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The near wake of wind turbines is characterized by the presence of the hub vortex, which
is a coherent vorticity structure generated from the interaction between the root vortices and
the boundary layer evolving over the turbine nacelle. By moving downstream, the hub vortex
undergoes an instability with growth rate, azimuthal and axial wavenumbers determined by
the characteristics of the incoming wind and turbine aerodynamics. Thus, a large variability
of the hub vortex instability is expected for wind energy applications with consequent effects
on wake downstream evolution, wake interactions within a wind farm, power production,
and fatigue loads on turbines invested by wakes generated upstream. In order to predict
characteristics of the hub vortex instability for different operating conditions, linear stability
analysis is carried out by considering different statistics of the incoming wind turbulence,
thrust coefficient, tip speed ratio, and blade lift distribution of a wind turbine. Axial and
azimuthal wake velocity fields are modeled through Carton-McWilliams velocity profiles
by mimicking the presence of the hub vortex, helicoidal tip vortices, and matching the wind
turbine thrust coefficient predicted through the actuator disk model. The linear stability
analysis shows that hub vortex instability is strongly affected by the wind turbine loading
conditions, and specifically it is promoted by a larger thrust coefficient. A higher load of the
wind turbines produces an enhanced axial velocity deficit and, in turn, higher shear in the
radial direction of the streamwise velocity. The axial velocity shear within the turbine wake
is also the main physical mechanism promoting the hub vortex instability when varying
the lift distribution over the blade span for a specific loading condition. Cases with a larger
velocity deficit in proximity of the wake center and less aerodynamic load towards the
blade tip result to be more unstable. Moreover, wake swirl promotes hub vortex instability,
and it can also affect the azimuthal wave number of the most unstable mode. Finally, higher
Reynolds stresses and turbulent eddy viscosity decrease both growth rate and azimuthal
wave number of the most unstable mode.

DOI: 10.1103/PhysRevFluids.1.073603

I. INTRODUCTION

Wind turbine wakes are complex, multiscale flows with characteristic length scales varying from
the height of the atmospheric boundary layer to the rotor diameter, which is the characteristic
dimension for the wake cross-width, to the size of the different wake vorticity structures, down to
small turbulent eddies governing energy dissipation [1,2]. These different length scales dominate
the wake flow during the different stages of its downstream evolution [3]. At the rotor disk, wind
turbine performance is affected by the characteristics of the incoming atmospheric boundary layer
and lift distribution over the blade span [4]. At the region just downstream to the rotor disk, the
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Tip vor�ces

Hub vortex

FIG. 1. Visualization from LES of tip vortices and hub vortex in a wind turbine wake (isosurface of vorticity
magnitude colored with streamwise vorticity).

rollup of the wake vorticity structures takes place. Tip vortices are shed from the tip of each blade,
as depicted in Fig. 1, which are then advected downstream forming a complex system of helicoidal
vortices [5]. At the wake center, the interaction between the root vortices shed from the blades and
the boundary layer evolving over the turbine nacelle leads to the generation of the hub vortex, as
shown in Fig. 1 [6,7].

In the far wake, these coherent vorticity structures are completely diffused, and only a swirling
Gaussian-like wake is observed [8]. The region connecting the near wake with the far-wake, denoted
as transition region, is still not clearly characterized, as far as its streamwise extent and the prevailing
physical phenomena are concerned [9–11]. In the transition region, the helicoidal tip vortices
undergo different instabilities, which highly affect downstream evolution and dissipation rate of
the tip vortices [6,12–17]. Recent stability analysis also showed that the hub vortex is unstable
and characterized by a single-helix counterwinding instability [18–20]. The same phenomenon
was then confirmed by LES simulations of a hydrokinetic turbine [10] and through water tunnel
experiments of a down-scaled wind turbine model [21]. In Iungo et al. [18], temporal stability
analysis was performed by using as base flow the time-averaged velocity field measured through
wind tunnel experiments of a down-scaled wind turbine model. The temporal stability analysis
carried out at several downstream locations within the turbine wake showed the presence of a
single-helix instability of the hub vortex, which was then confirmed by the spatial stability analysis.
The helicoidal instability predicted through the stability analysis was then corroborated through
simultaneous hot-wire measurements confirming the predicted azimuthal wave number, axial wave
number, and frequency of the hub vortex instability.

The coherent velocity fluctuations produced by the hub vortex instability modify significantly
the downstream evolution of the hub vortex and interactions with the surrounding helicoidal tip
vortices, which is considered a crucial mechanism for downstream recovery of the entire wind
turbine wake [9,10,18,19]. In Ref. [11], the hub vortex instability is considered to be a source for
augmenting intensity and spatial extent of wake meandering in the far wake. Therefore, it is evident
that the complexity of the flow dynamics occurring in the transition region makes the prediction of
the evolution between near wake and far wake a very challenging task.

