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Finite Reynolds number corrections of the 4/5 law for decaying turbulence
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We examine finite Reynolds number contributions to the inertial range solution of the
third order structure functions D3,0 and D1,2 stemming from the unsteady and viscous terms.
Under the assumption that the second order correlations f and g are self-similar under a
coordinate change, we are able to rewrite the exact second order equations as a function of
a normalized scale r̃ only. We close the resulting system of equations using a power law
and an eddy-viscosity ansatz. If we further assume K41 scaling, we find the same Reynolds
number dependence as previously in the literature. We proceed to extrapolate towards
higher Reynolds numbers to examine the unsteady and viscous terms in more detail. We
find that the intersection between the two terms, where their contribution to the solution of
the structure function equations is relatively small, scales with the Taylor scale λ.
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I. INTRODUCTION

From the Kármán-Howarth equation [1], Kolmogorov [2] derived an exact equation for the
second order structure function D2,0 = 〈(�u1)2〉, �u1 = u1(x1 + r,x2,x3) − u1(x1,x2,x3) with the
separation vector ri = (r,0,0). This procedure was generalized by Hill [3], who systematically
derived structure function equations for arbitrary orders directly from the Navier-Stokes equations.
These equations written for the second order structure functions are the basis for the following
analysis and are given by
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where ε is the mean dissipation, ν the kinematic viscosity, and D0,2 = 〈(�u2)2〉 the transverse
second order structure function with �u2 = u2(x1 + r,x2,x3) − u2(x1,x2,x3). In the derivation of
Eqs. (1) and (2), isotropy has been used which results in vanishing pressure correlations (cf. [4]).
D3,0 = 〈(�u1)3〉 and D1,2 = 〈�u1(�u2)2〉 are the third order longitudinal and transverse structure
functions, respectively. These two equations are analogous to the equation derived by Kolmogorov.
Kolmogorov then introduced an inertial range situated in between the large and small scales, for
which he postulated a vanishing influence of the viscosity ν and neglected the unsteady term.
Integrating Eq. (2) under these assumptions then yields

D1,2 = − 4
15εr (3)
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and using this in Eq. (1) one obtains Kolmogorov’s famous result, the so-called 4/5 law:

D3,0 = − 4
5εr. (4)

Both Eqs. (3) and (4) are exact results under the assumption of isotropy and very large (infinite)
Reynolds numbers and have been subject to many experimental and numerical studies.

However, the range for which Eqs. (3) and (4) are found to hold is rather small for experiments at
finite Reynolds numbers (see, e.g., [5–8]). For that reason, modifications of the asymptotic results
which include the finite Reynolds number effects were proposed for different kinds of flows.

Lindborg [9] considered the isotropic second order equations of Kolmogorov and kept the
unsteady term ∂D2,0/∂t . He then proceeded to express it using Kolmogorov’s second similarity
hypothesis, i.e., he assumed that

∂D2,0

∂t
= C

2

3

∂ε

∂t
ε−1/3r2/3. (5)

Employing the k-ε model

∂ε

∂t
= −Cε2

ε2

k
(6)

to solve for ∂ε/∂t and assuming a decay of the kinetic energy k ∼ t−n enabled him to obtain solutions
for different kinds of flows and Reynolds numbers with good qualitative agreement of measurements
and his model. Lundgren [10,11] used asymptotic expansions to derive the longitudinal third order
structure function in the inertial range. He found the same Reynolds number dependence as Lindborg.

Qian [12,13] examined the approach of the 4/5 law in the inertial range using the energy spectrum
equation. He found that the asymptotic results are approached rather slowly. Danaila et al. [14]
examined the inhomogeneous second order structure function equations of Hill [4] adapted for grid
turbulence and looked at the balance of the respective terms. They found that the inhomogeneities
contribute significantly for larger r . Similar conclusions were drawn by Zhou et al. [15]. Danaila
et al. measured the second order structure function balance for channel flows [16] as well as
homogeneous shear turbulence [17] and obtained similar results as for grid turbulence, in the sense
that the inhomogeneities are important at large r and also in the inertial range.

Here, we use the isotropic equations, Eqs. (1) and (2), and examine the influence of the unsteady
and viscous terms, i.e., their contribution to the inertial range solutions for the third order structure
functions. While we keep the unsteady term as did Lindborg, our approach differs inasmuch as
we transform Eqs. (1) and (2) into a self-preserving form depending only on a normalized length
scale r̃ similarly to the work of Schaefer et al. [18] on the velocity correlation and the unsteady
term is reformulated assuming a decay of the kinetic energy k ∼ t−n. Lundgren used the same
coordinate transform but neglected the unsteady term. Rather, he matched the leading order terms
of the asymptotic expansions of the structure functions for an outer and an inner region. Corrections
to Eq. (4) then follow from the second order terms of the expansion.

