (t,xc) is equivalent to
the solute breakthrough curve measured at the position xc.

B. Flow

We consider here flow through heterogeneous porous media that are composed of a homogeneous
matrix of hydraulic conductivity k0 and equally sized disks of radius r0. Each sphere is embedded
in a unit cell of length �0. The conductivities k of the disk-shaped inclusions are assigned randomly
from the PDF pk(k). Without loss of generality, we set k0 = 1 and r0 = 1 in the following. The
volume fractions of the disk-shaped inclusions is given by χ = π/�2

0. A realization of the random
media under consideration is illustrated in Fig. 1.

The flow velocity v(x) through this medium is given by the Darcy equation [45],

v(x) = −k(x)∇h(x), (6)

where k(x) denotes hydraulic conductivity and h(x) hydraulic head. As outlined in the following,
hydraulic conductivity is modeled as a spatial random field; this means v(x) is a realization of an
ensemble of random flow fields characterized by certain statistical properties. Flow is driven here by
a uniform mean hydraulic gradient ∇h(x) that is aligned with the x axis of the coordinate system;
see also Appendix 1.

1. Single inclusion

In order to characterize the flow in the random medium, we first consider flow through an isolated
unit cell embedded in an infinite porous matrix. The steady-state flow potential function is given
by [40,46]

�(r) = um

(
1 + 1 − k

1 + k

1

r2

)
r1 (7a)

for r ≡ |r| > 1 and

�(r) = 2umkr1

1 + k
(7b)

for r � 1. Note that r = (r1,r2)� refers to the coordinate system with the origin in the center of the
circular inclusion; um denotes the velocity in the matrix at infinity. The velocity field is given by
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FIG. 1. Illustration of the model medium consisting of a conductive matrix with k0 = 1 and less conductive
disk-shaped inclusions of radius r0 = 1 and conductivity k, which is distributed according to pk(k). The
inclusions are embedded in a rectangular unit cell of size �0. Different colors denote different conductivity
values.

u(r) = ∇�(r). In the matrix outside the inclusion, we have

uo(r) = um

(
1 + 1 − k

1 + k

r2
2 − r2

1

r4

)
e1 − um

1 − k

1 + k

2r1r2

r4
e2 (8a)

for r > 1. Inside the inclusion, the flow velocity is constant and given by

ui(r) = 2umk

1 + k
e1 (8b)

for r � 1 with ei the unit vector aligned with the i direction of the coordinate system. Darcy velocities
inside the inclusion are uniform and aligned with the direction of the mean pressure gradient.

2. Distribution of inclusions

We consider now the properties of the flow in the medium illustrated in Fig. 1. The conductivities
within the inclusions are drawn independently from the distribution pk(k). In order to transfer the
information on the flow for the single inclusion to the random medium, some remarks are in order.
As the flow potential (7) decreases as r−2, we assume that interaction between the disks can be
neglected. Thus, in the following, we use expressions (8a) and (8b) as an approximation for the
velocity field in the unit cell. The characteristic matrix velocity um and the effective background
conductivity ke are still to be determined. They are imposed by the boundary conditions and the
medium geometry. In order to determine ke, we consider the average flow velocity q, which is given
by the effective Darcy equation [47,48]

q = −ke|∇h|, (9)

where ke is the effective conductivity of the medium and ∇h is the mean hydraulic gradient, which
here is aligned with the one direction of the coordinate system. The Maxwell formula gives for
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ke [49,50]

ke = 1 + χ	

1 − χ	
, 	 =

∫ ∞

0
dkpk(k)

k − 1

k + 1
, (10)

where χ = πr2

�2 is the volume fraction of the inclusions. For strong conductivity contrasts between the
inclusions and the matrix, that is, 〈k〉 � 1, we may approximate 	 ≈ −1. In this case the effective
conductivity is

ke ≈ 1 − χ

1 + χ
. (11)

In general, we evaluate the integral in Eq. (10) using the full conductivity distribution pk(k).
As outlined in Ref. [49], Maxwell’s approximation gives good estimates for ke also for nondilute

distributions of disks. The average flow velocity is now given by q = −ke∇h. Note that the average
velocity q is referred to the bulk of the medium, while um refers to the matrix domain, the area
outside the inclusions. The total flux is partitioned between the inclusion and the matrix as

q = (1 − χ )um + 2umχ〈k/(1 + k)〉. (12)