The scenario related to the flow in a wind turbine wake becomes even more complicated if
the variability connected with the different atmospheric conditions and operational regimes is
considered. Indeed, pitch and yaw angles of a turbine are continuously adjusted as a function
of the wind velocity and direction. Moreover, characteristics of the incoming boundary layer, such
as wind turbulence intensity, shear, veer, and atmospheric stability can significantly affect wind
turbine power performance and, in turn, the generated wakes. Recent wind LiDAR measurements
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of utility-scale wind turbines performed under different atmospheric stability regimes showed that
wind turbine wakes recover faster under convective regimes than for neutral ones [22,23].

This study aims to predict the characteristics of the hub vortex instability, such as growth rate,
azimuthal and axial wavenumbers, for different loading conditions of a wind turbine, namely, thrust
coefficient and tip speed ratio (i.e., the ratio between the rotational velocity at the blade tip and
the incoming velocity at hub height), different blade aerodynamics, and turbulence characteristics
of the incoming wind. This survey might be prohibitive to be carried out through wind tunnel
experiments or numerical simulations due to the large number of configurations to be tested. To
overcome this limitation, the wake velocity field at a reference downstream location is modeled
through multiple Carton-McWilliams vortices [24], mimicking the presence of the hub vortex and
tip vortices. Following a previous work on the hub vortex instability [25], for different loading
conditions and tip speed ratios the radial distribution of the velocity field is obtained through an
iterative method in order to match the thrust coefficient of the wind turbine predicted via an actuator
disk model. The different wake velocity profiles are then analyzed via temporal linear stability
analysis following the formulation proposed in Viola et al. [19], for which a mixing length model
was used in order to take the turbulence effects into account for the prediction of wake instability.
Specifically, in this paper the hub vortex instability is predicted for different characteristics of the
incoming wind turbulence, induction factor, i.e., thrust coefficient of the turbine, tip speed ratio, and
lift distribution over the blade span.

The remainder of the paper is organized as follows. The formulation of the linear stability analysis,
including turbulence effects with a mixing length model [19], is briefly summarized in Sec. II. Then
the iterative method adopted to evaluate the wake velocity profiles for different turbine loading
conditions is described in Sec. III. Results of the stability analysis obtained by varying the mixing
length of the turbulence model are discussed in detail in Sec. IV. Results of the stability analysis
are also reported for different wind turbine induction factors and tip speed ratios in Sec. V and for
different lift distributions in Sec. VI. Finally, concluding remarks are summarized in Sec. VII.

II. LINEAR STABILITY ANALYSIS WITH EDDY-VISCOSITY MODEL

The 3D velocity field U(x,t) (where x = (x,r,θ ) is the position vector in cylindrical coordinates
and t is time) is decomposed by means of the so-called triple decomposition [26] in the time-averaged
base flow, U(x), the coherent velocity fluctuations, ũ(x,t), and the turbulent motion, u′(x,t):

U = U + ũ + u′, (1)

where the sum of the time-averaged flow and the coherent fluctuations coincides with the ensemble-
averaged flow 〈U〉 = U + ũ [27].

The flow field is considered to be unstable (stable) in the case the amplitude of ũ grows (decays)
in time and space. Thus, stability can be verified by a modal analysis of the linearized dynamics of
ũ. To this purpose, the nonlinear evolution of the coherent perturbation for an incompressible flow
can be written as [26]

∇ · ũ = 0,
∂ũ
∂t

+ ∇ũ · U + ∇U · ũ = −∇p̃ + 1

Re
�ũ − ∇ · [ũũ − ũũ] − ∇ · [〈u′u′〉 − u′u′], (2)

where p represents pressure. The Reynolds number is defined by means of the time-averaged velocity
at hub height and the rotor diameter, d, and is equal to 72 000 as for our reference wind tunnel
experiments [18,19]. In the framework of a linear analysis with respect to the coherent fluctuations ũ,
the third term of the right-hand side of Eq. (2) is neglected. However, the system of equations is not
closed, and the last term of the right-hand side of Eq. (2), which is related to the turbulent diffusion,
has to be modeled. In Viola et al. [19], this term was modeled via Boussinesq hypothesis [26,28],
and the Reynolds stresses, R, are linearly proportional to the strain rate tensor, S, producing

R = u′u′ � −2νtS + 2
3qI, (3)

where q is the turbulent kinetic energy, and I is the 3 × 3 identity matrix.
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As is well documented by several wind tunnel and LES experiments [18,29–31], the wake flow
produced by a wind turbine invested by a uniform incoming velocity is practically axisymmetric,
∂U/∂θ ≈ 0, with a negligible radial velocity, Ur ≈ 0, and slowly varying in the streamwise direction,
∂U/∂x � ∂U/∂r . Such a velocity field entails that Rxθ = u′

θu
′
x is practically null, and the only

significant components of the Reynolds stress tensor are then Rrθ , Rrx , and their symmetric
counterparts [32].

