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We present an experimental study of the gravitational instability triggered by dissolution
of carbon dioxide through a water-gas interface. We restrict the study to vertical
parallelepipedic Hele-Shaw geometries, for which the thickness is smaller than the other
dimensions. The partial pressure of carbon dioxide is quickly increased, leading to a
denser layer of CO2-enriched water underneath the surface. This initially one-dimensional
diffusive layer destabilizes through a convection-diffusion process. The concentration field
of carbon dioxide, which is visualized by means of a pH-sensitive dye, shows a fingering
pattern whose characteristics (wavelength and amplitude growth rate) are functions of the
Rayleigh (Ra) and the Darcy (Da) numbers. At low Rayleigh numbers, the growth rate and
the wave numbers are independent of the Rayleigh number and in excellent agreement with
the classical results obtained numerically and theoretically in the Darcy regime. However,
above a threshold of Ra

√
Da of the order of 10, the growth rate and the wave number

strongly decrease due to the Brinkman term associated with the viscous diffusion in the
vertical and longitudinal directions. In this Darcy-Brinkman regime, the growth rate and the
wave number depend only on the thickness-based Rayleigh number Ra

√
Da. The classical

Rayleigh-Taylor theory including the Brinkman term has been extended to this diffusive
gravitational instability and gives an excellent prediction of the growth rate over four
decades of Rayleigh numbers. However, the Brinkman regime seems to be valid only until
Ra

√
Da = 1000. Above this threshold, the transverse velocity profile is no longer parabolic,

which leads to an overestimation of the wave number by the theory.

DOI: 10.1103/PhysRevFluids.1.064301

I. INTRODUCTION

In order to reduce the emission of gases causing greenhouse effects, it has been proposed for a
long time to store carbon dioxide (CO2) in saline aquifers. This solution mainly relies on the process
of dissolution of CO2 in water through a porous medium. Indeed, the molecular diffusion of CO2

into water is very slow, which strongly limits the maximum injection rates allowed for geoengineers.
Fortunately, the injected CO2 spreads beneath a caprock and is then subject to gravitational (or
convective) and fingering instabilities, which highly accelerates the process of dissolution [1]. The
viscous fingering instability which occurs in a porous medium (often modeled by a Hele-Shaw cell)
due to a viscosity variation has been widely studied experimentally and theoretically [2]. We will
focus in this paper on the gravitational instability occurring in saline aquifers. Indeed, the dissolution
of CO2 in the salted water creates a denser layer of CO2 saturated brine at the top of the pure brine.
The destabilization of this layer creates a convective mixing of CO2 in the nonlinear regime [3],
which strongly accelerates the solubility trapping of CO2.
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Various authors addressed the problem of the stability of a diffuse denser layer from both analytical
and numerical points of view. Rees et al.’s review article [4] gathers the main contributions in
two-dimensional porous media. The layer is stable at the beginning of the dissolution process and
becomes unstable after a time which has been evaluated numerically [3,5,6] and analytically [7–9].
The large variation of a factor 3 for the reported values of this onset time is mostly due to the fact that
the growth rate highly depends on the norm used to measure the amplitude of the perturbation [10].
However, the scalar flux at the free surface remains diffusive in the linear stage of the instability [3].
It is only in the nonlinear regime of the instability that the convective processes enhance the scalar
flux, with a very weak difference between the two- and three-dimensional (2D and 3D) simulations
[11]. The onset time of the nonlinear regime is thus the most interesting quantity for geophysical
applications. This onset time has been measured numerically [3,5,11,12] and highly depends on the
amplitude of the perturbation [8] but also on the time at which the perturbation is applied [13].