Thus, we obtain for the characteristic matrix velocity um the expression

um = −ke∇h

1 − χ + 2χ〈k/(1 + k)〉 . (13)

The flow velocities in a unit cell of the heterogeneous medium illustrated in Fig. 1 then are given
by (8) with um given by (13). Specifically, the velocity ui inside an inclusion is given by (8b) as

ui = 2umk

1 + k
. (14)

The PDF pi(v) of the ui can be directly related to the PDF of conductivity values pk(k) as

pi(v) = 2um

(2um − v)2
pk

(
v

2um − v

)
. (15)

III. STOCHASTIC PARTICLE-BASED TRANSPORT MODEL

We focus first on particle transport in streamline coordinates; this means we consider particle
movements as a function of distance s along a streamline,

dt(s)

ds
= 1

v(s)
, v(s) = |v[x(s)]|, (16)

where we set x(s) ≡ x[t(s)]. Particle motion in terms of the distance s along the streamline reads as

dx(s)

ds
= ev(s), ev(s) = v[x(s)]

v(s)
. (17)

We focus now on the particle movement along the x axis of the coordinate system and choose as the
coarse-graining scale the size �0 of a unit cell. Thus, the particle motion can be described by

xn+1 = xn + �0, tn+1 = tn + τn, (18)

where the transition time for a unit cell is given by

τn =
∫ sn+�0

sn

ds ′

v(s ′)
. (19)

Due to the random nature of the permeability distribution illustrated in Fig. 1, subsequent trapping
times τn can be considered random and independent. Thus, in the ensemble particle motion, this
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means particle trajectories sampled between different realizations of the random medium in Fig. 1
forms a CTRW which is fully characterized by the PDF ψ(t) of transit times τn. Before determining
the particle velocities and transit time distribution in terms of the permeability distributions, we
briefly recall the CTRW description of particle transport.

A. Continuous time random walk

The PDF of horizontal particle positions averaged over particles and medium realizations is given
by c(x,t) = 〈δ(x − xnt

)〉, where the number of steps nt to reach time t by the process (18) is given
by nt = max(n|tn � t). Thus, c(x,t) can be expanded as

c(x,t) =
∫ t

0
dt ′R(x,t ′)

∫ ∞

t−t ′
dt ′′ψ(t ′′), (20)

R(x,t) = δ(x)δ(t) +
∫ t

0
dt ′ψ(t − t ′)R(x − �,t ′). (21)

The first passage times (4) read now in terms of the CTRW (18) as [51]

τ (xc) = tnxc
, nxc

= min(n|xn � xc). (22)

Since the spatial increment is constant equal to �0, the number of steps to reach xc is given by
nxc

= 
xc/�0�, where the upper braces denote the ceiling function. Thus, the PDF of first passage
times, f (t,r) = 〈δ[t − τ (r)]〉, can be expanded as

f (t,xc) =
∫ t

0
dt ′f (t ′,xc − �0)ψ(t − t ′). (23)

Note that (18)–(23) describe a CTRW for the average particle dynamics in the flow through
the heterogeneous medium that is fully parameterized in terms of the distribution of hydraulic
conductivity. Based on this CTRW, we also analyze the dispersion behavior in the heterogeneous
porous medium. To this end, we determine the second centered moment in the average flow direction,
which is defined by

σ 2(t) = 〈(
xnt

− 〈
xnt

〉)2〉
, (24)

where nt = sup(n|tn � t) is the number of steps needed to reach time t in the process (18). In the
following, we discuss the particle velocities in the unit cell and the corresponding transit times.

B. Particle velocities and transit times

We discuss here the distribution of the particle velocities entering the CTRW model outlined
in the previous section and its relation to the medium properties. Furthermore, we determine the
transition time distribution that corresponds to the distribution of particle velocities.