In this work, a generalized mixing-length model for swirling flows is considered [33]:

νt (r) = l2
m(2S : S)1/2 = l2

m

{[
r

∂

∂r

(
Uθ

r

)]2

+
(

∂Ux

∂r

)2}1/2

, (4)

where νt is the turbulent eddy viscosity, which is a function of the downstream and radial position,
while the mixing length, lm, is only a function of the downstream location. The mixing length
model in Eq. (4) turns out to be also very practical to estimate the effects of a different turbulence
intensity of the incoming wind. Indeed, as shown by previous LES simulations of wind turbine
wakes consequent to different turbulence levels of the incoming wind [34], higher Reynolds stresses
result from higher incoming turbulence intensity, which can be modeled with a larger turbulent
eddy-viscosity according to Eq. (3), thus with a larger mixing length.

By linearizing the eddy viscosity model at first order with respect to ũ, and further manipulating
Eq. (2), we obtain (see Viola et al. [19] for details)

∂ũ
∂t

+ ∇ũ · U + ∇U · ũ

= −∇p̃ + 1

Re
�ũ + ∇ · {νt (U)[∇ + ∇T ]ũ} + ∇ · {[∇Uνt (U) · ũ][∇ + ∇T ]U}, (5)

where the term νt (U) in Eq. (5) can be evaluated from the statistics of the velocity field [32], while the
term ∇Uνt (U) · ũ is obtained by the linearization of the turbulence model used to close the equations.
Compared to previous work [26,28,35], Eq. (5) includes the linearization of the turbulence model
through the last term in the right-hand side.

In the framework of weakly nonparallel stability analysis, Eq. (5) is now applied to a parallel
flow U = (Ux,Uθ ,0) evaluated at a given streamwise location. This allows for a modal expansion
of the coherent fluctuations in the following form:

ũ(x,θ,r,t) = û(r) exp(ikx + imθ − iωt), (6)

where k and m are the axial and azimuthal wave numbers, respectively, and ω is the frequency.
When this modal form is substituted in Eq. (5), an eigenvalue problem is obtained. In the temporal
stability analysis, k is real and assigned, ω is the complex eigenvalue of the problem, and m is a free
integer parameter.

For the stability analysis, Eq. (5) together with the continuity equation are discretized using a
code based on a Chebyshev spectral collocation method. In the present analysis, the number of
collocation points is N = 120 and the size of the domain in the radial direction is rmax/d = 50. This
choice provides the convergence of the most unstable eigenvalue with a five-digit accuracy, which
is sufficient for the present purposes.

III. MODELING OF THE WAKE VELOCITY PROFILES FOR DIFFERENT
LOADING CONDITIONS

Temporal linear stability analysis is performed by using as base flow the wake velocity field
evaluated at the turbine location, just downstream to the turbine rotor. Similarly to the actuator disk
model [36], the streamwise velocity deficit and the wake swirl past the turbine are the result of
the power capture exerted by the turbine. The axial velocity profile, U , representing the velocity
deficit connected with the hub vortex and the time-averaged footprint of the helicoidal tip vortices,
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is modeled through Gaussian functions:

U (r)

U∞
= 1 − Uhub exp

[
−

(
r

σhub

)2]
− Utip exp

[
−

(
r − rtip

σtip

)2]
, (7)

where U∞ is the freestream velocity, Uhub is the maximum velocity deficit connected with the hub
vortex, and Utip is the one related to the tip vortex. The radial position from the wake center is r ,
while rtip is the radial position of the tip vortex. The parameters σhub and σtip are proportional to the
cross-dimensions of the hub and tip vortex, respectively. This strategy to model the velocity field
of a wind turbine wake was already assessed by previous experimental and numerical works [8,30].
Moreover, modeling the presence of the helicoidal tip vortices produced by a three-bladed turbine
with an annular distribution of streamwise vorticity has already been applied successfully for the
prediction of the hub vortex instability [18,19]. This approximation is more accurate for low tip
speed ratios (TSRs), which leads to a larger pitch of the helicoidal tip vortices.

From the momentum budget in the streamwise direction, the thrust coefficient of the wind turbine,
CT , can be evaluated as follows (see the Appendix for details):

CT = 8

R2

∫ R

0

U

U∞

(
1 − U

U∞

)
r dr, (8)

where R is the rotor radius. By injecting Eq. (7) into Eq. (8), we obtain

CT = 8Uhub

R2

∫ R

0

(
1 − Uhub

{
exp

[
−

(
r

σhub

)2]
− kU exp

[
−

(
r − rtip

σtip

)2]})

×
{

exp

[
−

(
r

σhub

)2]
+ kU exp

[
−

(
r − rtip

σtip

)2]}
r dr, (9)

where kU = Utip/Uhub (see the Appendix for the derivation).
The azimuthal velocity profile, Vθ , is modeled through Carton-McWilliams vortices [24], which

is a model previously used to investigate instabilities of swirling jets [37], and to describe the plane
instabilities of the so-called isolated or screened vortices, i.e., vortices with circulation decreasing
away from the core [38,39]. The azimuthal velocity is expressed as follows:

Vθ (r)

U∞
= �hubrexp

[
−

(
r

σθ,hub

)α]
− �tip(r − rtip)exp

[
−

(
r − rtip

σθ,tip

)α]
, (10)

where �hub is the axial vorticity peak of the hub vortex, while �tip is the one for the tip vortex. The
parameters σθ,hub and σθ,tip are proportional to the core radius of the hub and tip vortex, respectively.
Variation of the free parameter α modify the radial distribution of the vorticity field.