The paper is organized as follows: After presenting the data used for the analysis in Sec. II, the
(normalized) second order structure function equations used here are derived in Sec. III. We then
close the resulting system of equations using two different approaches as outlined in Sec. IV. This
allows us both to examine the Reynolds number scaling as well as to make predictions about large
Reynolds number behavior. This is discussed in more detail in Sec. V, where the balances of the
(normalized) system of equations are examined using direct numerical simulation (DNS) data in
order to check for the validity of the assumptions made in Sec. IV.

II. DATA SET DESCRIPTION

Direct numerical simulation of decaying homogeneous isotropic turbulence has been performed
on the supercomputer JUQUEEN at the research center in Juelich, Germany. The incompressible
Navier-Stokes equations are solved in a triply periodic cubic box with size 2π by a pseudospectral

064403-2



FINITE REYNOLDS NUMBER CORRECTIONS OF THE 4/5 . . .

TABLE I. Parameters of the DNS.

D1 D2 D3 D4

Reλ 121.39 161.11 206.28 254.75
κmaxη 6.83 3.96 1.72 0.89
k 3.78 × 10−2 1.49 × 10−1 1.00 4.67
ε 3.08 × 10−3 2.71 × 10−2 7.50 × 10−1 10.67
η 7.41 × 10−3 4.30 × 10−3 1.87 × 10−3 9.65 × 10−4

λ 1.61 × 10−1 1.01 × 10−1 5.30 × 10−2 3.03 × 10−2

τη 2.61 × 10−1 8.80 × 10−2 1.67 × 10−2 4.44 × 10−3

τ 12.29 5.50 1.34 4.38 × 10−1

ν 2.1 × 10−4 2.1 × 10−4 2.1 × 10−4 2.1 × 10−4

method. For numerical stability, the nonlinear term of the momentum equation is rewritten in
rotational form. In a pseudospectral method the nonlinear term is computed in real space and
transformed to spectral space for temporal integration. Temporal integration is carried out by a
low-storage stability preserving third order Runge-Kutta method. The viscous term is treated exactly
by using an integrating factor technique. A standard isotropic truncation procedure in combination
with a random phase-shift technique is used to eliminate aliasing effects, allowing us to keep all
wave numbers with κ <

√
2N/3. The grid resolution is N3 = 20483, which adequately resolves the

smallest scales during the simulation. For pseudospectral methods, the resolution requirement can
be written in terms of the nondimensional number κmaxη, where κmax is the largest wave number
appearing in the truncated Fourier series, and η is the Kolmogorov length. The resolution condition
κmaxη for the four time steps under consideration is indicated in Table I and has been shown to
be sufficient to compute second order velocity gradient statistics [19]. The flow is initialized by a
prescribed isotropic energy spectrum of the form

E(κ) ∝ κ4 exp

[
−2

(
κ

κp

)2]
, (7)

where κ is the wave number and κp is the location at which the initial energy spectrum peaks. In
this work we aim at reaching high Reynolds numbers to obtain a well established inertial range. For
this reason we set κp to a comparable small value of 3.5 and tolerate small confinement effects due
to the finite size of the computational domain [20]. Following Ishida et al. [20], the initial state of
freely decaying turbulence can be characterized by a Reynolds number defined as

Re = 〈k(t = 0)〉1/2

κpν
, (8)

where 〈k(t = 0)〉 = ∫ ∞
0 E(κ,t = 0)dκ denotes the initial turbulent kinetic energy, and ν is the

kinematic viscosity. From this definition and with 〈k(t = 0)〉 = 10 and ν = 0.00021 we obtain an
initial Reynolds number of Re = 4302.

We show the temporal evolution of k ∼ t−n and ε ∼ t−n−1 in Figs. 1(a) and 1(b), where the red
lines correspond to a decay exponent n = 1.45. This value is slightly larger than the theoretical
value n = 10/7 obtained for a κ4 spectrum as in Eq. (7) (cf., e.g., the discussion in Refs. [21] or
[22]). The times used for the present analysis are indicated by the dotted vertical black lines in the
decaying regime. We use all four times to examine Reynolds number dependencies of the closures
presented below and the highest (leftmost dotted black line, Reλ = 254.75) and lowest (rightmost
dotted black line, Reλ = 121.39) Reynolds number for more detailed analysis.
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FIG. 1. Temporal evolution of kinetic energy k and dissipation ε. Times used in the analysis below are
indicated with the dotted vertical black lines. Dashed lines corresponds to (a) k ∼ t−n and (b) ε ∼ t−n−1 with
n = 1.45.