However, there are very few experimental studies using real CO2 dissolved in a porous medium.
Kneafsey and Pruess [14] presented results at low Rayleigh numbers for CO2 dissolution in water at
4 MPa in a Hele—Shaw cell. Outeda et al. [15] studied the case of larger Rayleigh numbers. However,
they mainly focused on the role of the pH-sensitive indicator used to visualize the destabilization
pattern and only a fraction of decade in Rayleigh number was explored. Several authors proposed
alternative model systems to mimic convection enhanced CO2 dissolution in porous media (saline
aquifers). Backhaus et al. [16] proposed a model system composed of water and propylene glycol (the
former and the latter replacing the carbon dioxide and the brine, respectively) and Neufeld et al. [17]
used a mixture of methanol and ethylene glycol to mimic supercritical CO2, the lower fluid being pure
water. Both studies were done at large Rayleigh numbers. Slim et al. [18] used KMnO4 particles in
contact with water as an analog for carbon dioxide in contact with a brine along a flat interface. They
showed that the amplification of the perturbation amplitude was close to the analytical predictions.

However, there is a priori no reason to see a good agreement between the numerical simulations
and the Hele-Shaw experiments at high Rayleigh numbers. Indeed, the Darcy equations used in
the simulations describe the flow of a Hele-Shaw cell at low Rayleigh numbers only. At large
Rayleigh numbers, the viscous terms in the horizontal and vertical directions are not negligible
[19] and should be added to the Darcy equations. Zeng et al. [20] showed that this Brinkman
correction [21] comes from nonlocal terms but that it can be reduced to the viscous shear stress
of the gap-averaged velocity at long wavelengths. The Darcy-Brinkman model has been used in
the case of Rayleigh-Bénard convection [22]. It has also been used in the case of the miscible
Rayleigh-Taylor instability [19] and showed a good agreement with experimental results obtained
for two semi-infinite miscible fluids [23]. However, three-dimensional (3D) numerical stability
results [24] showed that the flow within the Hele-Shaw cell is no longer parabolic for very large
Rayleigh numbers, such that the Darcy-Brinkman model is only valid in an intermediate regime.
Finally, Martin et al. [25] showed that the inertia term may be kept in the Brinkman model by simply
averaging the Navier-Stokes equations over the cell width. This 2D Navier-Stokes-Darcy model
(NSD) gives a very good prediction of the growth rate when compared to the numerical simulations
of the full 3D Navier-Stokes equations at low Schmidt numbers.

The goal of this paper is to determine the range of Rayleigh numbers in which the Darcy model
is valid for the gravitational instability of a diffusing layer. This is done using careful comparisons
between theory and experiments in the linear regime. Materials and methods are depicted in Sec. II.
Experimental results are presented in Sec. III and interpreted in the scope of a simplified theory.
Main results are summarized in Sec. IV.

II. MATERIALS AND METHODS

A. Experimental setup

The details of the experimental setup are accessible in Ref. [26] and only the main characteristics
are given below. The core of the experimental setup is shown in Fig. 1(a). It mainly consists of
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FIG. 1. Geometry of the experimental setup. (a) General view: reservoir, RES; main chamber, CH; ball valve,
V; differential pressure sensor, PCH; differential pressure sensor, PDIF; thermocouple, TH; and Hele-Shaw
cell, HS. (b) Cubic pressure chamber, CH, housing the Hele-Shaw cell. (c) Hele-Shaw glass cell (dimensions
E × H × L).

a parallelepipedic glass cell (Hele-Shaw cell, HS) filled with water and placed at the center of
an aluminium chamber [CH; see Fig. 1(b)]. The contact line is pinned thanks to sharp edges so
that in most cases the meniscus can be considered as flat. Dimensions of the cells which we used
in our experiments are given in Table I. It should be noted that the height of the Hele-Shaw cell
H is relatively small in order to fit within the pressure chamber. Moreover, the thickness E is

TABLE I. Dimensions of parallelepipedic glass cells purchased from Optik-C (France).

