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A largely unexplored type of hydrodynamic instability is examined: long-time algebraic
growth. Such growth is possible when the dispersion relation extracted from classical
stability analysis indicates neutral stability. A physically motivated class of partial
differential equations that describes the response of a system to disturbances is examined.
Specifically, the propagation characteristics of the response are examined in the context of
spatiotemporal stability theory. Morphological differences are identified between system
responses that exhibit algebraic growth and the more typical case of exponential growth.
One key attribute of predicted algebraically growing solutions is the prevalence of transient
growth in almost all of the response, with the long-time growth occurring asymptotically
at precisely one wave speed.
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I. INTRODUCTION

The central aim of hydrodynamic stability theory is to determine whether disturbances to a fluid
generate responses that grow or decay. This analysis is performed by tracking the response of the
flow to perturbations through its governing equations and boundary conditions. For flows such as
those found in thin film coating processes, for example, linearized equations are often a starting point
for analysis, since even small perturbations to a thin film may make products unsalable due to tight
uniformity constraints [1]. In these cases, the linear hydrodynamic stability of the underlying flow
is relevant, and the precise manner in which the film responds is essential in practice; key features
of a response includes its growth rate, breadth, and speed. For processes in which a flow may be
adequately described by a linear partial differential equation (PDE), linear temporal modal stability
analysis (henceforth referred to here as “modal analysis”) is typically used to assess the stability
of the flow, which assumes that the response to an arbitrary disturbance may be described by the
superposition of fundamental modes.

To examine the growth in time, t , of the response h propagating in the x direction and starting from
arbitrary nonzero initial conditions, a modal analysis proceeds by substituting the normal-mode form
h = ei(krx−ωt) into the governing PDE and examining the character of ωi, max, which is the maximum
imaginary part of a generally complex frequency ω taken with respect to kr , which is the real part of a
generally complex wave number k. The system is linearly stable if ωi, max < 0 or linearly unstable if
ωi, max > 0 over the interval −∞ < kr < ∞. In the case where ωi, max = 0 over this interval, there is
neither temporal growth nor decay, and the flow is termed “neutrally stable,” a definition that will be
used throughout this paper. This characterization assumes that the examination of individual modes
is sufficient to characterize system stability. However, there are several neutrally stable flows in the
literature [2–4] whose corresponding PDEs admit solutions that decay algebraically (typically like
t−1/2), shown through the method of stationary phase or steepest descent in a long-time asymptotic
analysis [5,6]. For our proposed work, we are interested in the less-understood case of algebraic
growth (i.e., perturbations that grow as t s , s > 0). Since the introduction of modal analysis by Lord
Rayleigh (1880) [7], the prospect of long-time nonexponential growth has been seldom mentioned
and rarely investigated even in the context of nonmodal stability analysis.
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“Nonmodal” refers to analyses that, in general, determine stability through the examination of
solution structure not captured by the individual modes or eigenvalues of the system [8]. One way
in which algebraic growth can occur in a nonmodal analysis is through a nonnormal coefficient
matrix A with eigenvalues λ, when the governing differential equation(s) are discretized in space and
written as a time dependent system in matrix form. If A is nonnormal, the possibility exists that A
is not diagonalizable, and a generalized eigenvector may be required to form a solution. This makes
possible solutions that contain the form tneλt , where n is a positive integer. Even in the case where
the real part of λ is negative, this form indicates that short-time transient growth occurs due to the tn

term. Short-time growth associated with the matrix A is often examined through its “pseudospectra”
instead of its eigenvalues [8] via methods described in Refs. [9,10]. However, for both normal or
nonnormal systems, the largest nonzero real eigenvalue of A dominates as t → ∞, and thus normal
and nonnormal stability analyses are equivalent in this limit. For systems where the real components
of the eigenvalues of A are zero, long-time algebraic growth becomes a possibility. In the plasma
field, “secular” instabilites arising from nonnormal operators have been observed [11–13], where a
perturbation grows like tn as t → ∞ with n being an integer. Note that a normal system can also
incur long-time algebraic growth. In fact, the linear operators discussed in this work are classified
as normal, and the resulting algebraic growth is not restricted to integer powers in t .

An early example of normal yet nonmodal analysis is found in the work of Case (1960) [14],
who examined the Rayleigh equation that governs inviscid plane Coette flow and, via asymptotic
integral methods, showed an algebraic decay in the velocity field of order 1/t in the long-time limit.
Emphasis here was placed on the examination of the continuum of modes, as the result cannot be
derived by examining individual modes. The first published normal system exhibiting long-time
algebraic growth was found in a Rayleigh equation for stratified shear flows [15]. Here, integral
methods were applied to a normal system to predict a convective instability that grows algebraically,
with a growth rate that depends on flow parameters. In the field of plasma instabilities, Rayleigh’s
equation (in cylindrical coordinates) was examined [16–19] and shown to lead to a t1/2 growth. This
same type of instability arose in an asymptotic analysis and numerical simulation of hurricane-like
vortices [20].

More recently, long-time algebraic growth has been discovered in two classical fluid mechanics
problems: (1) antisymmetric disturbances in a planar liquid sheet moving through an ambient
quiescent gas for a range of Weber numbers, We (a parameter providing the relative magnitude of
inertial to surface tension forces), and (2) symmetric disturbances in a liquid sheet in the absence of
ambient gas for any We. The former is governed by a nonanalytic dispersion relation and grows as
t1/3 (introduced in Ref. [21], disputed in Ref. [22], and resolved in Ref. [23]). The latter is governed
by the following nondimensional PDE [24]:

∂2h

∂t2
+ ∂2h

∂x2
+ 2

∂2h

∂x∂t
+ 1

We

∂4h

∂x4
= 0, −∞ < x < ∞, t � 0. (1)

For the above case, modal analysis indicates neutral stability, which implies that h neither grows
(exponentially) nor decays (exponentially) as t → ∞. This, however, does not correctly characterize
the stability of the PDE. If all initial conditions in the above are imposed as impulses, it has been
shown analytically [23] that the disturbance amplitude h grows in the x direction like t1/2 in the
long-time limit (see Fig. 1). In the current work, we examine a generalized form of the above PDE
in order to explore its nonstandard nature.