1. Velocity distributions

We simplify flow velocities in that we do not account for variability in the velocity through
the matrix, and set it equal to its average um. According to (19), the CTRW approach outlined in
the previous section requires the particle velocities v(s) sampled spatially along streamlines as an
input. Their PDF ps(v) is obtained in terms of the relative particle fluxes that pass through matrix
and inclusions. The fluxes Qi and Qm through inclusions and matrix are determined at the vertical
centerline of a unit cell such that

Qi(ui) = 2ui, Qm(ui) = (�0 − 2)(2um − ui), (25)
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where we expressed the matrix velocity at the center line, which is given by 2um/(1 + k) in terms
of ui . Recall that the disk radius here is r0 = 1. Thus, the conditional flux density Q(v|ui) is

Q(v|ui) = Qm(ui)δ(v − um) + Qi(v)δ(v − ui). (26)

The global flux density Q(v) = 〈Q(v|ui)〉 is obtained by averaging over the ensemble of inclusion
velocities ui such that

Q(v) = 〈Qm(ui)〉δ(v − um) + 〈Qi(ui)〉vpi(v)

〈ui〉 . (27)

The PDF ps(v) of particle velocities is obtained by normalizing the flux density Q(v) such that

ps(v) = (1 − α)δ(v − um) + α
vpi(v)

〈ui〉 , (28)

where we defined

α = 〈Qi(ui)〉
〈Qm(ui)〉 + 〈Qi(ui)〉 . (29)

2. Transition time distribution

The PDF of transition times consists of the distribution of transit times τm through the matrix,
denoted by ψm(t), and transit times τi through the inclusions, denoted by ψi(t). The characteristic
transit time through the matrix is given by τ0 = �0/um, while the minimum transition time is related
to the maximum flow velocity 2um. Thus it is τ0/2. In order to account for the flow variability in
the matrix and its effect on particle dispersion, the distribution ψm(t) of transition times through the
matrix is modeled by a truncated exponential distribution as

ψm(t) = τ−1
0 exp[−(t − τ0/2)/τ0]H (t − τ0/2), (30)

where H (t) denotes the Heaviside step function. The transit times through the inclusions are estimated
here in terms of an effective transition length �i of the inclusion. This effective transition length
depends in general on the conductivity contrast. For a high conductivity contrast, i.e., k � 1, the
velocity changes abruptly at the interface between inclusion and matrix. At the horizontal centerline,
the velocity contrast at a distance  from the interface can be approximated by uo(r1,0)/ui ≈
1 + (1 − k)/k. Thus, for small 〈k〉 � 1, the effective length �i is approximated by the average
transition length across the disk-shaped inclusion as

�i = 2

π

∫ π

0
dϕ cos(ϕ) = 4

π
. (31)

Recall that the dimensionless inclusion radius is r0 = 1 and that the transition length depends on
the distance from the centerline. For lower conductivity contrasts between matrix and inclusion, the
velocity outside the inclusion is similar to the inclusion velocity and we set li = �0. The transit time
through the inclusion then is given by τi = �i/ui . As derived above the PDF of particle velocities in
the inclusions is given by the flux weighted vpi(v)/〈ui〉. Thus, we obtain for ψi(t)

ψi(t) = �2
i

t3〈ui〉pi(�i/t). (32)

The transition time distribution over a unit cell is then given by

ψ(t) = (1 − α)ψm(t) + αψi(t − t ′). (33)

The distribution of long transition time is dominated by the low end of the conductivity spectrum,
at which we can set

ui ≈ 2umk; (34)
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see (8b). Thus, for k � 1, the inclusion velocity is linearly related to the inclusion conductivity so
that the velocity PDF at small velocities can be obtained from the PDF of conductivities as

pi(v) ≈ 1

2um

pk[v/(2um)]. (35)

This allows us to map the PDF of conductivity through (32) directly to the PDF of transition times,

ψi(t) ≈ �2
i

2umt3
pk[�i/(2umt)], (36)

or in other words allows us to express a transport attribute in terms of a medium property.

IV. FIRST-PASSAGE TIME DISTRIBUTIONS

In the following, we investigate the impact of broad conductivity distributions on the long-time
behavior of f (t,xc) and thus on the character of anomalous transport. To this end, we consider
power-law distributions that behave as pk(k) ∝ k−γ for small conductivity values as well as broad
log-normal distributions.