Da Width L (mm) Thickness E (mm) Height H (mm) Pressure PCO2 (bar)

1.33 × 10−6 70.0 0.2 50.0 3.2; 6.4
8.33 × 10−6 70.0 0.5 50.0 0.2; 0.4; 0.8; 1.6; 3.2; 6.3
2.70 × 10−5 70.0 0.9 50.0 0.2; 0.4; 0.8; 1.6; 3.2; 6.3
2.08 × 10−4 60.0 2.0 40.0 0.05; 0.1; 0.2; 0.4; 0.8; 1.6; 3.2; 6.3
1.30 × 10−3 60.0 5.0 40.0 0.4; 0.8; 1.6; 3.2; 6.3
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relatively large, up to 5 mm, such that the aspect ratio H/E can be as small as 8. This allows us to
cover completely the Darcy-Brinkman regime. The temperature in the chamber is assessed using a
thermocouple (TH) located close to the free surface of the Hele-Shaw cell.

The present experimental setup is an extension of the one used to study the stationary plume
induced at late stages by dissolution of carbon dioxide in a cylinder filled with water [27]. In the
present case, we focus on the early stages of the gravitational instability.

A technical difficulty is that direct compression of the gas inside the chamber in general causes a
raise in temperature, which in turn causes a purely thermal convection inside the liquid. For instance,
whereas the formation of a denser CO2 charged layer under compression makes the fluid unstable, a
local raise in temperature (close to the free surface) could induce a vertical stabilizing temperature
gradient. Conversely, horizontal temperature gradients could enhance the destabilization due to
dissolution and consequently perturb the effect we wish to characterize, since horizontal thermal
gradients are unconditionally unstable [28]. The experimental setup has thus been modified to enable
carbon dioxide intake without any pressure change by means of the following operating procedure.
The main chamber (of volume VC = 743 cm3) is initially filled with nitrogen at a given total pressure
PT varying from 1 to 14 bars. A large reservoir (of volume VR = 1570 cm3) is filled with carbon
dioxide with a total pressure PT + δP slightly greater than PT (with δP ∼ 0.01 bar � PT ). This
allowed a rapid intake of CO2 in the chamber when the valve is open with a negligible temperature
rise. In our case, the mixing time has been measured (by means of infrared techniques) to be 35 ± 5 s,
which is much smaller than the growth time of the gravitational instability. The final partial pressure
of CO2 is given by PCO2 = (VC + VR + VV )PT /VR , where VV is the volume of the valve.

B. Measurement techniques

Both experimental techniques detailed below (particle image velocimetry and laser-induced
fluorescence) require the use of a laser sheet generated from a classical laser beam (Coherent
Genesis, USA) at 514 nm in wavelength (green), through reflection onto a rotating mirror. The
rotating mirror is located at the front focal plane of a cylindrical lens. The laser sheet inside the tank
is thus made of a horizontal ray rapidly scanned (at 1 kHz) from bottom to top and is almost uniform
with a power of about 780 μW cm−1. An optional cylindrical lens, which slightly focuses the laser
beam in horizontal planes, reduces the thickness of the laser sheet from 1270 to 164 μm.

As dissolution of CO2 in water lowers the pH of the solution, the concentration field of dissolved
gas can be easily revealed by means of a pH-sensitive dye. For this purpose, we use fluorescein
(free acid, Sigma-Aldrich, USA), which is well known as a fluorescent pH probe [29–31]. In all
our experiments, the fluorescein concentration is 1.6 × 10−6 M L−1. We only use laser-induced
fluorescence (LIF) as a qualitative tool, insofar as we only need to detect the wavy deformation
of the diffuse CO2 layer at the onset of chemoconvection. Note that performing a real quantitative
assessment of the isoconcentration curves would be an arduous task (due, among other factors, to
the extremely nonlinear response of the fluorescence to a change in carbon dioxide concentration),
which lies far beyond our needs.

We perform measurements of the flow fields using particle image velocimetry (PIV). Convection
flows are made visible by adding tracer particles in the fluid. For measurements of the tangential
components of the velocity (i.e., with the laser sheet parallel to the main walls of the Hele-Shaw
cell), we use polystyrene spherical particles (polybead microspheres, Polysciences, Inc, USA),
4.5 μm in diameter, at very low concentration (ρp ∼ 18.75 × 10−12 g cm−3). For transverse PIV
measurements (i.e., with the laser sheet normal to the main walls of the Hele-Shaw cell), the
concentration of tracers is five times higher. The settling velocity of the particles, which is of the
order of 1.8 μm/s, is negligible compared to the velocity of the fluid during the instability (ranging
from 0.1 to 5 mm/s).