III. UNSTEADY TERMS

To examine the influence of the unsteady terms ∂D2,0/∂t and ∂D0,2/∂t , we use the identity

D2,0 = 〈(�u1)2〉 = 2
〈
u2

1

〉
(1 − f (r,t)), (9)

where f (r,t) is the longitudinal correlation function

f (r,t) = 〈u1(x1 + r,x2,x3,t) u1(x1,x2,x3,t)〉〈
u2

1

〉 (10)

and similarly for the transverse structure function

D0,2 = 〈(�u2)2〉 = 2
〈
u2

2

〉
(1 − g(r,t)), (11)

where g(r,t) is the transverse correlation function

g(r,t) = 〈u2(x1 + r,x2,x3,t) u2(x1,x2,x3,t)〉〈
u2

2

〉 . (12)

Under the assumption of isotropy, 〈u2
1〉 = 〈u2

2〉 = u2. Taking the derivative of Eq. (9) gives

∂D2,0

∂t
= 2

∂u2

∂t
(1 − f (r,t)) − 2u2 ∂f (r,t)

∂t
(13)

and a similar expression for the transverse structure function, Eq. (11). In the following, r is
normalized with a large scale in the spirit of [1,11,18], defined as

L(t) ≡ u3

ε
, (14)

where u =
√

〈u2
1〉 and the dissipation ε = 2ν〈SijSij 〉. Then, the normalized length scale

r̃ = r

L(t)
, t̃ = t, (15)

and therefore

∂r̃

∂t
= − r̃

L(t)

dL(t)

dt
. (16)
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Consequently,
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where ∂f (̃r,̃t)/∂t̃ and ∂g(̃r,̃t)/∂t̃ vanish if f (̃r,̃t) and g(̃r,̃t) are self-similar. We see in Sec. IV
below that neglecting ∂f/∂t̃ and ∂g/∂t̃ has very little impact on the balance equations, i.e., that the
assumption is well justified. From Eqs. (9) and (11), we then have

∂f (̃r,̃t)

∂r̃
= −1

2

∂D̃2,0

∂r̃
,

∂g(̃r,̃t)

∂r̃
= −1

2

∂D̃0,2

∂r̃
, (19)

as 〈u2
1〉 and 〈u2

2〉 do not depend on r̃ and where D̃2,0 = D2,0/u
2 and D̃0,2 = D0,2/u

2 are the
normalized second order structure functions. Similarly for the third order structure functions,
D̃3,0 = D3,0/u

3 and D̃1,2 = D1,2/u
3, with u3 = 〈u2

1〉3/2 = 〈u2
2〉3/2

.
For decaying homogeneous isotropic turbulence, the energy balance reduces to

∂u2

∂t
= −2

3
ε, (20)

where ε = 2ν〈SijSij 〉 is the mean energy dissipation. In the self-similar decay state, u2 = u2
0(t/t0)−n,

where n is a decay exponent (cf. Fig. 1) and consequently ε = ε0(t/t0)−n−1 in agreement with
Eq. (20).

Substituting Eqs. (20) and (10) into Eq. (13) and normalizing with ε yields

1

ε
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∂t
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u

dL(t)
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and similarly,

1
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Finally, from Eq. (14)

1

u
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3
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1

n
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2

)
. (23)

Dividing Eqs. (1) and (2) by ε then gives the following equations:
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viscous

(24)
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and
unsteady︷ ︸︸ ︷
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1

n
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r
∂D̃0,2
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= − 4
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∂r̃
− 2

r̃2
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]
︸ ︷︷ ︸

viscous

, (25)

where ReL = uL/ν is a large scale Reynolds number. That is, the derivative with respect to t of the
second order structure functions has been reformulated in terms of spatial derivatives and the decay
of kinetic energy expressed by the decay exponent n. Therefore, the partial differential equations are
reduced to ordinary differential equations. This allows the integration of Eqs. (24) and (25) in r̃ , if
D̃2,0 and D̃0,2 are known as functions of r̃ .

Equations (24) and (25) are also valid for grid turbulence, when invoking Taylor’s hypothesis.
Specifically, one obtains

∂D2,0

∂t
= U1

∂D2,0

∂X1
,

∂D0,2

∂t
= U1

∂D0,2

∂X1
, (26)

with U1 as mean velocity and X1 = [(x1 + r) + x1]/2 and where the x1 coordinate corresponds to
the streamwise direction. This leads to the equations also considered by Danaila et al. [14], where
the large scales are now determined by inhomogeneities in the x1 direction.

IV. CLOSURES

As Eqs. (24) and (25) are unclosed, anything besides computing and comparing the individual
terms from DNS requires additional closure assumptions. For this, we introduce two different
approaches to close the system of equations in the following. First, we assume that the second
order structure functions follow a power law, which allows us to directly integrate the two equations,
finding explicit expressions for the third order structure functions in the inertial range. The drawback
of this approach is of course that the scaling range of the second order structure functions is small at
low Reynolds numbers and therefore the range for which the resulting third order expressions hold
is also quite limited. However, interestingly enough, the same results derived in different ways by
Lindborg [9] and Lundgren [11] are then recovered. Second, we close the equations by employing
an eddy-viscosity ansatz as presented by Oberlack and Peters [23], which relates the second and
third order structure functions. This allows us to also compare overall agreement and extrapolate the
results to higher Reynolds numbers. We cannot rule out that the decay exponent has some influence
on the parameters of the closures discussed in the following. However, we have varied the decay
exponent while keeping all other parameters constant and have found no significant influence on the
numerical solutions, as long as the decay exponent is not unrealistically large or small. Specifically,
we compared n = 1.4, n = 1.45, and n = 1.5. For that reason, we are confident that the deviation
from n = 10/7 is negligible.