Within the CTRW approach derived in the previous section, first passage time distributions can
be obtained straightforwardly from the Laplace transforms of (23) as f ∗(λ,xc) = ψ∗(λ)nxc . Using
the Laplace transform of (33) and (30)

f ∗(λ,xc) =
[

(1 − α)
exp(−λτ0/2)

1 + λτ0
+ αψ∗

i (λ)

]nxc

. (37)

In the limit of times much larger than τ0, and equivalently λτ0 � 1, we approximate the latter by

f ∗(λ,xc) ≈ exp
{
nxc

ln[1 − α + αψ∗
i (λ)]

}
. (38)

A. Power-law conductivity distribution

We consider the doubly truncated power-law conductivity distribution

pk(k) = 1 − γ

1 − k
1−γ
c

k−1
c

(
k

kc

)−γ

(39)

for kc � k � 1. For illustration, we consider the values γ = −3/2 and γ = −1/2. The corresponding
velocity distribution is given by (15). As outlined above, we focus here on the asymptotic behavior
in order to study the anomalous character of particle transport. The long-time behavior is dominated
by the small particle velocities and thus through (34) to small hydraulic conductivities. Thus (39)
implies here that the velocity distribution behaves as pi(v) ∝ (v/um)−γ , see (35), and from (36) that
the transition time PDF scales as

ψi(t) ∝ (t/τa)γ−3 (40)

for t � τc, where we defined the cutoff time scale τc = �i/(2umkc), which corresponds to the lower
conductivity cutoff kc. Furthermore, we define the time scale τa = �i/(2um), which corresponds
to the upper conductivity cutoff of 1. We consider here 0 < γ < 2. For 1 < γ < 2, the Laplace
transform of the transition time distribution can be expanded as [22]

ψ∗
i (λ) = 1 − aγ (λτa)2−γ (41)

for τ−1
c � λ � τ−1

a , while for 0 < γ < 1, we obtain [22]

ψ∗
i (λ) = 1 − λτav + bγ (λτa)2−γ , (42)

where we defined the mean transition time τav = �i/〈ui〉.
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FIG. 2. First passage time distributions obtained from (triangles) direct numerical simulation of particle
transport in the heterogeneous porous medium and (solid lines) the prediction of the CTRW model, for the
power-law k distribution (39) with kc = 10−5 and (top panel) γ = 3/2 or respectively (bottom panel) γ = 1/2.
The dashed lines indicate the power-law behavior ∝tγ−3 expected in the intermediate time regime. The CTRW
simulation parameters are given in Appendix 2. The direct numerical simulations are described in Appendix 1.

Inserting the expansion (41) into (38), we obtain

f ∗(λ,xc) ≈ exp
[−nxc

αaγ (λτa)2−γ
]
, (43)

which is a skewed Levy-stable density. Its inverse Laplace transform has the scaling form
f (t,xc) = (αaγ xc)−1/(2−γ )f0[t/(αaγ xc)1/(2−γ )]. The scaling function f0(t) has the Laplace transform
f ∗

0 (λ) = exp[−(λτa)2−γ ]. The long time behavior of f (t,xc) is given by f (t,xc) ∝ tγ−3. Inserting
the expansion (42) into (38), we obtain

f ∗(λ,xc) ≈ exp
{−nxc

α[λτav − bγ (λτa)2−γ ]
}
. (44)

Thus, the long-time behavior for the f (t,xc) is also given by f (t,xc) ∝ tγ−3.
Figure 2 shows the first passage time distributions obtained from direct numerical simulations of

particle transport in the flow through heterogeneous conductivity fields characterized by the point
distribution (39) for γ = 3/2 and γ = 1/2. The simulation data are compared to the predictions of
the corresponding CTRW model described in Sec. III. The late time power-law scaling is indicated
by the dashed lines. The CTRW model provides an accurate prediction of the late time scaling of
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the first passage time distributions. The late time scaling is directly related to the behavior of pk(k)
for k � 1. The peak behavior is captured satisfactorily by the truncated exponential distribution of
particle transit times in the matrix.

B. Log-normal conductivity distribution

We consider now the truncated log-normal distribution of conductivities

pk(k) =
√

2

πσ 2

exp
[− (ln k−μ)2

2σ 2

]
kerfc(μ/

√
2σ 2)

(45)

for 0 < k < 1. The transition time distribution ψi(t) is given by (32) in terms of the velocity
distribution through the inclusions. As pointed out above, for k � 1 we may set ui ≈ 2umk; see (8b).
This allows to relate the velocity PDF pi(v) to the conductivity PDF according to (35) and the
transition time PDF ψi(t) to pk(k) through (36). It follows that the transition time PDF ψi(τ ) has
itself the form of a truncated log-normal distribution. Thus, unlike in the previous section, where the
CTRW predicts a power-law behavior of the first passage time distribution as a consequence of the
generalized central limit theorem, here this is not the case.