We use two video cameras to grab PIV and LIF image sequences. The PIV camera (PixelflyQE,
PCO, Germany), which is placed behind a green interference filter, records images with a 1024 ×
1368 resolution with a frame rate of 10 fps in usual conditions. Image sequences of the tracers are
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eventually processed using a cross-correlation routine optimized for large velocity gradients [32].
The LIF camera is an analog low-light-level camera (Hamamatsu C5985-10, Japan). The orange
light from the fluorescein is reflected onto a dichroic mirror and further filtered through an orange
filter. The analog video signal is transformed into digital images (739 × 575 resolution, 10 bits) by
means of a frame grabber (NI PCI 1409, National Instruments, USA) and exploited with a homemade
routine. Because the fluorescence is very faint, it is necessary to accumulate photoelectrons to obtain
acceptable gray level values. So, in general, the frame rate is only 1 fps.

We carefully checked that there was no noticeable modification of the experimental results due
to the presence of fluorescein and tracers by varying the concentration of the fluorescein over three
orders of magnitude and by comparing experiments with and without PIV particles and with and
without fluorescein.

C. Basic equations and nondimensional parameters

In porous media, the velocity scale U is given by the equilibrium between the gravity force and
the viscous term

U = K�ρg

μ
. (1)

The permeability K is taken equal to E2/12 (note that this is only valid at low Rayleigh numbers in a
Hele-Shaw cell). The density difference �ρ = αkHPCO2ρ0 is the product of the chemical expansion
coefficient of the density α = (1/ρ0)(∂ρ)/(∂C), the Henry’s constant kH of CO2 in water, and the
partial pressure of CO2. The product αkH has been measured by Hebach et al. [33] but their results
are marred by a large uncertainty αkH = 0.004 ± 0.001 MPa−1, which leads to a large uncertainty
of the order of 25% on the experimental determination of the Rayleigh number. The permeability
K is taken equal to E2/12 since this is obtained for a parabolic flow in a Hele-Shaw cell. g is the
acceleration due to gravity and μ = νρ0 is the dynamic viscosity (with ν = 1 ± 0.02 × 10−6 m2 s−1).

In porous media, there are two possible choices for the length scale of the problem. It first appears
natural to take the cell height H . This dimensionalization is useful at late times when the CO2

filling of the whole Hele-Shaw cell strongly depends on the height H . However, at early times the
diffusive layer is much thinner than the cell height such that the relevant length scale is rather the
diffusive thickness L = D/U , where D = (1.76 ± 0.04) × 10−9 m2 s−1 is the diffusivity of CO2.
This dimensionalization has been often used for porous media [3] since the problem is then parameter
independent (in the limit of infinite cell height).

The Rayleigh number is defined as

Ra = K�ρgH

μD
= Kαρ0kHPCO2gH

μD
. (2)

In our experiments, this number is varied over four decades from 102 to 106. The aspect ratio of the
experiment is quantified by the Darcy number defined as

Da = K

H 2
. (3)

This dimensionless number is varied from 6 × 10−5 to 0.05 in the experiments.
The three-dimensional Overbeek-Boussinesq approximation of the Navier-Stokes (NS) equations

and the diffusion equation for the CO2 concentration are made dimensionless using U ,L and the
saturation concentration at thermodynamic equilibrium C+ = kHPCO2 . This leads to

1

S

[
∂u
∂t

+ (u · ∇)u
]

= −∇p − 1

DaRa2 c ẑ + �u, (4)

∇ · u = 0, (5)
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and

∂c

∂t
+ (u · ∇) c − �c = 0. (6)

These equations are completed by no-slip boundary conditions at the top (z = 0) and the bottom
(z = −Ra) of the cell. The concentration must satisfy c = 1 at the top of the cell and a no-flux
condition (∂c/∂z = 0) at the bottom of the cell. In our experiments, the Schmidt number S = ν/D

is about 550 and will be considered as infinite in the following. This removes the inertia term,
which may become important at very large Rayleigh numbers. Martin et al. [25] showed that the full
Navier-Stokes-Darcy model with the inertia term works better than the Darcy-Brinkman model for
low Schmidt number. This term has been considered in the discussion of Sec. III F but it is neglected
(due to the large Schmidt number of the experiments) in the core of the paper.