One explanation for instability when modal analysis fails (i.e., the analysis predicts stability
or neutral stability) is that nonlinear effects occur before stabilization is possible. The failure
of some modal analyses may, in fact, be due to unrecognized occurrences of algebraic growth
within the confines of linear theory. As shown in Fig. 1, the algebraically growing response contains
attributes shared with solutions that have exponentially growing modes, such as a contiguous growing
region surrounding the location of maximum growth (i.e., hmax in Fig. 1). However, the underlying
mathematical features of the response are distinctly different. The focus of this paper is to examine
the relevant properties of an algebraically growing response, such as the one shown in Fig. 1.
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FIG. 1. Fourier series solution of Eq. (1) with N = 4000 Fourier modes and 1/We = 50, indicating
agreement (here to two significant figures) with the analytical prediction of a response that grows as t1/2 [23].
The dashed line is the locus of the maxima of the response, hmax, whose growth rate is shown in the adjacent
figure.

The paper is organized as follows. In Sec. II the symmetric liquid sheet wave equation [Eq. (1)]
is generalized to a class of PDEs whose modal analysis indicates neutral stability, but whose
solution is, in fact, algebraically unstable. Standard techniques of spatiotemporal stability analysis
are applied to this class of PDEs to examine its stability and a general form is extracted for the rate
of algebraic growth. In Sec. III the physical differences between algebraically and exponentially
growing responses in a fluid (or any dispersive media) are examined, and the key findings of this
work are summarized in Sec. IV.

II. ALGEBRAIC INSTABILITY

Equation (1) belongs to a class of physically relevant, normal skew-symmetric [25] PDEs whose
modal analysis indicates neutral stability but whose solution exhibits algebraic growth:

∂2h

∂t2
+ c2 ∂2h

∂x2
+ 2c

∂2h

∂x∂t
+ (−1)nα2 ∂2nh

∂x2n
= Aδ(x)δ(t),

h(x,0) = h0δ(x) and
∂h

∂t
(x,0) = v0δ(x) for all x, (2)

h → 0 as x → ±∞ for all t.

In Eq. (2), h is the system response; c and α �= 0 are real-valued parameters; A is an impulsive
forcing amplitude; h0 and v0 are the amplitudes of delta function perturbations δ(x) of the initial
conditions; and n � 2 is an integer. In the derivation of response evolution equations from first
principles, different values of n may arise. For example, in lubrication theory, the linearized governing
equations for a deformable boundary have a second order spatial derivative in pressure embedded in
the evolution equation [26]. This pressure has a second order spatial derivative in height for tension
effects [23,26] and/or a fourth order spatial derivative in height for elastic effects [27]. When inserted
into an evolution equation such as Eq. (2), these translate to n = 2 and 3, respectively.

Three types of delta function perturbations with amplitudes A, h0, and v0 are included in Eq. (2)
so that their effect may be tracked through the stability analysis. When h0 = v0 = 0, the system
provides the well-known “impulse response” (i.e., Green’s function) solution to the PDE, which
is typically used to determine the spatiotemporal stability of a system [28,29]. Such a disturbance
invokes nonzero amplitudes of every Fourier mode of the homogeneous version of Eq. (2), and all
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responses to forcing in Eq. (2) can be obtained through a convolution of the imposed forcing and
the Green’s function [30]. From a physical perspective, the delta function is a judicious choice of
forcing because it enables one to initiate a disturbance at a single instance in time and space without
obscuring the subsequent response of the underlying media [31]. In experiments, delta function
forcing can be approximated by the electro-capillarity blade technique shown in Ref. [32]. The delta
function may be thought of as an idealized Gaussian [33]. If one were to use an actual Gaussian
(or another localized continuous function) to initiate the disturbances examined in this paper, the
long-time asymptotic stability result would be identical [4,23]. In thin liquid sheets, for example,
the delta function may be motivated as an idealized Gaussian pressure disturbance in the dynamic
boundary condition across the surface of the sheet [34]. This leads to a delta function forcing term in
the governing PDE or (equivalently, for the liquid sheet problem) a delta function initial condition
in ∂h

∂t
. Alternatively, one may disturb a liquid sheet through an idealized Gaussian “pluck” to the

surface, as done in Refs. [23,24]. For completeness, initial impulse perturbations in h and ∂h
∂t

having
respective amplitudes h0 and v0 are similarly included here to determine the effect of the type of
disturbance on the system response.