Figure 3 shows first passage time distributions obtained from direct numerical simulations in
conductivity fields characterized by the log-normal conductivity distribution (45) for σ 2 = 11.4 and
μ = −9.23 and μ = 2.3. The CTRW model developed in Sec. III provides a good prediction of the
tailing behavior and captures the peak behavior satisfactorily.

Edery et al. [26] proposed to fit a power law to the low-k end of pk(k) corresponding to the time
regime, for which a prediction is desired. The resulting power-law approximation may then be used
to make an approximation on the tailing behavior of the first passage time distribution. Note that (45)
may be expanded into a power law around any k0 < 1 as

pk(k) ∝ k−γ , γ = σ 2 − μ + ln k0

σ 2
. (46)

This can be readily seen by expanding ln pk(k) around ln k0 up to linear order. For small k, the first
passage time τi through the inclusions are related to k as τi = �i/(2umk). This means first passage
times of the order of a t0 correspond to

k0 ∼ �i/(2umt0). (47)

Thus, (46) together with (47) may be used as a rough approximation for the tail scaling around a
first passage time t0. The dashed lines in Fig. 3 indicate the scaling approximation around t0 = 105.
For σ 2 = 11.4 and μ = −9.23, we obtain from (46) that γ = 1.1. For σ 2 = 11.4 and μ = −2.3 we
obtain γ = 0.4. These estimates of γ provide a good approximation to the tailing behavior around
t0 = 105. Note, however, that unlike in the previous section, here, the first passage time distributions
do not exhibit power-law tails because the first passage times are obtained through the summation
of log-normally distributed random variables.

V. DISPERSION

In the previous section, we have demonstrated the predictive capabilities of the CTRW model
derived in Sec. III for global particle transport in a heterogeneous medium characterized by a broad
distribution of hydraulic conductivities. In this section, we use this model in order to analyze particle
dispersion and its controls in terms of the distribution of hydraulic conductivities.

Dispersion is measured in terms of the centered mean square displacement

κ(t) = m2(t) − m1(t)2. (48)

The first and second displacement moments are defined in the CTRW framework as

m1(t) = 〈
xnt

〉
, m2(t) = 〈

x2
nt

〉
, (49)
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FIG. 3. First passage time distributions obtained from (triangles) direct numerical simulation of particle
transport in the heterogeneous porous medium, see Appendix A 1, and (solid lines) the prediction of the CTRW
model, for the log-normal k distribution (45) with σ 2 = 11.4 and (top panel) μ = −9.23 or respectively (bottom
panel) μ = −2.3. The CTRW simulation parameters are given in Appendix A 2. The dashed lines indicate the
approximate power-law behavior obtained from (46) and (47).

where nt = sup(n|tn � t). We obtain explicit Laplace space expressions for m∗
1(λ) and m∗

2(λ) in
terms of the transition time distribution ψ∗(λ) [22,52]

m∗
1(λ) = �0

λ2

λψ∗(λ)

1 − ψ∗(λ)
, (50)

m∗
2(λ) = �2

0

λ2

λψ∗(λ)

1 − ψ∗(λ)
+ 2

�2
0

λ3

λ2ψ∗(λ)

[1 − ψ∗(λ)]2
. (51)

The Laplace transform of the transition time distribution here is given by

ψ∗(λ) = (1 − α)ψ∗
m(λ) + αψ∗

i (λ). (52)

For transition time distributions characterized by finite mean and mean square transition times,
κ(t) increases linearly with time, κ(t) = 2Det . The effective dispersion coefficient is given in terms
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of the first and second moments of ψ(t) as [22]

De = �2
0

2

〈τ 2〉 − 〈τ 〉2

〈τ 〉3
. (53)

For the composite transition time distribution (33) the ith moment 〈τ i〉 of the transition time is given
by

〈τ i〉 = (1 − α)
〈
τ i
m

〉 + α〈τ i
i 〉. (54)

For the first and second moments of the mobile transition time, we obtain from (30)

〈τm〉 = τ0 + τ0/2,
〈
τ 2
m

〉 = τ0/22 + 2τ0(τ0 + τ0/2). (55)

For the truncated power-law distribution (39), the transition time distribution ψi(t) can be
approximated by the truncated power law

ψi(t) = 2 − γ

τa

(t/τa)γ−3

1 − (τc/τa)γ−2
(56)

for τa < t < τc. The cutoff time τc is related to the smallest conductivity value as τc = �i/(2umkc).