The thrust coefficient of a wind turbine is evaluated now from the momentum budget in the
azimuthal direction (see the Appendix for details):

CT = 4TSR

R3

∫ R

0

Vθ

U∞

(
1 + 1

2TSR

R

r

Vθ

U∞

)
r2 dr. (11)

By injecting Eq. (10) in Eq. (11), we obtain

CT = 4TSR�hub

R3

∫ R

0

{
rexp

[
−

(
r

σθ,hub

)α]
− k�(r − rtip)exp

[
−

(
r − rtip

σθ,tip

)α]}

×
(

1 + �hub

2TSR

R

r

{
rexp

[
−

(
r

σθ,hub

)α]
− k�(r − rtip)exp

[
−

(
r − rtip

σθ,tip

)α]})
r2 dr, (12)

where k� = �tip/�hub (see the Appendix for the derivation).
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TABLE I. Parameters of the velocity profiles
adopted to mimic a fixed aerodynamic design of
the turbine blades.

Parameter Value

kU = Utip/Uhub 0.33
σhub 0.26
σtip 0.087
rtip 0.45
k� = �tip/�hub 0.25
σθ,hub 0.26
σθ,tip 0.065
α 2.6

According to the actuator disk model, the loading conditions of a wind turbine can be represented
through the (axial) induction factor, a, which is a direct measurement of the velocity deficit produced
through the turbine rotation [36]:

a = 1 − UR

U∞
. (13)

UR is the uniform axial velocity in the wake at the rotor disk location past the turbine. Consequently,
the thrust coefficient, CT , can be expressed as a function of the induction factor

CT = 4a(1 − a), (14)

and the power coefficient, CP , can be evaluated as

CP = 4a(1 − a)2. (15)

The prediction of the axial velocity field produced by wind turbines via an actuator disk model
cannot be highly accurate, especially for relatively low TSRs [40]. However, this simple model can
be very effective to estimate modifications of the velocity field for different loading conditions of
a turbine. The robustness of the actuator disk model is proven by its extensive use for high-fidelity
numerical simulations of wind turbine wakes [41–43].

For a given loading condition, i.e., induction factor and TSR, the wake velocity profiles of a
wind turbine are evaluated through the iterative method that we now describe. First, all the free
parameters in Eqs. (7) and (10), with the exception of the maximum axial velocity deficit located
at center of the wake, Uhub, and the peak of the axial vorticity, �hub, are fixed in order to mimic
a certain aerodynamic design of the turbine blades. For a given incoming wind, this assumption is
more accurate for relatively low angles of attack of the blade airfoils, thus far from stall conditions
and operations with relatively low tip speed ratios. In this work, their respective values were selected
accordingly to previous wind tunnel experiments [18,19] and are reported in Table I. A taste of the
effects due to variations of the turbine aerodynamics for a given loading condition will be provided
in Sec. VI by varying the parameter kσ = σhub/σtip.

Once the induction factor, a, is fixed, the parameter Uhub is estimated in order to minimize the
error (with five-digit accuracy) between the CT evaluated through the momentum budget in Eq. (9)
and the value predicted through the actuator disk model in Eq. (14). Therefore, the axial velocity
profile is univocally estimated by selecting the induction factor, a.

A similar method is then applied for the evaluation of the azimuthal velocity, Vθ . However, in
Eqs. (11) and (12) it is observed that CT is a function of the induction factor, a, and tip speed ratio,
TSR. Therefore, in order to obtain univocally Vθ , they both need to be fixed for a certain loading
condition. Then, �hub is estimated satisfying the condition that the CT evaluated through Eq. (12)
matches the value obtained through the actuator disk model in Eq. (14) and, thus, the value predicted
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FIG. 2. Wake velocity profiles for a = 0.1106 and TSR = 7: (a) axial velocity, U/U∞; (b) azimuthal
velocity, Vθ/U∞.

by the momentum balance in the streamwise direction, making the velocity profile consistent with
Eq. (9).