In order to derive the linear growth rate of the instability, the pressure and concentration fields are
expanded around the nonconvective (hydrostatic) solution [c(0)(z,t),p(0)(z,t)]. Furthermore, the flow
is assumed to be parallel to the (x,z) plane with a parabolic transverse profile (along the y direction)
such that Eqs. (5) and (6) can be integrated along the y direction, leading to the two-dimensional
Darcy-Brinkman equations:

−∇‖p̄ + (DaRa2�‖ − 1)ū − c̄ ẑ = 0, (7)

∂c̄

∂t
+ w̄ ∂z c(0) − �c̄ = 0, (8)

where ū and c̄ correspond to the mean velocity and concentration and where the pressure has been
made dimensionless by scaling to μD/K . Here, ∇‖ = (∂/∂x,0,∂/∂z) and �‖ = ∂2/∂x2 + ∂2/∂z2

correspond to the gradient and the Laplacian in the plane of the cell.
The 2D Darcy equations are recovered if the Brinkman term DaRa2�‖ is neglected. In the Darcy

model, the Rayleigh number only plays a role through the boundary condition at the bottom of
the cell (at z = −Ra for this dimensionalization). However, at early stages of the instability, this
boundary condition is far from the diffusive layer (for large enough Rayleigh numbers) such that the
convection problem is virtually independent of the Rayleigh number [7,34].

It is clear from these equations that the Darcy model is only valid at low values of DaRa2 when
the viscous term DaRa2�‖ū due to shears in the (x,z) plane is much smaller than the viscous term
−ū due to the shear in the y direction. It should also be noted that the Darcy-Brinkman model is
only valid when the transverse profile is close to parabolic (see the discussion by Zeng et al. [20]
on the Brinkman’s approximation). The goal of this paper is thus to characterize the influence of the
Brinkman term DaRa2�‖ on the characteristics of the instability and to determine experimentally in
which range of Rayleigh and Darcy numbers this model is valid.

III. CHARACTERISTICS OF THE INSTABILITY

A. LIF visualizations

As stated above, we used a fluorescent dye to detect the destabilization of the initial purely
diffusive profile. A typical sequence of destabilization recorded for Ra = 2.4 × 104 (PCO2 = 0.8 bar
and E = 2 mm) is presented in Fig. 2. The destabilization process can be generically divided into
three stages. First the 1D diffusion of the acid denser layer is observed (stage I). After a period of
time which depends on the Rayleigh number, an unstable wavelength λ	 = 2π/q	 emerges, which
keeps growing in amplitude until the end of the linear regime (stage II). In the subsequent nonlinear
regime, the growth speed of the instability amplitude slows down and the number of fingers decreases
through a pairing process during which two adjacent fingers can merge to form a bigger one (stage
III). The nonlinear pairing regime then gives birth to a highly aperiodic phase. In this phase (not
represented in Fig. 2), the plumes (we call plumes the laterally localized vertical flow observed once
a finger has reached the bottom wall of the cell) start merging with their immediate neighbors. The
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FIG. 2. Sequence of images illustrating the whole fingering process. (a) Pure 1D diffusion regime (stage I);
(b)–(c) linear regime (stage II); (d)–(i) nonlinear growth and pairing phenomenon (stage III). Ra = 2.4 ×
104, Da = 2.1 × 10−4 (E = 2 mm and PCO2 = 0.8 bar).

room left by the merged plumes allows for the emergence of a new finger, which grows to form a
new plume, which in turn can merge with a neighboring plume, and so on. The same steps have been
already described in detail by Slim et al. [18]. In this paper, we focus on the first two stages where
the evolution of the perturbation is essentially linear.