A. Intermediate time regime

We first consider dispersion in the intermediate time regime τa � t � τc. It behaves as ψ(t) ∝
tγ−3. In this time regime, dispersion is anomalous and characterized by the following scalings. For
1 < γ < 2, one obtains [22]

κ(t) ∝ t4−2γ . (57)

For 0 < γ < 1, one finds

κ(t) ∝ t1+γ . (58)

The second centered moment of the particle distribution increases superdiffusively.

B. Long time regime

Now we investigate the dependence of the effective dispersion coefficient (53) on the cutoff time
scale τc and equivalently on the minimum conductivity scale kc. The first and second moments of
the transition time distribution ψi(t) are obtained from (56) as

〈τi〉 = τa

2 − γ

1 − γ

1 − (τc/τa)γ−1

1 − (τc/τa)γ−2
, (59a)

〈
τ 2
i

〉 = τ 2
a

2 − γ

γ

(τc/τa)γ − 1

1 − (τc/τa)γ−2
. (59b)

We furthermore note that α ∝ 〈ui〉 ≈ 2um〈k〉, where the mean conductivity over the inclusions is
obtained from (39) as

〈k〉 = 1 − γ

2 − γ

1 − k
2−γ
c

1 − k
1−γ
c

. (60)

This means, for 0<γ <1, the mean conductivity converges to the finite value 〈k〉= (1−γ )/(2−γ )
in the limit kc → 0, while for 1 < γ < 2 it goes toward 0 as 〈k〉 ∝ k

γ−1
c . In the following, we

quantify the behavior of the dispersion coefficient (53) in the limit of τc � τa .
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1. 0 < γ < 1

We first consider the case 0 < γ < 1. In this case, we obtain for the transition time moments in
leading order

〈τi〉 = τa

2 − γ

1 − γ
, (61)

〈
τ 2
i

〉 = τ 2
a

2 − γ

γ
(τc/τa)γ . (62)

For the mean conductivity, we obtain

〈k〉 = 1 − γ

2 − γ
. (63)

This means both α and 〈τ 〉 are constant in the limit of larger τc. Thus, dispersion coefficient (53) is
dominated by 〈τ 2

i 〉, which increases as τ
γ
c . Thus, in leading order, we can write

De = �2
0

2

2 − γ

γ
α

τ 2
a

〈τ 〉2
(τc/τa)γ ∝ k−γ

c . (64)

This means the effective dispersion coefficient increases monotonically with increasing conductivity
contrast between the inclusions.

2. 1 < γ < 2

Unlike in the case γ < 1, here kc → 0 is a singular limit for the conductivity distribution because
the normalizability of pk(k) depends on the finiteness of kc. We obtain for the mean conductivity
〈k〉 in the limit kc � 1 the leading behavior

〈k〉 = γ − 1

2 − γ
kγ−1
c . (65)

This means the mean inclusion conductivity, and therefore the mean velocity through the inclusions,
go to 0 in the limit kc → 0. In this limit, the inclusions are on average impermeable. Based on (65),
we may now write α as

α = α̂(τc/τa)1−γ , α̂ = α(τc/τa)γ−1, (66)

where α̂ → constant in the limit kc → 0. For the mean and mean squared transition times through
the inclusions, we obtain from (59) in leading order for τc � τa

〈τi〉 = τa

2 − γ

γ − 1
(τc/τa)γ−1, (67)

〈
τ 2
i

〉 = τ 2
a

2 − γ

γ
(τc/τa)γ . (68)

Thus, we obtain in leading order for the effective dispersion coefficient

De = �2
0

2

2 − γ

γ

τ 2
a

〈τ 〉3
α̂τc/τa ∝ k−1

c . (69)

This means it increases linearly with the cutoff time scale τc and is inversely proportional to the
minimum conductivity kc.