IV. EFFECTS OF THE INCOMING WIND TURBULENCE

As mentioned in Sec. II, the effects of a different turbulence intensity of the incoming wind on the
hub vortex instability can be investigated by varying the Reynolds stresses, thus the mixing length
in Eq. (4). For this test case, a typical loading condition of a utility-scale wind turbine is simulated
by using an induction factor a = 0.1106, which corresponds to a thrust coefficient CT = 0.39 and
power coefficient CP = 0.35, while the TSR is TSR = 7. As described in the previous section, the
wake velocity profiles are obtained through an iterative method in order to minimize with five-digit
accuracy the difference between the thrust coefficient evaluated through the momentum budget in
Eqs. (9) and (12), and the one predicted with the actuator disk model in Eq. (14). The resulting
wake velocity profiles, which are shown in Fig. 2, qualitatively reproduce the typical wind turbine
wake flow obtained through wind tunnel experiments [18,19] and LES simulations [29]. The axial
velocity profile presents a significant velocity deficit in correspondence of the wake center, which is
connected with the presence of the hub vortex. In proximity of the tip vortex, i.e., for r/d ≈ 0.45,
a secondary axial velocity deficit is present. For the azimuthal velocity, the wake swirl induced by
the hub vortex exhibits a peak of the tangential velocity for the position r/d ≈ 0.2, while the one
related to the tip vortex is less predominant but still noticeable for locations close to r/d = 0.45.

The wake velocity field estimated for a fixed loading condition was then investigated through
temporal linear stability analysis by varying the mixing length to mimic different turbulence
intensities of the incoming wind (lm/d = 0.002,0.004,0.006,0.010,0.015, and 0.020, values selected
according to previous experimental [19] and numerical [29,34] works). The results of the stability
analysis are presented as spectra where the axial wave number, k, is reported on the horizontal axis,
while the growth rate, ωi , which is the imaginary part of the pulsation defined in Eq. (6), is reported
on the vertical axis. The stability spectra evaluated for different azimuthal wave numbers, m, and
mixing lengths, lm, are reported in Fig. 3. A larger mixing length, thus a higher turbulence intensity,
produces an overall damping of the growth rate for all the azimuthal wave numbers. Therefore,
the hub vortex instability is more likely to occur during stable atmospheric conditions, which are
characterized by a relatively low wind turbulence intensity, than for convective regimes [22]. This
result also indicates that the coherent velocity fluctuations produced by the hub vortex instability
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FIG. 3. Growth rate, ωi , as a function of axial wave number, k, for various mixing lengths, lm, and loading
condition corresponding to a = 0.1106 and TSR = 7. Each curve is labeled with its azimuthal wave number
and the dominant unstable mode is in bold.

may have significant consequences on turbine wake recovery and dynamic loads on downstream
turbines for wind conditions characterized by a relatively low turbulence level.

For each value of the mixing length, the most unstable mode is characterized by the azimuthal
wave number, m, with the largest growth rate. In Fig. 3 it is observed that as the mixing length
increases the azimuthal wave number of the most unstable mode becomes smaller, with values
ranging from 6 to 2 by varying the mixing length from 0.002 d up to 0.02 d. The variability of the
azimuthal wave number for different mixing lengths is better appreciated in Fig. 4, where the axial
vorticity of the most unstable mode is reported. For all cases the most unstable mode is detected
in proximity of the wake core, indicating that the temporal stability analysis and the used wake
model combine into a compelling tool to characterize the hub vortex instability. In Fig. 4 helicoidal
structures with different azimuthal wave numbers are visualized for the most unstable eigenmode. A
larger azimuthal wave number of the most unstable mode entails larger coherent velocity fluctuations
as a consequence of the more predominant velocity gradients. Therefore, for a smaller mixing length,
thus a lower turbulence intensity, the higher growth rate and a larger azimuthal wave number of the
most unstable mode indicate that effects of the hub vortex instability on downstream evolution of
wind turbine wakes are more significant for atmospheric stable conditions characterized by a lower
wind turbulence intensity.

V. EFFECTS OF THE LOADING CONDITION

In order to evaluate effects of different loading conditions on the hub vortex stability, induction
factor and TSR are varied producing different wake velocity fields. First, the induction factor is
varied from 0.05 to 0.3, in order to represent power coefficients lower than the maximum value
predicted through the Betz’s theory [36], while keeping fixed the TSR. The corresponding range for
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FIG. 4. Axial vorticity of the dominant unstable modes for different mixing lengths. All the figures are
reported with the same color scale where blue and red represents negative and positive vorticity, respectively.

the thrust coefficient is 0.19 � CT � 0.84, and for the power coefficient is 0.18 � CP � 0.59. The
TSR is set to TSR = 8, while the mixing length is equal to 0.02 d, which is consistent with typical
wind turbine operations [44]. For each case, the method described in Sec. III is used to produce the
corresponding wake velocity profiles for a given loading condition. The axial and azimuthal velocity
profiles obtained for a fixed TSR and by varying the induction factor are reported in Fig. 5. With
an increasing induction factor, both thrust and power coefficients increase according to Eqs. (14)

FIG. 5. Wake velocity profiles evaluated for various induction factors and TSR = 8: (a) axial velocity,
U/U∞; (b) azimuthal velocity, Vθ/U∞.
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FIG. 6. Growth rate, ωi , as a function of axial wave number k for various induction factors and TSR = 8.
The induction factor increases from left to right, top to bottom.

and (15), and a larger wake velocity deficit is produced, as shown in Fig. 5(a). Indeed, both velocity
deficits in correspondence of the hub and tip vortices are enhanced with increasing induction factor.
Therefore, a general larger axial shear, i.e., the radial gradient of the axial velocity, is produced
with increasing induction factor. Regarding the azimuthal velocity field, according to Eq. (11) an
increased turbine thrust entails higher wake swirl, as shown in Fig. 5(b).