A. Power law closure

Here, we assume that the normalized second order structure functions D̃0,2 and D̃2,0 follow a
power law of the form

D̃2,0 = C̃2,0̃r
ζ2,0 , D̃0,2 = C̃0,2̃r

ζ0,2 , (27)

in the inertial range, where both the prefactors C̃2,0 and C̃0,2 as well as the exponents ζ2,0 and
ζ0,2 are assumed to be independent of the separation distance r̃ . Power laws for the second order
structure functions were introduced by Kolmogorov [2,24]. In his theory (K41 theory), he assumed
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that in the inertial range the structure functions are only dependent on the mean dissipation ε and
the scale r: Since the inertial range is situated in between the small scales and the large scales,
the solution should not depend on the viscosity ν, the dissipative length η, or the integral length
L. From dimensional arguments, one then obtains power laws with ζ2,0 = 2/3 and ζ0,2 = 2/3 as
exponents. However, the use of the mean dissipation as a scaling parameter has been questioned
in an argument rooted in a remark of Landau (cf., e.g., the discussion in Ref. [25]), namely, that
fluctuations of the dissipation may influence the scaling of the structure functions and consequently
the scaling exponents may differ from 2/3. From experiments (see, e.g., [26,27]) and DNS (e.g.,
[28,29]), ζ2,0 > 2/3 and ζ0,2 > 2/3 have been found.

One of the advantages of the power law ansatz is that it allows analytical integration of Eqs. (24)
and (25); i.e., the Reynolds number scaling of the respective terms can be examined explicitly. The
exponents ζ2,0 and ζ0,2 are assumed to be Reynolds number independent, while the prefactors might
vary slightly with the Reynolds number. Then, the exponents ζ2,0 = ζ0,2 = ζ2 are the same for both
the longitudinal and transverse second order structure functions, because these are linked via the
continuity equation

r̃

2

∂D̃2,0

∂r̃
+ D̃2,0 − D̃0,2 = 0. (28)

Noticeably, the power laws in Eq. (27) are solutions of Eq. (28). We define μ = ζ2 − 2/3 as
a deviation from the K41 value ζ2 = 2/3. Note that only for μ = 0 the prefactors C̃2,0 = C2,0

and C̃0,2 = C0,2; i.e., they equal the Kolmogorov constant(s) C2,0 = D2,0/(εr)2/3 and C0,2 =
D0,2/(εr)2/3. For μ 	= 0, the differences are probably small, as μ is small.

Substituting the power laws in Eq. (27) into Eq. (25) for the transverse second order structure
function then gives after integration

D̃1,2

r̃
= D1,2

εr
= − 4

15
+ A1,2Re−1−3μ/2

λ

(
r

η

)2/3+μ

+ B1,2Re−3μ/2
λ

(
r

η

)μ−4/3

, (29)

where Reλ = (15ReL)1/2 is the Taylor-scale Reynolds number Reλ = uλ/ν (the prefactor
√

15 is
due to the definition L = u3/ε). The prefactors A1,2 and B1,2 are then constants and given by

A1,2 = 2

3

C̃0,2

μ + 17/3

(
1 + 2 − n

2n

(
μ + 2

3

))(
1

15

)−3μ/4−1/2

, (30)

B1,2 = 2

μ + 11/3

[
C̃0,2

(
μ2 + 7

3
μ − 8

9

)
+ 2C̃2,0

](
1

15

)−3μ/4

. (31)

Substituting the result for D1,2 into Eq. (24) yields then similarly after integration

D̃3,0

r̃
= D3,0

εr
= −4

5
+ A3,0Re−1−3μ/2

λ

(
r

η

)2/3+μ

+ B3,0Re−3μ/2
λ

(
r

η

)μ−4/3

(32)

with prefactors

A3,0 = 2

3

1

μ + 11/3

(
1 + 2 − n

2n

(
μ + 2

3

))(
C̃2,0 + 4C̃0,2

μ + 17/3

)(
1

15

)−3μ/4−1/2

, (33)

B3,0 = 2

μ+ 5/3

[
4C̃0,2

μ + 11/3

(
μ2+10

3
μ+ 25

9

)
+ C̃2,0

(
μ2 + 7

3
μ− 26

9
+ 8

μ+ 11/3

)](
1

15

)−3μ/4

.