B. Extraction procedure of the experimental quantities

We now describe the method used for the quantitative extractions of the growth rate σ 	 and the
most unstable wave number q	 from a typical sequence of images such as the one presented in Fig. 2.
We recall that all the variables are dimensionalized (using U and L); the star only denotes the most
probable quantity. We are first interested in the border of the instantaneous concentration field of the
perturbation. This front is defined as the limit between the dark (acid) and the lighter (neutral) zone
of the picture at t . To be more specific, its position zF (x,t) corresponds to the position at which the
intensity reaches (Imax + Imin)/2 when scanning vertically each pixel column (Imin and Imax being
respectively the average intensities of the initial and final pictures of the sequence). The amplitude
of the fingers is measured by the standard deviation of zF

A(t)2 = zF (x,t)2 − zF (t)2, (9)

where the overline denotes the average over x. The typical shape of the amplitude A as a function
of time is presented in Fig. 3(a). The curve shows a decrease at early times due to the decay of
spurious initial perturbations (up to t = 3 × 105). The amplitude is then constant and equal to the
uncertainty coming from the noise in the images. At t = 6 × 105 the amplitude starts to increase
with a clear exponential growth over one decade as shown on the semilog plot of Fig. 3(b). The slope
can be extracted accurately, leading to an experimental determination of the growth rate σ	 with an
uncertainty of the order of 20%. It should be noted that this measurement is made during the linear
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FIG. 3. (a) Lin-lin plot of the rms amplitude of the perturbation as a function of time. The inflexion point
on the curve A(t) is considered as the end of the linear stage. (b) Semilog plot of the rms amplitude of the
perturbation as a function of the time. The growth rate σ 	 is given by the slope of the linear part of the curve. (c)
Position of the front zF (x,tNL) as seen on the LIF visualizations. (d) Discrete Fourier transform of the position
of the front. Ra = 2.4 × 104, Da = 2.1 × 10−4 (E = 2 mm and PCO2 = 0.8 bar).

regime and before the pairing of the fingers. The amplitude then saturates, leading to an inflexion
point at a time tNL, which will be considered as the end of the linear regime. This time is also clearly
identified with an error of the order of 20%.

The quantity zF (x,t) − zF is plotted in Fig. 3(c) as a function of the spatial coordinate x, at
t = tNL. Its Discrete Fourier transform (DFT), which is plotted below [Fig. 3(d)], shows a sharp
peak located at the most observable wave number q	. Whenever possible, the most observable wave
number q	 is determined using the DFT of zF − zF . However, in the case of very low Rayleigh
numbers (smaller than 1000), the contrast between the dark and the light zones is quite poor and
the border is not well defined, so the subsequent analysis is unsatisfactory. For very high Rayleigh
numbers (thick cells and high pressures), the border is extremely sharp but there is a background
parabolic flow in the x direction, which corrupts the harmonicity of the border. Indeed, as shown
in Fig. 4, the fingers tend to gather at the center of the cell since they are advected by a weak
recirculation generated by the background parabolic flow. The wavelength is thus smaller at the
center than at the sides, leading to a broadening and a flattening of the DFT peak. In such cases, the
DFT spectrum is too noisy and the only solution to obtain the most observable wave number q	 is
simply to count the number of fingers in the x direction. Though the procedure is approximate, the
experiment gives reproducible results, so that the average value can be trusted within 15% (which is
the standard deviation over five different runs). Moreover, the result given by the DFT is in excellent
agreement with the one found by counting the number of fingers at intermediate Rayleigh numbers.

C. Growth rate of the instability

Experimental growth rates are plotted in Fig. 5(a) as functions of the Rayleigh number over four
decades in Ra. Each point corresponds to an average value over five different runs performed in the
same conditions. At low Rayleigh numbers, the growth rate seems to be independent of the Rayleigh
number, as should be obtained in the Darcy regime. In order of magnitude, these values (for Ra
smaller than 1000) are in excellent agreement with all the numerical and theoretical results listed in
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FIG. 4. Sequence of images illustrating the process of destabilization for Ra = 8 × 105 and Da = 1.3 ×
10−3 (E = 5 mm and PCO2 = 6.4 bar). In this case, the extraction of the wave number q	 cannot be performed
by means of the DFT. We simply count the number of emerging protrusions and get an approximative value.
The parabolic flow (white dashed line) is removed (filtered) before performing the rms procedure used to extract
the growth rate.