A temporal linear stability analysis was performed for the wake velocity profiles corresponding
to the various induction factors. In Fig. 6 the stability spectra show that the growth rate is generally
increased for higher induction factors, which indicates that the wake velocity deficit, an axial
increased shear and an enhanced wake swirl promote hub vortex instability. Furthermore, for all
considered cases, the dominant unstable mode is characterized by an azimuthal wave number m = 2.
Therefore, the induction factor does not affect the azimuthal wave number of the most unstable mode.

The result of a dominant unstable mode characterized by a double-helix structure (m = 2)
is in disagreement with our previous experimental investigations [18–20], for which a single-
helix counterwinding (m = 1) unstable mode was estimated and assessed through wind tunnel
experiments. The main difference between this test case with a varying induction factor and the
previous wind tunnel experiment is a different tip speed ratio of the wind turbine: TSR = 8 has been
considered for the present work, which is a typical value for utility-scale wind turbines, while for the
wind tunnel experiment TSR = 4.7 was used. To shed some light on the effects of the tip speed ratio
on the hub vortex stability, another test case was studied by varying TSR from 2 to 18, while keeping
fixed the thrust to CT = 0.51, i.e., by setting the induction factor to a = 0.15. Albeit the range of
TSR values investigated is typical for utility-scale wind turbines with blade pitch control [36], this
test case may sound unrealistic because for real wind turbine applications the TSR is used to set
power and thrust of the turbine. However, varying the TSR for a fixed induction factor allows the
modification of the azimuthal velocity field while keeping unchanged the axial velocity. Therefore,
the sole effects of the wake swirl on the hub vortex stability are then investigated.

073603-10



HUB VORTEX INSTABILITY WITHIN WIND TURBINE . . .

FIG. 7. Wake velocity profiles evaluated for various tip speed ratios and induction factor a = 0.15: (a) axial
velocity, U/U∞; (b) azimuthal velocity, Vθ/U∞.

The variation of the TSR allows the generation of the wake velocity profiles reported in Fig. 7.
According to the actuator disk model, for a fixed induction factor, CT and CP are constant [see
Eqs. (14) and (15)], and for a certain turbine blade, i.e., by fixing the parameters kU , σhub, σtip, and
rtip in Eq. (9), also the velocity deficit at the wake center, Uhub, is constant. Therefore, the axial
velocity profile is unchanged for a fixed induction factor and varying the tip speed ratio [Fig. 7(a)].

For the azimuthal velocity reported in Fig. 7(b), a reduced tip speed ratio increases the wake swirl
for a fixed induction factor. From a physical stand point, it means that a given amount of power
can be harvested by spinning fast the turbine rotor with low aerodynamic load over the blades,
thus producing less swirl in the wake, or vice versa with a lower tip speed ratio and higher blade
aerodynamic load.

The stability spectra obtained from the temporal linear stability analysis carried out for a varying
tip speed ratio are reported in Fig. 8. The growth rate is reduced for an increasing TSR, which
indicates that the wake swirl promotes the hub vortex instability. Moreover, by varying the TSR, a
switch from m = 1 to m = 2 is observed by increasing the TSR from 4 to 6. This result justifies the
single-helix instability observed from our previous wind tunnel experiment, for which TSR = 4.7
was used [18–20]. Therefore, the TSR and the wake swirl can affect both growth rate and azimuthal
wave number of the hub vortex instability.

To further map out the effects of loading conditions on the hub vortex stability, the characteristics
of the dominant unstable mode as a function of induction factor and TSR are reported through a
map in Fig. 9. In this figure, the marker color represents the frequency, ωr , the size of the marker
represents the growth rate, ωi , while the number next to each point is the azimuthal wave number,
m. Figure 9 shows that the growth rate, ωi , increases with larger induction factor and lower TSR;
thus, axial velocity deficit, i.e., axial shear, and wake swirl promote the hub vortex instability. The
frequency, ωr , is mainly affected by the TSR, and it is increased for lower TSR. Similarly, the
azimuthal wave number is mainly affected by the wake swirl. A transition from m = 1 to m = 2
is observed by increasing tip speed ratio between TSR = 4 and TSR = 6. This transition region is
nearly independent of the induction factor. An exception occurs for a = 0.05, where the dominant
azimuthal wave number switches from m = 1 to m = 2 between TSR = 6 and 8.