Note that the scaling behaviors (64) and (69) are universal for any conductivity distribution that
shows a (truncated) power-law behavior for kc < k � 1 as pk(k) ∝ k−γ . Note also that for any
conductivity distribution that has the scaling form

pk(k) = 1

kc

fk(k/kc), (70)
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with fk(k) a scaling function that is normalized to 1, one finds that α ∝ kc, 〈τi〉 ∝ k−1
c and 〈τ 2

i 〉 ∝ k−1
c .

Thus in the limit of kc → 0 one finds here that De ∝ k−1
c ; see also Ref. [40].

VI. SUMMARY AND CONCLUSIONS

We investigated the mechanisms of anomalous dispersion in the flow through heterogeneous
porous media. To this end, we considered a medium composed of equally sized inclusions embedded
in a porous matrix. The hydraulic conductivities of the inclusions are broadly distributed with tails
toward small values. Such media can be seen as idealizations of highly heterogeneous porous media
that have a characteristic correlation scale. The conductivities in the inclusions are mapped onto the
flow velocities through an analytical expression. The background velocity is related to the effective
conductivity of the medium, which is obtained from the Maxwell formula.

Based on these results we formulate the purely advective movement of solute particles in terms
of travel distance along streamlines, which renders the equations of motion a CTRW, in which the
transition length is fixed through the characteristic heterogeneity length scale and the transition time
is related to the particle velocities. We define unit cells as a domain that contains a single inclusion.
When crossing a unit cell particles can bypass the inclusion or pass through. The probabilities for
the respective path are given by the fluxes though matrix and inclusions. Thus the PDF of particle
velocities is obtained from the PDF of flow velocities through flux weighting. This provides a
direct link between the medium properties through the explicit relation between flow velocities and
hydraulic conductivity.

The derived CTRW model is then used to predict first passage time distributions obtained from
particle tracking simulations in the flow through heterogeneous media characterized by different
heavy-tailed distributions of hydraulic conductivities. Specifically, we consider truncated power-law
behaviors at small conductivities and broad truncated log-normal distributions. The power-law in the
conductivity is directly mapped onto a power law of transition times, which predicts the power-law
behavior observed in the direct numerical simulations as a consequence of the generalized central
limit theorem. Also for the log-normal conductivity distributions, we observe broad distributions of
first passage times. Here, however, they are not power laws because they result from an addition of
log-normally distributed random variables. Nevertheless, for very broad conductivity distributions,
the log-normal PDF may be approximated by a power law with an exponent determined by the mean
and variance of the log-hydraulic conductivity. This may be used to describe the tailing behavior in
certain time ranges based on the expressions derived for power-law distributions. The heavy tails are
eventually tempered at time scales that correspond to the smallest hydraulic conductivity values.

Based on the derived CTRW model, we investigate the dispersion behavior in terms of the second
centered moments of the particle distribution, or centered mean square displacement. The CTRW
predicts anomalous dispersion characterized by nonlinear evolutions of the centered mean square
displacement. Specifically, for the truncated power-law distribution of hydraulic conductivity CTRW
predicts a power-law evolution. At asymptotically long times, much larger than the cutoff time scale,
dispersion becomes normal as a consequence of the central limit theorem. The corresponding
dispersion coefficients are quantified in terms of the conductivity distributions.

The medium under consideration is d = 2 dimensional. The developed CTRW model, however,
can be straightforwardly generalized to d = 3 dimensional media based on similar analytical
expressions for the flow velocity inside the inclusions [41]. Furthermore, the present study considers
purely advective transport. Diffusion into low-conductivity inclusions would introduce an additional
cutoff scale for the transition time distribution if the characteristic diffusion time over the inclusion
is smaller than the largest advection time scale. These behaviors are subject of ongoing research.

In conclusion, the derived CTRW model provides a predictive description of transport through
highly heterogeneous media based on the distribution of hydraulic conductivity and characteristic
heterogeneity length scales. The concrete heterogeneity model is a caricature of highly heterogeneous
porous media characterized by finite correlation scales. Thus, the presented results shed light on
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the fundamental mechanisms of anomalous dispersion and its relations with the medium and flow
properties.
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APPENDIX: NUMERICAL SIMULATIONS

In the following, we give some details on the numerical simulations. First, we describe the setup of
the direct numerical simulations of flow and particle transport in the conductivity fields characterized
by low-conductivity inclusions embedded in a higher conductive matrix. Then, we give the details
for the particle tracking simulation that implement the CTRW model developed in Sec. III.