Although problems such as Eq. (2) can be solved completely using a Fourier series expan-
sion [4,23,34], such an approach does not provide precise growth rates, and thus conclusions
regarding system stability, as well as the structure of the response, may be obscured. Spatiotemporal
stability theory enables one to explicitly extract the details of growth through asymptotic
analysis [35,36]. Following the typical approach taken to examine the spatiotemporal stability
of a system [28–30], the integral solution of Eq. (2) is obtained by first taking the successive Fourier
and Laplace transforms (in space and time, respectively) such that the partial differential equation
in h(x,t) becomes an algebraic equation in H(k,s). It is implicit in this notation that x transforms to
k, t transforms to s, and h transforms in aggregate to H. After solving for the doubly transformed
variable H, one may then take the subsequent inverse Fourier and Laplace transforms to recover
h(x,t). Using the standard convention followed in wave problems of rotating the Laplace contour
such that s = −iω, the integral solution of Eq. (2) becomes

h(x,t) = 1

4π2

∫ ∞

−∞

∫ ∞+iτ0

−∞+iτ0

f (k,ω)

D(k,ω)
ei(kx−ωt) dω dk, (3)

where

f (k,ω) = A + v0 + ih0(2ck − ω), (4)

D(k,ω) = α2k2n − (ck − ω)2, (5a)

and D(k,ω) = 0 is the dispersion relation that describes the relationship between the complex
wave number k = kr + iki and complex frequency ω = ωr + iωi in the flow governed by Eq. (2).
In the above and all of the following, the subscripts r and i indicate real and imaginary
components, respectively. Note that D(k,ω) = 0 is easily obtained by substituting h = ei(kx−ωt) into
the homogeneous form of the governing PDE [here (2)] with no constraints applied. The parameter
τ0 in Eq. (3) is chosen such that the horizontal integration path in the ωr -ωi plane passes above all
singularities in the integrand; this restriction is embedded in the inverse Laplace transform [37] and
ensures that causality (no disturbance can arise prior to the time t = 0) is satisfied. The path of the
Fourier inversion is taken to be along the kr axis in Eq. (3), although any path in the domain of
convergence of the transform may be chosen. The kr axis is guaranteed to be a path of convergence
based on its relationship to the discrete Fourier series that arises from a self-adjoint eigenvalue
problem on a finite domain, where the eigenvalues are real [38].

The dispersion relation, D(k,ω) = 0, given by Eq. (5a) may be written as

ω± = ck ± αkn. (5b)

In Eq. (5b) it is clear that, for any n, ωi = 0 for all kr . Thus, the class of PDEs given by Eq. (2)
are neutrally stable. Note that the definition in Sec. I requires only that the maximum growth be
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zero (i.e., for one mode) for the system to be neutrally stability, whereas here all modes have zero
growth. The assessment of nonmodal stability that follows requires careful asymptotic analysis of
the integrals in Eq. (3).

The double integral in Eq. (3) is evaluated through one integration in ω (Laplace integral) and
one in k (Fourier integral), which may be done in any order. As is usually the case, one order is
arguably easier than another, but the answers will be equivalent, provided that the order does not
affect the existence of the integrals. The first integration (in ω or k) is carried out by applying
the residue theorem, which leads to the substitution of either k(ω) roots or ω(k) roots of D(k,ω) = 0
in to the argument of the exponential in Eq. (3). Although both approaches have been taken in the
literature to analyze the response to an initial disturbance [28,29,39], performing the Laplace integral
first is generally easier [4,23]. This is certainly the case for Eq. (3), given that the number of ω roots
is known while the number of k roots depends on the value of n; hence, it is easier to write ω(k)
(Laplace inversion first) rather than k(ω) (Fourier inversion first).

Evaluating the inner (Laplace) integral of Eq. (3) by the method of residues results in the Fourier
integral solution:

h(x,t) = −i(A + v0)

4πα

∫ ∞

−∞

ei[kx−ω−(k)t] − ei[kx−ω+(k)t]

kn
dk

+ ch0

4πα

∫ ∞

−∞

ei[kx−ω−(k)t] − ei[kx−ω+(k)t]

kn−1
dk

+ h0

4πα

∫ ∞

−∞
{ei[kx−ω−(k)t] − ei[kx−ω+(k)t]} dk. (6)

Typically, one would decompose Eq. (6) into six integrals with the goal of applying asymptotic
analysis to each exponential function separately (for example, using the method of stationary phase).
However, the denominators of the integrands in Eq. (6) have poles of order n and n − 1 at k = 0
that prevent a standard approach. Although it is a natural inclination to interpret these six integrals
as principal values, it is only when the poles are of odd order that the principal values exist. Since
the original problem is well posed and a unique solution is expected for any n, one anticipates
that the integrand may be rewritten in a way that the poles are eliminated, i.e., they are removable
singularities. Substituting Eq. (5b) into Eq. (6) leads to

h(x,t) = A + v0

2πα

∫ ∞

−∞

sin(αknt)

kn
eik( x

t
−c)t dk

+ ich0

2πα

∫ ∞

−∞

sin(αknt)

kn−1
eik( x

t
−c)t dk + h0

2πα

∫ ∞

−∞
cos(αknt)eik( x

t
−c)t dk. (7)

Note that the above integrals can be obtained in a more straightforward manner by taking the Fourier
transform of Eq. (2), solving the resulting ODE with respect to t , and then taking the inverse Fourier
transform (see Appendix A). Here the standard spatiotemporal stability analysis approach is used
in order to bridge with previous analyses and to highlight the care with which integrands need to
be written to ensure that removable singularities are handled appropriately. Normally, individual
exponential terms in Eq. (6) enable direct asymptotic analysis that leads to a description of the
(exponential) growth and breadth of a system response [28,30]. For algebraic growth, however,
the removable singularities necessitate that a modified approach be taken; the full details of the
methodology is provided in Appendix B.