To deeper analyze the effects of axial shear and wake swirl on the hub vortex stability, the results
of the linear stability analysis are now reported in Fig. 10(a) as a function of the axial velocity deficit
at the wake center, Uhub, and the maximum axial vorticity, �hub. The ranges of these two parameters
are broader than the corresponding ones in Fig. 9, which might entail that not all the considered cases
correspond to realistic wind turbine operations. Figure 10(a) is analogous to Fig. 9, for both figures
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FIG. 8. Growth rate, ωi , as a function of axial wave number, k, for various tip speed ratios and a = 0.15.

FIG. 9. Characteristics of the dominant unstable mode as a function of induction factor and TSR. The color
map represents the frequency, ωr , size of the marker represents growth rate, ωi , and the number next to each
circle is the azimuthal wave number, m.
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FIG. 10. Characteristics of the hub vortex instability for different axial velocity deficit at the wake center,
Uhub, maximum axial vorticity, �hub, and turbulent intensity of the incoming wind: (a) mixing length lm/d = 0.02
and (b) mixing length lm/d = 0.002. The marker color represents the frequency, ωr , the size of the marker
represents the growth rate, ωi , while the number next to each circle is the azimuthal wave number, m.

a mixing length lm/d = 0.02 is used. Once again, it is confirmed that the hub vortex instability is
promoted, namely, with higher ωi , for increased wake swirl and enhanced wake velocity deficit. A
transition from m = 1 to m = 2 is generally observed with a decreasing wake swirl.

By considering a smaller mixing length, i.e., for lm/d = 0.002, higher growth rate is generally
obtained, as shown in Fig. 10(b), which is in agreement with the results presented in Sec. IV.
Interestingly, a larger variability of the azimuthal wave number is also observed, compared to the
previous case with a larger mixing length. The azimuthal wave number of the most unstable mode is
generally reduced with increasing wake swirl. Moreover, a variability of m with the wake velocity
deficit is now observed as well. Lower values of the azimuthal wave number are estimated for
increased velocity deficit, i.e., for lower Uhub.

VI. EFFECTS OF VARYING THE SPANWISE LIFT DISTRIBUTION

The analysis for the prediction of the hub vortex instability has been performed by using as
base flow the velocity profiles modeled through Eqs. (7) and (10), and by fixing the values of the
parameters according to previous wind tunnel experiments [18,19] (Table I). However, for a given
loading condition, namely, induction factor and TSR, the wake velocity field can vary for different
aerodynamic design of the turbine blades, thus different distributions of the aerodynamic forces over
the blade span. Therefore, a different aerodynamic design of the turbine blades can be represented
through variations of the mentioned parameters.

Effects of the spanwise lift distribution on the hub vortex instability are investigated by varying the
ratio kσ = σhub/σtip from 2 to 6. Higher values of kσ represent cases with a larger aerodynamic load
towards the blade root. The wake velocity profiles are calculated for a = 0.1106 and TSR = 7, as
for Sec. IV. The obtained velocity profiles are reported in Fig. 11. With increasing kσ , the tip vortex
becomes more concentrated and extended over a narrower area. In order to keep CT unchanged, both
velocity deficits at the tip and hub vortices are consequently enhanced [Fig. 11(a)]. For the same
reason, also the azimuthal velocity is slightly increased with increasing kσ [Fig. 11(b)].
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FIG. 11. Wake velocity profiles evaluated for various kσ = σhub/σtip, a = 0.1106 and TSR = 7: (a) axial
velocity, U/U∞; (b) azimuthal velocity, Vθ/U∞.

In Fig. 12 spectra from the stability analysis show that the growth rate of the dominant unstable
mode increases with increasing kσ . Therefore, this result confirms that lift distributions leading to
larger axial velocity deficit and wake swirl promote the hub vortex instability.

FIG. 12. Growth rate, ωi , as a function of the axial wave number k, for various kσ = σhub/σtip. Each curve
is labeled with its azimuthal wave number. The dominant mode is in bold.
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VII. CONCLUSIONS

Temporal linear stability analysis of the velocity field connected with wind turbine wakes
generated for different turbulence levels of the incoming wind and loading conditions were
performed to investigate the hub vortex instability. Hub vortex and tip vortices were modeled through
Carton-McWilliams vortices, while wake velocity profiles were evaluated via iterative method and
matching the thrust coefficient evaluated through momentum budget with the value predicted through
actuator disk model.

Effects of the incoming wind turbulence on the hub vortex instability have been investigated by
varying the mixing length of the turbulence model included in the stability analysis formulation.
This analysis allows exploring the variability of the hub vortex instability due to different turbulence
intensities of the incoming wind. However, the adopted strategy cannot explain how the large
energy-containing structures present in the atmospheric boundary layer interact with the turbine
rotor, thus modifying dynamics of the wake vorticity structures. Stability spectra have shown that an
increased wind turbulence damps significantly the instability growth rate. Moreover, the azimuthal
wave number of the most unstable mode is also decreased for an increased mixing length.