(34)

The resulting Eqs. (29) and (32) are very similar to the ones derived by Lindborg [9]. Combining
Eqs. (5) and (6), one finds

∂D2,0

∂t
∼ ε

k
(εr)2/3 ∼ D2,0

τ
, (35)
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TABLE II. Numerical values of prefactors C̃2,0 and C̃0,2 and scaling exponent ζ2.

D1 D2 D3 D4

C̃2,0 1.68 1.72 1.75 1.81
C̃0,2 2.25 2.31 2.34 2.42
ζ2 0.67 0.67 0.67 0.67

with the integral time τ = k/ε and where K41 scaling ζ2 = 2/3 has been assumed in agreement with
the ansatz, Eq. (5). A similar equation can be derived under the same assumptions for the transverse
structure function D0,2. Comparing with the unsteady term of Eq. (24), it is readily seen that Eq. (35)
leads to the same results, Eqs. (29) and (32), if D2,0 and D0,2 follow a power law and μ = 0.

The numerical values of C̃2,0, C̃0,2, and ζ2 for the data we use here are shown in Table II.
Noticeably, there is a small trend for the prefactors to increase with the Reynolds number, although
we cannot say whether they would approach a constant for very large Reλ. As the Kolmogorov
constant has been found to vary only slightly (if at all) with increasing Reynolds number (cf. [30]),
this might be due to the fact that μ 	= 0.

B. Eddy-viscosity closure

Another approach to close the coupled system is to directly relate the second and third order
structure functions, for which there are different approaches in the literature. One way to close the
equations is to employ an eddy-viscosity ansatz, as, e.g., discussed recently by Thiesset et al. [31].
Here, the formula of Oberlack and Peters [23] is used. They proposed an eddy-viscosity closure of
the form

D̃3,0 = −ν̃t,30
∂D̃2,0

∂r̃
, D̃1,2 = −ν̃t,12

∂D̃0,2

∂r̃
, (36)

with the eddy viscosities

ν̃t,30 = κ1̃r

√
D̃2,0, ν̃t,12 = κ2̃r

√
D̃0,2. (37)

Since both κ1 and κ2 as well as D̃2,0 and D̃0,2 are positive (and consequently also ν̃t,30 � 0 and
ν̃t,12 � 0), the closure implies that (�u1)2 and (�u2)2 are transported towards smaller r , in agreement
with the notion of the energy cascade towards smaller scales.

Together with Eqs. (24) and (25) we then have a closed set of equations for D̃2,0 and D̃0,2, with
the Reynolds number ReL, the decay exponent n, and the coefficients κ1 and κ2 as parameters. The
solution of D̃3,0 and D̃1,2 is then obtained by inserting the computed D̃2,0 and D̃0,2 into Eqs. (36)
and (37). It is readily checked that this closure gives ζ2 = 2/3 in the inertial range if the unsteady
terms are neglected.

We need boundary conditions for r̃ → 0 to solve the system of equations at hand. Specifically,
four boundary conditions are needed as we have two second order equations. For homogeneous
isotropic turbulence, Kolmogorov [2] showed that for r̃ → 0

D̃2,0 = 1
15 ReLr̃2, D̃0,2 = 2

15 ReLr̃2, (38)

and therefore also

∂D̃2,0

∂r̃
= 2

15
ReLr̃,

∂D̃0,2

∂r̃
= 4

15
ReLr̃ (39)

for r̃ → 0, which provides the four required boundary conditions. Consequently, D̃3,0 ∼ r̃3, D̃1,2 ∼
r̃3 in the viscous range; i.e., the model reproduces the correct r̃ scaling for r̃ → 0. Finally, the model
parameters κ1 and κ2 have to be specified.
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TABLE III. Numerical values of model parameters κ1 and κ2.

D1 D2 D3 D4

κ1 0.3661 0.3697 0.3853 0.3817
κ2 0.0784 0.0916 0.0867 0.0847

The values of κ1 and κ2 used here are shown in Table III. Noticeably, κ1 and κ2 do not vary much
with the Reynolds number and no trend is observable, where it needs to be kept in mind that the
considered range of Reynolds numbers is not that large. This observation is in line with the original
formulation of Oberlack and Peters [23], who related κ1 to the Kolmogorov constant C2,0. Here, κ1

and κ2 are rather directly computed from DNS via Eqs. (36) and (37).
Combining both equations, one obtains

κ1

κ2
= D̃3,0

D̃1,2

(
D̃0,2

D̃2,0

)1/2
∂D̃0,2/∂r̃

∂D̃2,0/∂r̃
. (40)

Again assuming power laws [Eq. (27)] in the inertial range and writing D̃3,0 = −(4/5)̃r + �3,0

and D̃1,2 = −(4/15)̃r + �1,2, where �3,0 and �1,2 are corrections due to the unsteady and viscous
terms, then