In what follows, the algebraic growth rate that characterizes the system response is determined
analytically. Note that the exponential arguments in Eq. (7) are written to mimic the approach used
in stationary phase or saddle point analysis; the quantity t is factored out, and the “velocity” quantity
x
t

is introduced. The integrals in Eq. (7) are to be evaluated for fixed values of x/t ; this aspect of
the analysis is shared with the saddle point approach for exponentially growing waves [3]. Before
continuing, it is useful to decompose the remaining exponentials of Eq. (7) into sines and cosines,
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since identities for such integrals are readily available. This leads to six integrals: three with even
integrands and three with odd integrands, which may be rewritten in compact form as follows:

h(x,t) = A + v0

πα

∫ ∞

0

sin(αknt) cos
[
k
(

x
t

− c
)
t
]

kn
dk

− ch0

πα

∫ ∞

0

sin(αknt) sin
[
k
(

x
t

− c
)
t
]

kn−1
dk

+ h0

πα

∫ ∞

0
cos(αknt) cos

[
k

(
x

t
− c

)
t

]
dk. (8)

For x
t

= c, Eq. (8) may be evaluated using the identities given by Eqs. (B3) and (B4) provided in
Appendix B 1 to yield

h(x,t)| x
t
=c = 	

(
1
n

)
cos

(
π
2n

)
πα1/n

[
A + v0

n − 1
t1− 1

n + h0

nα
t−

1
n

]
, (9)

which is exact for all t . For x
t

�= c, asymptotic analysis as t → ∞ is used to evaluate the integrals
in Eq. (8). Using the leading-order terms provided by the long-time asymptotic expansion of Eq. (8)
given by Eq. (B17) in Appendix B 2, the solution for x

t
�= c is given by

h(x,t)| x
t
�=c ∼

⎧⎨
⎩ (A + v0)α

1
2n−2 n

2n−1
2n−2

√
2π (n − 1)

∣∣ x
t

− c
∣∣ 3n−2

2n−2

t−1/2

⎫⎬
⎭ cos

⎡
⎣(n − 1)

(∣∣ x
t

− c
∣∣

n

) n
n−1

α
1

1−n t + π

4

⎤
⎦

+
⎧⎨
⎩ h0

√
2π (n − 1)

∣∣ x
t

− c
∣∣ n−2

2n−2 (αn)
1

2n−2

[
cn(

c − x
t

) + 1

α

]
t−1/2

⎫⎬
⎭

× cos

⎡
⎣(n − 1)

(∣∣ x
t

− c
∣∣

n

) n
n−1

α
1

1−n t − π

4

⎤
⎦t−

1
2 + O(t−1), t → ∞. (10)

If the system described by Eq. (2) is perturbed with all indicated disturbances included (i.e., A + v0 �=
0, h0 �= 0), then Eqs. (9) and (10) together describe an evolving response with a peak that travels at
speed c and grows like t1−1/n as t → ∞. Note that, for the class of problems described by Eq. (2),
this asymptotic growth rate also holds for h0 = 0 (with A + v0 �= 0).

The response at specific times, as given by the Fourier series solution to Eq. (2), is compared with
the leading order asymptotic solution given by Eq. (10) in Fig. 2 for n = 2 and Fig. 3 for n = 3. All
Fourier series solutions displayed in this paper are constructed on a periodic domain, following the
approach given in Ref. [4]. In Figs. 2 and 3, note that only the peak grows as t → ∞, since Eq. (9)
describes a single amplitude (i.e., no x dependence) moving at speed c, and every portion of the
response not moving at this speed adheres to Eq. (10), decaying like t−1/2 as t → ∞. This behavior
is confirmed in Fig. 4 for n = 2 and Fig. 5 for n = 3, where peak and off-peak amplitudes of the
Fourier series solution of Eq. (2) are plotted versus time for several fixed x/t values and compared
with Eqs. (9) and (10). In the bottom plots of Figs. 4 and 5, the asymptotic solution given by Eq. (10)
is shown to approach the Fourier series solution as t → ∞ for a fixed x/t . Accordingly, the gap in
the asymptotic solution seen in Figs. 2 and 3 is merely an indication that, along the collection of x/t

rays within this gap, t is not yet large enough for the asymptotic behavior to be captured by Eq. (10).
It is apparent, then, that the limit as t → ∞ is not uniform in x/t as x/t → c.

As can be seen in Figs. 2 and 3, growth appears to be spreading as opposed to being confined to a
single peak moving at x/t = c. The growing response that we see is, in fact, mostly made of transient
(“short”-time) growth, which, along any given ray x/t �= c will eventually damp as t → ∞. Points
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FIG. 2. Fourier series solution (solid curves) to Eq. (2) with n = 2 compared with leading-order asymptotic
solution given by Eq. (10) (right, dashed curves). α = 5

√
2, c = 1, A = 0, h0 = v0 = 1.

moving near the peak of the response at velocities closer to c will take a longer time to damp, as can
be seen in Figs. 4 and 5.

The interplay between short-term growth and long-term damping for x/t �= c may be seen
explicitly in the exact solution of (2) for n = 2. This solution is valid for any x/t and all t and is
obtained by applying the integral identities given by Eqs. (B18)–(B20) (in Appendix B 3) to Eq. (8):

h(x,t) =
∣∣ x

t
− c

∣∣
2α

[
S

(∣∣ x
t

− c
∣∣

2a
1
2

t
1
2

)
− C

(∣∣ x
t

− c
∣∣

2a
1
2

t
1
2

)][
A + v0 − ch0(

x
t

− c
)
]

+ 1√
π

cos

[
π

4
−

(
x
t

− c
)2

t

2α

](
A + v0√

α
t1/2 + h0

2α3/2
t−1/2

)
. (11)

FIG. 3. Fourier series solution (solid curves) to Eq. (2) with n = 3 compared with leading-order asymptotic
solution given by Eq. (10) (right, dashed curves). α = 5

√
2, c = 1, A = 0, h0 = v0 = 1.
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FIG. 4. Fourier series solution (solid curves) to Eq. (2) with n = 2 along specific x/t rays, compared with
exact solution given by Eq. (9) (top, •) along x/t = c and envelopes of asymptotic solution [bracketed terms
in Eq. (10)] (bottom, dashed curves) for x/t �= c. α = 5

√
2, c = 1, A = 0, h0 = v0 = 1.