1. Flow and transport simulations

We consider a regular field size of 512 by 512 cells, consisting of a highly conductive matrix
with k0 = 1 and a set of circular low conductivity inclusions with radii r0 = 15 and centers in
(xi,yj ) : yj = 32j + si,xi = 32i + 16, where si is a random shift (Fig. 1). Hydraulic conductivities
k inside inclusions are independent identically distributed random variables with the PDF pk(k).

Flow is driven by a constant hydraulic head gradient between the inlet boundary at x = 0 and the
outlet boundary at x = 512, |∇h| = h/512 = [h(512,y) − h(0,y)]/512 = −0.1. The flow field is
solved numerically using a finite difference scheme with a unit discretization x = y = 1 [53].
This means 30 cells per inclusion diameter. Such a fine discretization is required due to the high
conductivity contrast between inclusions and matrix.

Transport is solved by particle tracking based on the advection equation (3) using the scheme
of Pollock [54]. The Pollock algorithm interpolates the flow velocity within a finite difference
cell bilinearly to guarantee that the divergence of the flow velocity is 0 [55]. This interpolation is
necessary because the finite difference method gives only the flow velocities perpendicular to the cell
facies. The trajectory within the cell is then determined analytically by integration of the advection
equation (3), which gives the Pollock integral. The particle tracking simulations use 105 particles,
which are injected proportional to the flux at the surface at x = 30. The observation plain is the right
boundary of the domain at x = 512. The first passage times are determined according to (4) through
an average over the 105 particles in single realizations and between 103 realization for each random
field under consideration.

2. CTRW simulations

The CTRW model is based on the stochastic recursion relation (18). The first passage times are
determined according to (23). The transition time distribution ψ(t) is given by (33). It requires the
parameters α given by (29), the matrix velocity um given by (13), which depends on the effective
conductivity ke given by (10), the average inclusion velocity 〈ui〉, and the effective length �i . The
volume fraction of the inclusion is χ = 0.69. The flux weighted velocity distributions vipi(v)/〈vi〉
are generated by the rejection method. To this end, we consider the corresponding flux-weighted
conductivity distribution

p̂k(k) = k

1 + k
pk(k)/〈k/(1 + k)〉 (A1)

and compare it to cpk(k), where c is chosen such that that cpk(k) � p̂k(k). The CTRW simulations
reported in Figs. 2 and 3 use 107 particles.
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a. Power-law conductivity distribution

For the power-law conductivity distribution (39) we obtain the following parameters. For γ = 3/2,
the effective conductivity is ke = 0.186, the matrix velocity is um = 0.059, the mean inclusion
velocity is 〈ui〉 = 0.00036, and the trapping frequency is α = 0.036. The effective immobile length
is here set to li = 4r/π = 19 because the mean conductivity in the inclusion is 〈k〉 = 0.0032 � 1.

For γ = 1/2, the effective conductivity is ke = 0.436, the matrix velocity is um = 0.072, the mean
inclusion velocity is 〈ui〉 = 0.031, and the trapping frequency is α = 0.8. The effective immobile
length is here set to li = 32 because the mean conductivity in the inclusion is 〈k〉 = 0.334. Regarding
the reasoning for the choice of the effective transition length li , see also the discussion in Sec. III B.

b. Log-normal conductivity distribution

For the log-normal conductivity distribution (45) we obtain the following parameters. For μ =
−9.23 and σ 2 = 11.4, the effective conductivity is ke = 0.19, the matrix velocity is um = 0.059, the
mean inclusion velocity is 〈ui〉 = 0.00073, and the trapping frequency is α = 0.085. The effective
immobile length is here set to li = 4r0/π = 19 because the mean conductivity in the inclusion is
〈k〉 = 0.0077 � 1.

For μ = −2.3 and σ 2 = 11.4, the effective conductivity is ke = 0.29, the matrix velocity is
um = 0.064, the mean inclusion velocity is 〈ui〉 = 0.012, and the trapping frequency is α = 0.62.
The effective immobile length is here set to li = 23 because the mean conductivity in the inclusion
is 〈k〉 = 0.14, which means the contrast between the matrix conductivity and average inclusion
conductivity is relatively low; see also the discussion in Sec. III B.
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