κ1

κ2
= −(4/5)̃r + �3,0

−(4/15)̃r + �1,2

(
C̃0,2

C̃2,0

)3/2

≈ 3

(
C̃0,2

C̃2,0

)3/2

, (41)

if the corrections are small. Using the values of Table II with Eq. (41), one finds that κ1/κ2 ≈ 4.6,
which is close to the value κ1/κ2 ≈ 4.5 from Table III. Consequently, κ1 and κ2 (and their ratio)
weight the prefactors of the longitudinal and transverse structure functions. Noticeably, the continuity
equation [Eq. (28)] constrains the ratio C̃0,2/C̃2,0. Then,

C̃0,2 = C̃2,0

(
1 + ζ2

2

)
(42)

as a function of the exponent ζ2 only, which is thought to be independent of the Reynolds number
(but not necessarily the flow configuration).

V. DISCUSSION

A. DNS

To quantify the influence of the unsteady terms, the balance of Eqs. (24) and (25) as evaluated
from our DNS for the smallest and largest Reynolds numbers are shown in Figs. 2(a) and 2(b)
(Reλ = 121.39) and Figs. 3(a) and 3(b) (Reλ = 254.75), respectively. The terms of the balances of
both second order structure function equations exhibit qualitatively the same behavior. The first two
terms on the left-hand side of Eqs. (24) and (25) are contributions by the unsteady terms, while the
remaining term(s) are transport terms in r space. On the right-hand side (rhs), the first term (the
−4/3) is the dissipative term, as we normalized the equation by ε, while the terms in square brackets
are viscous terms.

For small r̃ in the dissipative range, the dissipative term is balanced by the viscous terms, while
the transport and the unsteady terms are negligible. Solving Eqs. (24) and (25) and neglecting these
terms then leads to Eq. (38). The viscous terms are negligible for r̃ outside the dissipative range. At
intermediate r̃ in the inertial range, the largest terms are the transport terms, which give the leading
order solutions, Eqs. (4) and (3), after integration. However, the contribution of the unsteady terms
is not negligible, as the transport terms alone are not sufficient to balance the dissipative term (the
4/3). For larger r̃ , the transport terms become smaller and the unsteady terms larger. For very large
scales r̃ > 1 the unsteady terms are dominant and balance the dissipation. We also plot the sum
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FIG. 2. Balance of (a) the longitudinal second order structure function, Eq. (24), and Reλ = 121.39 and
(b) the transverse second order structure function equation, Eq. (25), for Reλ = 121.39. ©, unsteady term; �,
transport term; ♦, dissipation; �, viscous term.

of the unsteady, transport, and viscous terms as indicated by the dashed black line and find that it
balances the 4/3 very well (i.e., the dashed lines nearly coincide with the 4/3). In other words, the
assumption that the temporal changes ∂f/∂t̃ and ∂g/∂t̃ in Eq. (19) are negligible is well justified.

With increasing Reynolds number, the range of r̃ for which the transport terms are larger than
the viscous and the unsteady terms (i.e., the inertial range) increases (note that because of the
normalization with large scale quantities, the inertial range is shifted to smaller r̃). Consequently,
the scaling range of the transport terms for Reλ = 254.75 is larger than at Reλ = 121.39, but still
very limited. Thus, the unsteady terms may not be neglected, as they contribute significantly at
intermediate to large r̃ .

B. Closures

1. Power law

Let us first look at the power law closure. The first term on the rhs of Eqs. (29) and (32) corresponds
to Kolmogorov’s asymptotic results in the inertial range for very large Reynolds numbers, while
the second term on the rhs is the contribution due to the unsteady term and the third term on the

FIG. 3. Balance of (a) the longitudinal second order structure function equation, Eq. (24), and (b) the
transverse second order structure function, Eq. (25), for Reλ = 254.75. ©, unsteady term; �, transport term;
♦, dissipation; �, viscous term.
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FIG. 4. Third order structure functions (a) D̃3,0 and (b) D̃1,2 for Reλ = 121.39 as evaluated from DNS (©)
and compared to the power law closures, Eqs. (32) and (29) (�), with parameters from Table IV.

rhs stems from the viscous terms. Indeed, the unsteady corrections (the second terms on the rhs)
become smaller with increasing Reynolds number. However, they increase with increasing r/η. As
A3,0 and A1,2 are positive, |D̃3,0| and |D̃1,2| then become smaller than 4/5 and 4/15 at a fixed
Reynolds number; the deviations are not negligible for r/η larger than a certain threshold and the
higher the Reynolds number, the higher the threshold value of r/η. This behavior is exactly the same
as observed from our DNS data (cf. Figs. 2 and 3). Noticeably, the influence of μ, i.e., deviations
from the K41 value ζ2 = 2/3, play only a marginal role, as μ is small. As μ is found to be positive
(see Table II for our DNS and, e.g., [5,29,32] in the literature) and small, 0 < μ 
 4/3, the viscous
terms decrease much faster with increasing r and are therefore negligible as expected (r/η � 1
in the inertial range). For K41 scaling, μ = 0 and there is no Reynolds number dependence of
the viscous terms. Physically, μ = 0 corresponds to the statement that the second order structure
functions are determined in the inertial range solely by the scale r (with dimension [m]) as well as
another quantity with dimensions [m2/s3] which is usually taken to equal the mean dissipation ε (cf.
K41 theory). In this spirit, μ 	= 0 implies that there are more (albeit a priori unknown) quantities
which influence the second order structure functions in the inertial range.