In Eq. (11), S() and C() are Fresnel integrals given by Eq. (B19b). In the limit as t → 0, the
leading-order term in Eq. (11) contains no x/t dependence and is precisely the algebraic growth
expression given by Eq. (9) (for n = 2). This effect can be seen in Fig. 4, where, if one examines
the limit of small t for any x/t , the x/t = c and x/t �= c solutions align and growth occurs at the
same rate and with the same amplitude. As x/t moves away from c, decay overcomes growth more
rapidly. The same behavior is observed for all n (e.g., see Fig. 5 for n = 3).

Choice of impulsive perturbation

Note that if A + v0 = 0 and h0 �= 0 in Eq. (2), then Eqs. (9) and (10) indicate that the flow is
algebraically stable and the response decays like t−1/n. This is the type of solution presented in
Ref. [24] (Fig. 3.7) for a liquid sheet governed by Eq. (2) (with n = 2, c = 1) and for an elastic
beam response illustrated in Ref. [9] (Fig. 54.3) that is governed by Eq. (2) (with n = 2, c = 0).
Thus, an impulse can be introduced to a system, either through A, v0, or h0, and this choice
will affect the algebraic stability or instability of the response [34]. This is an important feature
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FIG. 5. Fourier series solution (solid curves) to Eq. (2) with n = 3 along specific x/t rays, compared with
exact solution given by Eq. (9) (top, •) along x/t = c and envelopes of asymptotic solution [bracketed terms
in Eq. (10)] (bottom, dashed curves) for x/t �= c. α = 5

√
2, c = 1, A = 0, h0 = v0 = 1.

of the solution, and provides a cautionary note. A system is stable if its response decays for all
possible disturbances. One must thus cast a “wide net” to ensure that all disturbances are captured
in the system response. It appears that algebraically growing systems are particularly sensitive to
the choice of initiating disturbance, as evidenced by the results above. By contrast, in the case of
exponential instability, where temporal stability is determined exclusively through modal analysis
(see Ref. [35] and Sec. III below), any type of impulsive initial condition and/or forcing will lead
to the same long-time behavior. In the following section, we compare other aspects of exponential
instabilities with algebraic instabilities.

III. COMPARISON OF ALGEBRAICALLY AND EXPONENTIALLY
GROWING SYSTEM RESPONSES

In order to make a comparison between algebraic growth and the established features of
exponential growth, the real parameter s is introduced as the algebraic growth rate for responses that
grow like t s as t → ∞. For the class of PDEs described by Eq. (2), s is a discontinuous function of
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x/t , as indicted in Eqs. (9) and (10):

s =
{

1 − 1/n : x/t = c

−1/2 : x/t �= c.
(12)

Note that, although s is discontinuous, transient growth and decay ensure that the waveform is, in
fact, continuous, as elucidated in Figs. 2 and 3 and the surrounding discussion; we return to this
point at the end of this section. The algebraic growth described above is in contrast with exponential
growth like eσ t as t → ∞. The exponential growth rate σ is obtained by applying the method of
steepest descent to the Fourier integral solution [e.g., Eq. (6)] [6,40]. In this method, the argument
of the exponential, i[k x

t
− ω(k)]t , is expanded about the k value that maximizes the real part of the

phase function φ = i[k x
t

− ω(k)] for a fixed x/t . If the integration path is taken to pass through this
saddle point ks , the dominant portion of the leading order asymptotic behavior of the integral as
t → ∞ is then eσ t , where σ = Real[φ(ks)]. The continuous spectrum of saddles [41] associated with
the continuous possible x/t values leads to an exponential growth rate σ that is a continuous function
of x/t . For illustration, consider the impulsively perturbed linearized Ginzburg-Landau equation,

∂h

∂t
+ U

∂h

∂x
− μh − γ

∂2h

∂x2
= Aδ(x)δ(t),

h(x,0) = h0δ(x) for all x, (13)

h → 0 as x → ±∞ for all t,

typically used as a simple model for convectively and absolutely unstable responses in both open
and closed fluid flows (see Refs. [29,42] and references therein). The real-valued parameters U , μ,
and γ are used to describe convection, degree of instability, and diffusion, respectively. The solution
and modal analysis of Eq. (13) (as written above in a simplified form) is given in Refs. [35,43]. The
locus of saddle points for Eq. (13) is

ks = i

2γ

[
x

t
− U

]
, (14a)

and the exponential growth rate associated with these saddles is

σ = μ − 1

4γ

(
x

t
− U

)2

. (14b)

The character described above for exponential instabilities is a cornerstone of spatiotemporal
linear stability analysis, where growing disturbances are classified as either convectively or absolutely
unstable, depending on whether or not the response convects away from or persists at the location of
the initial disturbance, respectively [28,30,44]. This distinction is important for any transport process
where instabilities occur [45]. Using the nomenclature above, if one tracks along the stationary ray
x/t = 0 in the response and discovers that it exponentially decays (σ < 0), then any instability will
convect away from the initial location of the disturbance; this defines a convective instability [see
Fig. 6(a)]. Alternatively, an absolutely unstable flow is described by governing equations that lead
to exponential growth (σ > 0) for x/t = 0 [see Fig. 6(b)].