Stability analysis carried out for different loading conditions, i.e., by varying axial induction factor
and TSR, has shown that hub vortex instability is promoted by the wake velocity deficit, namely,
the radial shear of the axial velocity, and the wake swirl. Therefore, the growth rate increases with
increasing induction factor and, for a fixed induction factor, with reducing TSR. This result has been
also confirmed by keeping fixed the loading condition of the turbine and varying lift distribution.
Cases with more aerodynamic load towards the blade root or producing an enhanced wake swirl
promote hub vortex instability.

It has been found that the TSR has more influence on the selection of the azimuthal wave number
of the dominant unstable mode than the induction factor. Specifically, a larger azimuthal wave
number characterizes cases with higher TSR. However, an important role is also played by wind
turbulence and, thus, by the mixing length. More significant variability has been observed for lower
turbulence intensity, which also entails to higher azimuthal wave numbers.

This study suggests that for utility-scale wind turbines, the hub vortex instability is more likely
to occur for wind conditions characterized by a relatively low wind turbulence intensity, such as
during night time for stable atmospheric conditions. Indeed, under a stable atmospheric regime,
wind turbine wakes can be extended for very long downstream distances of the order of 10–20
times the rotor diameter. Therefore, the coherent velocity fluctuations associated with the hub vortex
instability might have significant effects on power losses due to wake interactions and added fatigue
loads on downstream wind turbines.
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APPENDIX

According to the axial momentum budget, the thrust connected with an annular section of the
actuator disk is

dT = 2ρU (U∞ − U )2πr dr. (A1)

The total thrust over the disk of radius R is then

T = 4πρU 2
∞

∫ R

0

U

U∞

(
1 − U

U∞

)
r dr. (A2)
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The thrust coefficient CT is defined as

CT = T
1
2ρU 2∞πR2

, (A3)

then, by injecting Eq. (A2) into Eq. (A3), CT can be evaluated as follows:

CT = 8

R2

∫ R

0

U

U∞

(
1 − U

U∞

)
r dr. (A4)

By injecting Eq. (7) into Eq. (A4), we obtain

CT = 8

R2

∫ R

0

{
1 − Uhubexp

[
−

(
r

σhub

)2]
− Utipexp

[
−

(
r − rtip

σtip

)2]}

×
(

1 −
{

1 − Uhubexp

[
−

(
r

σhub

)2]
− Utipexp

[
−

(
r − rtip

σtip

)2]})
r dr

= 8

R2

∫ R

0

{
1 − Uhubexp

[
−

(
r

σhub

)2]
− Utipexp

[
−

(
r − rtip

σtip

)2]}

×
{
Uhubexp

[
−

(
r

σhub

)2]
+ Utipexp

[
−

(
r − rtip

σtip

)2]}
r dr, (A5)

which leads to Eq. (9) by defining kU = Utip/Uhub.
Considering the azimuthal momentum budget, the thrust of an annular element is [45]:

dT = 2πρ

(
� + ω

2

)
ωr3 dr, (A6)

where � is the angular velocity of the turbine, and ω is the angular velocity induced to the flow
by the turbine rotation. The TSR is defined as TSR = R�/U∞, and the wake azimuthal velocity is
defined as Vθ = ωr , then the thrust element, dT , becomes

dT = 2πρ
TSRU∞

R
ωr

(
1 + ωr

2�r

)
r2 dr = 2πρ

TSRU∞
R

Vθ

(
1 + 1

2TSR

R

r

Vθ

U∞

)
r2 dr. (A7)

Therefore, the thrust coefficient can be evaluated as

CT = 4TSR

R3

∫ R

0

Vθ

U∞

(
1 + 1

2TSR

R

r

Vθ

U∞

)
r2 dr, (A8)

By injecting Eq. (10) in Eq. (A8), it is obtained

CT = 4TSR

R3

∫ R

0

{
�hubr exp

[
−

(
r

σθ,hub

)α]
− �tip(r − rtip) exp

[
−

(
r − rtip

σθ,tip

)α]}

×
(

1 + 1

2TSR

R

r

{
�hubr exp

[
−

(
r

σθ,hub

)α]
− �tip(r − rtip)exp

[
−

(
r − rtip

σθ,tip

)α]})
r2 dr

= 4TSR�hub

R3

∫ R

0

{
r exp

[
−

(
r

σθ,hub

)α]
− k�(r − rtip) exp

[
−

(
r − rtip

σθ,tip

)α]}

×
(

1 + �hub

2TSR

R

r

{
r exp

[
−

(
r

σθ,hub

)α]
− k�(r − rtip)exp

[
−

(
r − rtip

σθ,tip

)α]})
r2 dr, (A9)

where k� = �tip/�hub.
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