We compare Eqs. (32) and (29) to our DNS for Reλ = 121.39 [Figs. 4(a) and 4(b)] and Reλ =
254.75 [Figs. 5(a) and 5(b)]. The values of the coefficients A3,0, A1,2, B3,0, and B1,2 as well as μ and

FIG. 5. Third order structure functions (a) D̃3,0 and (b) D̃1,2 for Reλ = 254.75 as evaluated from DNS (©)
and compared to the power law closures, Eqs. (32) and (29) (�), with parameters from Table IV.
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TABLE IV. Numerical values of the power law closure parameters.

D1 D2 D3 D4

A3,0 2.61 2.67 2.71 2.81
B3,0 4.84 4.98 5.04 5.21
A1,2 1.16 1.19 1.21 1.25
B1,2 0.76 0.77 0.79 0.82
n 1.45 1.45 1.45 1.45
μ 3.34 × 10−3 3.34 × 10−3 3.34 × 10−3 3.34 × 10−3

n determined from the DNS are given in Table IV. Because C̃2,0 and C̃0,2 vary with the Reynolds
number, the coefficients A and B do so as well. The closure agrees better with the transverse D̃1,2

than the longitudinal D̃3,0. This is probably due to the fact that D̃1,2 feeds into D̃3,0, so that any
errors of Eq. (29) are carried over to Eq. (32). Nevertheless, we find good qualitative agreement,
also for the lower Reynolds number. As expected, the closure improves with increasing Reynolds
number, because the scaling range of the second order structure functions increases. However, the
deviations from Kolmogorov’s results, Eqs. (3) and (4) (the dashed black lines), are significant.
At Reλ = 254.75, the difference of −D̃3,0 and −D̃1,2 to 4/5 and 4/15 has only slightly decreased
compared with Reλ = 121.39. Also, the range for which D̃3,0/̃r ≈ const and D̃1,2/̃r ≈ const is quite
small.

2. Eddy-viscosity closure

The results of the eddy-viscosity closure are shown in Figs. 6 and 7, where we compare the
numerical solutions of D̃3,0 and D̃1,2 for the system of equations both with and without the unsteady
terms to the DNS data. The model solution has been computed using an explicit Runge-Kutta
solver. We use constant values of κ1 and κ2 throughout the numerical integration, which have been
determined from DNS in the (presumed) inertial range. As the transport terms are small in the
dissipative range, the deviations of the constants κ1 and κ2 from their true dissipative range values
do not play a crucial role for the model performance, although they lead to small deviations in
the dissipative range. The model parameters used here are listed in Table III, where for our DNS
n = 1.45. We observe striking agreement of the model with the DNS data when the unsteady terms
are included for both Reλ = 121.39 and Reλ = 254.75. Without the unsteady terms, the difference

FIG. 6. Third order structure functions (a) D̃3,0 and (b) D̃1,2 for Reλ = 121.39 as evaluated from DNS (©)
and compared to the eddy viscosity closure (solid line) with parameters from Table III. Dashed lines correspond
to model solutions without the unsteady terms.
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FIG. 7. Third order structure functions (a) D̃3,0 and (b) D̃1,2 for Reλ = 254.75 as evaluated from DNS (©)
and compared to the eddy viscosity closure (solid line) with parameters from Table III. Dashed lines correspond
to model solutions without the unsteady terms.

between DNS and model increases with r̃ . This is not that surprising, because the contributions
of the unsteady terms to the balances as seen by Figs. 2 and 3 increase with increasing r̃ . As
discussed above, the model gives ζ2 = 2/3 and ζ3 = 1 [i.e., Eqs. (3) and (4)] if the unsteady terms
are neglected. Consequently, their absence at the intermediate and large scales then results in an
infinitely long inertial range for the model, even at finite Reynolds numbers. This is in agreement
with the observation that the unsteady term is the only term in Eqs. (24) and (25) which explicitly
contains the large scales.