From a physical perspective, if a disturbance moves along a specific velocity within the growing
response, it will grow at a specific exponential rate, and this will be associated with a specific wave
number, ks [see Eq. (14a)], which is a saddle point of the asymptotic analysis; note that this is a
resultant wave number obtained by the superposition of underlying normal modes. Each ks value
lies in a continuous spectrum of other saddle points, as evidenced from Fig. 6. This growing packet
is bounded by the x/t values V+ and V− where σ = 0, as shown in Fig. 6. Maximum growth
occurs at x/t = Vmax, where σ = ωi,max. Detailed examples that lead to this interpretation are given
in Refs. [28,30,34]. For algebraically growing responses, the qualitative description of convective
versus absolute instabilities holds, but some of the flow features are different and are now elucidated.
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FIG. 6. Exponential growth rate σ along rays x/t for a flow described by the linear Ginzburg-Landau
equation given by Eq. (13) with μ = 5, γ = 0.1, A = 0, and h0 = 1; (a) convective instability (U = 3);
(b) absolute instability (U = 0). Insets show the Fourier series solution of Eq. (13).

In a σ versus x/t plot like Fig. 6 for the algebraically growing flow described by Eq. (2), the
curve is a horizontal line σ = 0 for all x/t . Since there is no exponentially growing response, one
cannot rely on locations of zero growth rate in the exponential to determine the characteristic rays
that bound the system response, i.e., the rays x/t = 0, Vmax, V+, and V−. In order to make a relevant
comparison to Fig. 6, Fig. 7 shows a graphical depiction of Eq. (12): the algebraic growth rate in
Eq. (2) versus x/t . The convective or absolute instability classification is identical to that given above
for exponential instabilities, if we replace σ with s. The insets of Fig. 7 showing convectively and

FIG. 7. Algebraic growth rate s along rays x/t for a flow described by Eq. (2) with n = 2, α = 5
√

2, A = 0,
and h0 = v0 = 1; (a) convective instability (c = 1) and (b) absolute instability (c = 0). Insets show the Fourier
series solution of Eq. (2).
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FIG. 8. Comparison between (a) algebraic and (b) exponential growth vs x/t . (a): Fourier series solution
to Eq. (2) with n = 2, α = 5

√
2, c = 1, A = 0, h0 = v0 = 1. Here Vmax = c. (b): Fourier series solution to

Eq. (13) with μ = 5, γ = 0.1, A = 0, U = 3, h0 = 1. Here Vmax = U .

absolutely unstable algebraically growing waves look similar to the insets of Fig. 6 for exponentially
growing waves. The algebraic growth even appears to have bounds upstream and downstream of the
peak. However, the bounding rays exist only in the sense that V+ = Vmax + ε and V− = Vmax − ε,
where ε → 0 as t → ∞; recall from Eqs. (9) and (10) that the only growing ray is Vmax = c as
t → ∞.

The features described above, which distinguish the algebraic growth exhibited by Eq. (2) from
exponentially growing waves, becomes clear when viewed in a plot of h versus x/t , shown in Fig. 8
for each type of growth. An exponentially unstable packet is formed from a growing peak in a region
of long-time growth [cf. Fig. 8(b)], whereas the algebraically unstable response described by Eq. (2)
is formed from a single asymptotically growing peak in a region of long-time decay and transient
growth [cf. Fig. 8(a)].

Although bounding x/t rays at zero growth cannot be found, the spreading character of an
algebraic instability may be quantified by examining locations at which the local amplitude of the
response is at some small fraction of the peak amplitude. If we take (A + v0) �= 0, then the first
terms in Eqs. (9) and (10) are dominant as t → ∞. Dividing the amplitude of the dominant term in
Eq. (10) (omitting the cosine) by the dominant term in Eq. (9) leads to

R = K

∣∣∣∣xt − c

∣∣∣∣
2−3n
2n−2

t
1
n
− 3

2 , K = n
2n−1
2n−2 α

3n−2
n(2n−2)

√
π (n − 1)/2

	(1/n) cos
(

π
2n

) , (15)

where R describes the ratio of off-peak amplitudes to the peak amplitude at a specific x and t , for an
x/t far enough away from the peak (x/t = c) such that the t → ∞ asymptotic behavior has been
reached (see Figs. 2 and 3). Rearranging Eq. (15) for x provides a measure of the breadth of the
algebraically unstable packet at a specific R,

xR+ − xR− = 2

(
K

R

) 2n−2
3n−2

t
1
n , (16)

which indicates that, even though only the peak (as opposed to a region) grows as t → ∞, the
surrounding region of finite amplitude spreads like t1/n. For comparison, an exponentially unstable
response spreads according to (x+ − x−) = (V+ − V−)t as R → 0 and t → ∞.

Another point of comparison is the connection between the maximum growth rate of an instability
and the Fourier modes of the growing packet. For exponential instabilities, it can be shown that the
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maximum of σ with respect to x/t is the same as the maximum of ωi with respect to kr [35].
Thus, for exponential instabilities, the maximum growth rate in the response corresponds to the one
obtained from modal analysis. This maximum growth occurs at a saddle point, which corresponds
to a real wave number in the observed system response. Thus, a Fourier series solution composed of
real wave numbers naturally provides the correct stability conclusion for the governing PDE (i.e.,
one mode dominates over the others). For algebraic growth, the maximum growth rate is not tied to
a specific wave number. Instead, the algebraic stability character arises from a superposition of all
modes; this was first pointed out by Case [14].