Refs. [4,10]. For example, the value given by Elenius et al. [3] is plotted as a dashed line and falls
very close to the experimental result at low Rayleigh number.

However, at larger Rayleigh numbers, it is clear that σ 	 strongly decreases with the Rayleigh
number. Moreover, this decrease seems to depend on the Darcy number. For example, the growth
rate at Ra = 5 × 104 is ten times larger at Da = 10−6 than at Da = 10−3. In order to collapse the
experimental results, the growth rate is plotted as a function of Ra

√
Da in Fig. 5(b). The experimental

results fall on a single curve within 30%. It is interesting to note that the nondimensional parameter
Ra

√
Da is equal to �ρgE3/(12μD

√
12). This parameter can be considered as a Rayleigh number

based on the thickness E of the Hele-Shaw cell. This Rayleigh number is independent of the height
of the cell H . It is thus the relevant Rayleigh number at early times since the diffusive front is
far from the bottom of the cell. This thickness-based Rayleigh number appears naturally in the
Darcy-Brinkman equations (7).

FIG. 5. Growth rate as a function of the Rayleigh number based on the height H (a) and based on the
thickness E (b). The experimental data are plotted using open symbols while the theory obtained from Eqs. (10)
and (12) is plotted as a solid line. The dashed line corresponds to the numerical prediction of Elenius et al. [3]
in the Darcy regime.
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These experimental results clearly indicate that the Darcy regime is valid up to a value Ra
√

Da = 1.
Above this value, the Brinkman term creates an additional damping of the velocity, which leads to
a decrease of the growth rate. This had already been observed experimentally by Almarcha et al.
[35] in reactive fronts. However, despite the large number of numerical and theoretical results in
the Darcy regime, there is no prediction in the Darcy-Brinkman regime for a diffusive layer. We
have modified the analytical result by Fernandez et al. [19] to the case of a diffusive layer by taking
into account the finite thickness η of the denser layer and by introducing a Gaussian profile of
density c(0)(z,t) = 1 − erf(z/η). The details of the calculations are given in the appendix leading to
an analytic prediction of the growth rate valid in both the Darcy and the Brinkman regime:

Ra2Da σ = λRa2Da q

(
1

1 + coth qη
− q

ξ + ξ coth ξη

)
+ 1

− λq

σ

(
1

1 + coth qη
− q

χ + χ coth χη

)
, (10)

where

λ = 0.46, χ2 = q2 + σ, and ξ 2 = q2 + Ra−2Da−1. (11)

This theory is valid under the quasi-steady-state approximation (QSSA), which has been shown
to give an excellent agreement with the numerical results [7,10] after the onset time. We further use
the fact that the linear regime is valid up to times t equal to several σ−1. The thickness η = 2

√
t of

the diffusive layer is thus of the order of σ−1/2 during the linear growth of the instability. It can be
approximated by

η = A√
σ

, (12)

where A is a constant. Introducing this equation in (10) allows us to get an analytical prediction of
the most unstable growth rate σ 	 and of its corresponding wave number q	. This prediction is plotted
in Fig. 5(b) for a fitting parameter A = 1. There is an excellent agreement between the theory and
the experiment over the four decades covered by the experiment.

D. Most observable wave number

The most observable wave number q	 is plotted as a function of the Rayleigh number in Fig. 6.
As for the growth rate, the wave number seems to be independent of the Rayleigh number in the
Darcy regime [up to Ra = 2000 in Fig. 6(a)]. In order of magnitude, these low Rayleigh experimental
results are in good agreement with the values obtained theoretically and numerically in the literature.
For example, the onset wave number predicted theoretically by Riaz et al. [7] and numerically by
Hassanzadeh et al. [36] are plotted as dashed and dash-dotted lines respectively. They correspond
to an upper bound of our experimental results.