After having established that the eddy-viscosity closure agrees very well with the DNS data
when the unsteady corrections are included, we proceed to extrapolate towards higher Reynolds
numbers. As κ1 and κ2 evaluated from our DNS (cf. Table III) do not show a clear Reynolds number
dependence, we keep the values of κ1 and κ2 evaluated at Reλ = 254.75 and increase the Reynolds
number. We have then computed the solution of the model for Reλ = 625,1250,2500,5000,10 000.
The resulting D̃30 and D̃12 are shown in Fig. 8 and agree with the characteristics observed from DNS
as described in Sec. V A. As expected, the range for which −D̃3,0 and −D̃1,2 are approximately

FIG. 8. Normalized third order structure functions (a) D̃3,0 and (b) D̃1,2 extrapolated towards higher
Reynolds numbers Reλ = 625,1250,2500,5000,10 000 (lighter to darker color) using the eddy-viscosity
closure.
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FIG. 9. Unsteady and viscous terms of (a) Eq. (24) and (b) Eq. (25) as evaluated for the extrapolated
Reynolds numbers Reλ = 625,1250,2500,5000,10 000 using the eddy-viscosity closure. Reynolds numbers
are indicated by the same coloring as in Fig. 8.

equal to 4/5 and 4/15 increases with increasing Reynolds number. However, the range one might
call the inertial range based on Fig. 8 is quite small even at Reλ = 10 000. We show the unsteady
and viscous terms of Eqs. (24) and (25) computed using the modeled D̃2,0, D̃0,2, D̃3,0, and D̃1,2

in Fig. 9. We find that the range for which the transport terms dominate increases with increasing
Reynolds number, in agreement with Kolmogorov’s classical notion of the inertial range and Fig. 8.
The transport terms peak close to the intersection of the unsteady and viscous terms, which we
briefly discuss in the following. We find that the intersection point (̃rC ,̃yC), i.e., the crossover after
which the unsteady terms are larger than the viscous terms, scales with the Reynolds number as
indicated with the dashed black line in Figs. 9(a) and 9(b). We may thus write

r̃C,‖ = Ar,‖Re
Br,‖
λ , ỹC,‖ = Ay,‖Re

By,‖
λ (43)

and

r̃C,⊥ = Ar,⊥ReBr,⊥
λ , ỹC,⊥ = Ay,⊥Re

By,⊥
λ , (44)

where ‖ indicates the crossover of the terms of Eq. (24) and ⊥ the crossover of the terms of Eq. (25).
Using a least squares fit, the model then gives the parameters shown in Table V and the longitudinal
and transverse exponents are found to be approximately equal for both r̃C and ỹC . Noticeably, only
the prefactors of the crossover length but not the corresponding values of the ordinate differ. That
is, the inertial range of the longitudinal and transverse structure function is approached equally
fast, but its location in r̃ differs. In particular, the inertial range of the transverse structure function
D̃1,2 is shifted towards smaller r̃ more than the corresponding inertial range of D̃3,0 and we have
r̃C,‖/̃rC,⊥ ∼ 1.55 and ỹC,‖/ỹC,⊥ ∼ 1.15 independent of the Reynolds number. We also find good
agreement of the scaling as given by Table V with the lower Reynolds numbers of our DNS.

As r̃ = r/L, for both the longitudinal and transverse non-normalized crossover length

rC ∼ λ, (45)

TABLE V. Numerical values of the scaling of Eqs. (43) and (44).

Ar Br Ay By

‖ 12.99 −1.02 4.63 −0.62
⊥ 8.37 −1.05 4.04 −0.63

064403-14



FINITE REYNOLDS NUMBER CORRECTIONS OF THE 4/5 . . .

where the prefactor is O(1). In other words, the transport terms of Eqs. (24) and (25) peak at the
Taylor scale λ. That is, Kolmogorov’s inertial range assumption that both the viscous and unsteady
terms are small is best fulfilled at r on the order of the Taylor scale λ. This result is in agreement
with the observation that λ is an intermediate length scale, smaller than the integral length L and
larger than the dissipative scale η.

VI. CONCLUSION

After normalizing the unsteady terms in the second order equations of Hill with the large
scale L in the spirit of [1], they can be written as a function of r̃ = r/L only. Evaluating the
balance of the second order using DNS, the unsteady terms contribute significantly to the inertial
range solution of the third order structure functions D3,0 and D1,2 in agreement with previous results
in the literature. Using a power law closure, we find that the contribution of the unsteady terms
increases with increasing r/η, but decreases with increasing Reynolds number in agreement with the
notion of an inertial range. If the second order structure functions follow K41 scaling, the same result
as previously reported by Lundgren and Lindborg is recovered. Closing the system of equations by
directly coupling the second and third order structure functions using an eddy-viscosity ansatz as
proposed by Oberlack and Peters gives very good agreement with our DNS when the unsteady terms
are included. This model also allows solving the equations for higher Reynolds number for which no
DNS is available while retaining the influence of the unsteady and viscous terms. From the model,
we find that the intersection of these two terms scales with the Taylor scale λ; i.e., λ is situated in
the inertial range.
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