IV. CONCLUSIONS

For the class of flows examined here, long-time algebraic growth is characterized by removable
singularities that appear in the Fourier integral response to an impulse disturbance. These singularities
preclude a straightforward use of the methods of stationary phase or steepest descent as is used in
exponentially growing responses, and care must be taken to extract long-time asymptotic behaviors.
This is in contrast to the Fourier integrals involving exponentially growing modes. Although the
solutions of algebraically and exponentially growing responses appear to have similar features, there
are some key propagation differences. For one, although both algebraic and exponential instabilities
have breadth as they propagate, only exponential instabilities have long-time growth for all locations
within this breadth. The peak of an algebraically unstable response is, at least for the class of
problems examined here, forever surrounded by a region of transient growth that cradles the peak
as time progresses. In the limit of long time, only the peak grows algebraically. The degree to which
the features elucidated here are common to other algebraic instabilities is an open problem and is
clearly a subject for future work.
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APPENDIX A: ALTERNATIVE METHOD TO OBTAIN EQ. (7)

This Appendix provides an alternative approach for obtaining Eq. (7), which solely uses the
Fourier transform. Taking the Fourier transform of Eq. (2) leads to

d2ĥ

dt2
+ 2cik

dĥ

dt
+ (α2k2n − c2k2)ĥ = Aδ(t), ĥ(0) = h0,

dĥ

dt
(0) = v0, (A1)

where ĥ denotes the Fourier transform of h. Equation (A1) is a linear constant coefficient ordinary
differential equation, whose solution is

ĥ = e−ikct

[
h0 cos(αknt) + v0 + A + ikch0

αkn
sin(αknt)

]
. (A2)

The inverse Fourier transform of Eq. (A2) is Eq. (7).

APPENDIX B: EVALUATION OF INTEGRALS RELEVANT TO ALGEBRAIC INSTABILITIES

This Appendix provides general formulas for the evaluation of key integrals that arise in the
analysis of Eq. (2).

1. Integral formulas relevant to Eq. (2) when x
t = c

In this section, general formulas for convergent integrals of the following form are established:

I =
∫ ∞

0

sin(akn)

kn
dk for n > 0, a > 0. (B1)
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First, Eq. (B1) is differentiated with respect to a to obtain

dI

da
=

∫ ∞

0
cos(akn) dk. (B2a)

Equation (B1) indicates that the following constraint must be satisfied:

I = 0 at a = 0. (B2b)

The integral in Eq. (B2a) is provided in closed form on page 419, Eq. (3.712-2) of Ref. [46]:∫ ∞

0
cos(akn) dk = 	

(
1
n

)
cos

(
π
2n

)
na

1
n

, (B3)

where 	( 1
n

) is the gamma function of the indicated argument. To determine I from Eq. (B2a), the
right-hand side of (B3) is integrated with respect to a and Eq. (B2b) is applied to obtain

I =
∫ ∞

0

sin(akn)

kn
dk =

{
	( 1

n ) cos ( π
2n )a1− 1

n

n−1 for n > 1
π
2 sgn(a) for n = 1

}
. (B4)

2. Integral formulas relevant to Eq. (2) when x
t �= c

In this section, general formulas for integrals that arise when x
t

�= c are established. The
complexity of these integrals precludes a general closed-form solution, like those of Sec. B 1
for x

t
= c. Thus, attention is focused on the limit of long time, t , to determine their asymptotic

behaviors; this approach is sufficient to establish the morphology of algebraic growth in this paper.
The following three integrals will be evaluated:

J =
∫ ∞

0
cos(aknt)cos(bkt) dk, (B5)

K =
∫ ∞

0

sin(aknt)cos(bkt)

kn
dk, (B6)

L =
∫ ∞

0

sin(aknt)sin(bkt)

kn−1
dk, (B7)

where a > 0, b �= 0, and n � 2 is an integer. Note that these integrals are related in a very specific
way and are listed above in the order by which they may be evaluated in the limit of long time as
detailed in Secs. B 2 a–B 2 c below. Note also that these integrals may be evaluated exactly for the
case where n = 2 for all time, and these results are provided in Sec. B 3.

a. Evaluation of integral J in the limit of long time

To evaluate the integral J in Eq. (B5) as t → ∞, the integrand is rewritten using the identity

cos(aknt)cos(bkt) = 1
2 cos[φ(k)t] + 1

2 cos[ψ(k)t], (B8a)

where

φ(k) = bk + akn and ψ(k) = bk − akn. (B8b)

With this notation, the integral J may be expressed in complex form, J ′, as

J ′ = 1

2

∫ ∞

0
eiφ(k)t dk + 1

2

∫ ∞

0
eiψ(k)t dk, (B9a)

where

J = Real[J ′]. (B9b)
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The complex integrals in Eq. (B9a) may be evaluated as t → ∞ via the method of stationary
phase [5] when a stationary point lies in the range of integration, since the path of integration is
along the real axis, and the functions φ(k) and ψ(k) are purely real. The locations of the stationary
points in Eq. (B9a) occur at the k values that lead to either dφ

dk
= 0 or dψ

dk
= 0 and thus depends on

the sign of b. For b < 0, a stationary point lies along the path of integration in φ(k) and not ψ(k).
For situations in which a stationary point does not lie between the limits of integration, integration
by parts can be used to establish the asymptotic form; this latter method yields an O( 1

t
) dependence

as t → ∞. Applying these methods to the two integrals in Eq. (B9a) yields

∫ ∞

0
eiφ(k)t dk ∼

⎧⎨
⎩

(
2π

βa
1

n−1 t

) 1
2 ei( π

4 −δa
1

1−n t) for b < 0

O
(

1
t

)
for b > 0

⎫⎬
⎭, (B10a)

∫ ∞

0
eiψ(k)t dk ∼

⎧⎨
⎩

O
(

1
t

)
for b < 0(

2π

βa
1

n−1 t

) 1
2 e−i( π

4 −δa
1

1−n t) for b > 0

⎫⎬
⎭, (B10b)

where

β = n(n − 1)

( |b|
n

) n−2
n−1

and δ = (n − 1)

( |b|
n

) n
n−1

. (B11a)

Using (B10) in Eq. (B9), the desired asymptotic result for Eq. (B5) is obtained:

J ∼
(

2π

βa
1

n−1

) 1
2

t−
1
2 cos

(
π

4
− δa

1
1−n t

)
as t → ∞, n � 2, a > 0, b �= 0. (B11b)

b. Evaluation of integral K in the limit of long time

To evaluate the integral K in Eq. (B6) as t → ∞, (B5) and (B6) indicate that

dK

da
= tJ, (B12a)

where by inspection

K → 0 at a → 0. (B12b)

Substituting (B11b) into (B12a) and integrating with respect to a, the following result is obtained:

K ∼
(

πt

2β

) 1
2
∫ a

∞

cos
(

π
4 − δξ

1
n−1 t

)
ξ

1
2(n−1)

dξ + C as t → ∞,

where C is an integration constant to be evaluated later. This integral is transformed via a variable
substitution s = ξ

1
1−n to obtain

K ∼ (1 − n)

(
πt

2β

) 1
2
∫ a

1
1−n

∞

cos
(

π
4 − δst

)
sn− 1

2

ds + C (B13a)

as t → ∞. The asymptotic behavior at long time may be be established via integration by parts [5],
and the leading order expression for (B6) is

K ∼ (n − 1)

δ

(
π

2β

) 1
2

a
n− 1

2
n−1 t−

1
2 sin

(
π

4
− δa

1
1−n t

)
(B13b)

as t → ∞, where (B12b) has been applied and the parameters β and δ are given in Eq. (B11a).
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c. Evaluation of integral L in the limit of long time

To evaluate the integral L in Eq. (B7) as t → ∞, (B6) and (B7) indicate that

L = −1

t

dK

db
. (B14)

Taking the indicated derivative of K in Eq. (B14), using (B13b), and neglecting subdominant terms
as t → ∞ yields

dK

db
∼ (1 − n)

δ

(
π

2β

) 1
2

a
n− 3

2
n−1 t

1
2 cos

(
π

4
− δa

1
1−n t

)
dδ

db
as t → ∞, n � 2, a > 0, b �= 0,

(B15a)

where from Eq. (B11a)

dδ

db
= sgn(b)

( |b|
n

) 1
n−1

. (B15b)

Upon substitution of (B15) into (B14), the desired result is obtained:

L ∼ sgn(b)
(n − 1)

δ

(
π

2β

) 1
2

a
n− 3

2
n−1 t−

1
2 cos

(
π

4
− δa

1
1−n t

)
as t → ∞, n � 2, a > 0, b �= 0.

(B16)

d. Summary of integral results relevant to x
t �= c as t → ∞

∫ ∞

0
cos(aknt)cos(bkt) dk ∼

(
π

2βa
1

n−1

) 1
2

t−
1
2 cos

(
π

4
− δa

1
1−n t

)
, (B17a)

∫ ∞

0

sin(aknt)cos(bkt)

kn
dk ∼ (n − 1)

δ

(
π

2β

) 1
2

a
n− 1

2
n−1 t−

1
2 cos

(
π

4
+ δa

1
1−n t

)
, (B17b)

∫ ∞

0

sin(aknt)sin(bkt)

kn−1
dk ∼ sgn(b)

(n − 1)

δ

(
π

2β

) 1
2

a
n− 3

2
n−1 t−

1
2 cos

(
π

4
− δa

1
1−n t

)
. (B17c)

Note that in writing (B17b), a trigonometric identity has been applied to (B13b), which accounts for
the differences in form.

3. Integral formulas relevant to Eq. (2) for n = 2

Exact integral formulas are now provided for cases where n = 2 in Eqs. (B5)–(B7). Using
Eq. (3.691-7) on page 415 of Ref. [46], Eq. (B5) is evaluated for n = 2 to yield

∫ ∞

0
cos(ak2t)cos(bkt) dk = 1

2

(
π

a

) 1
2

t−
1
2 cos

(
π

4
− b2t

4a

)
(B18)

for a > 0. Although restricted for b > 0 in Ref. [46], by inspection it is apparent that Eq. (B18) is
valid for all b, and this is validated by Eq. (B3) for b = 0 and n = 2. For n = 2, Eq. (B6) may be
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evaluated directly using Eq. (3.851-5) on page 475 of Ref. [46] to obtain

∫ ∞

0

sin(ak2t)cos(bkt)

k2
dk

= |b|π
2

t

[
S

( |b|
2a

1
2

t
1
2

)
− C

( |b|
2a

1
2

t
1
2

)]
+ (aπ )

1
2 t

1
2 cos

(
π

4
− b2t

4a

)
for a > 0, (B19a)

where absolute values have been added to remove the constraint that b > 0 in Ref. [46]. The brackets
in Eq, (3.851-5) of Ref. [46] are incorrectly placed and have been corrected in Eq. (B19a), and this
correction makes it clear that the equation is indeed valid for all b. In (B19a), S() and C() are the
Fresnel integrals defined in Ref. [46] (p. xxxvi) in terms of the arbitrary argument z as

S(z) =
√

2

π

∫ z

0
sin(k2)dk,

C(z) =
√

2

π

∫ z

0
cos(k2)dk. (B19b)

Last, by integrating Eq. (3.691-5) on page 415 of Ref. [46] with respect to b, the following result is
obtained: ∫ ∞

0

sin(ak2t)sin(bkt)

k
dk = π

2
sgn(b)

[
S

( |b|
2a

1
2

t
1
2

)
− C

( |b|
2a

1
2

t
1
2

)]
. (B20)
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