In the Darcy-Brinkman regime, the observed wave number q	 strongly decreases with the Rayleigh
number. It should be mentioned that the experimental results obtained by Outeda et al. [15] in this
regime are in excellent agreement with our results. As obtained for the growth rate, the experimental
results collapse extremely well if the wave number is plotted as a function of Ra

√
Da rather than Ra

[see Fig. 6(b)]. This again indicates that the instability only depends on the thickness-based Rayleigh
number and is independent of the height H of the Hele-Shaw cell.

The theoretical prediction for q	 obtained from Eqs. (10)–(12) is plotted as a solid line on
Fig. 6(b). The general trend of the experimental data is respected by the theoretical prediction
with two different regimes at low and large Ra and a correct scaling law at large Rayleigh numbers.
However, the theory clearly overestimates the experimental results. The discrepancy goes from about
20% in the range 10 < Ra

√
Da < 1000 up to a factor 2–3 for Ra

√
Da > 1000. At low Rayleigh

numbers (Ra ∼ 50) the experimental results are marred by a large uncertainty, making doubtful the
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FIG. 6. Most unstable wave number as a function of the Rayleigh number. The experimental data are plotted
using open symbols while the theory obtained from Eqs. (10) and (12) is plotted as a solid line. The dashed
(resp., dash-dotted) line corresponds to the theoretical (resp., numerical) prediction of Riaz et al. [7] (resp.,
Hassanzadeh et al. [36]) in the Darcy regime. The solid circles correspond to the experimental results of Outeda
et al. [15].

comparison to the theoretical prediction. At moderate Rayleigh numbers, the uncertainty is much
smaller, indicating a clear difference between the experiment and the theory. The discrepancy may
be explained by the fact that the wave number is estimated at a time tNL later than the onset time. The
wave number could have decreased by 20% during this period, as has been observed experimentally
[18], numerically, and theoretically [7,8]. The discrepancy could also be due to Taylor dispersion,
which may artificially decrease the Rayleigh number, explaining the overestimate of the theoretical
prediction.

At large Rayleigh numbers, the discrepancy is much larger and may not be explained by this effect
alone. We will show in Sec. III F that it may be due to the failure of the Brinkman’s approximation.

Simple scalings can be derived for the theoretical predictions in the large Rayleigh limits. They
are calculated rigorously in Appendix B. In the Stokes regime, the growth rate, which scales as
σ ∼ (qRa2Da)−1 at large wave numbers (below the cutoff due to molecular diffusion), is damped by
the small thickness of the layer for q < η−1, leading to a most unstable wave number q	 proportional
to η−1. Using the criterion σ ∼ η−2 of Eq. (12) and the Stokes value of the growth rate leads to the
scalings at large Ra:

σ 	 ∼ Ra−4/3Da−2/3 and q	 ∼ Ra−2/3Da−1/3 for Ra → ∞. (13)

The last point to be discussed is the upper limit that bounds the Darcy regime. Figures 5 and
6 indicate that the Darcy regime is valid up to Ra

√
Da = 10. This corresponds to a dimensional

wavelength of the instability equal to approximately twice the cell thickness E. This is consistent
with the fact that the Brinkman term becomes dominant above this threshold since the second
derivative of the velocity in the x and z directions becomes larger than in the y direction (if the
parabolic velocity profile is approximated by half a wavelength of a sine profile).

E. Onset time of the nonlinear regime

The nonlinear time tNL [defined in Sec. III B and in Fig. 3(b)] is plotted in Fig. 7 as a function of
the Rayleigh number. Not surprisingly, the nonlinear time is roughly constant for Ra < 2000 in our
experiments. For larger Rayleigh numbers, the nonlinear time tNL strongly increases and depends on
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FIG. 7. Observation time tNL as defined in Sec. III (cf. Fig. 3). This time is much greater than the time τ 	.
The theoretical curve (dashed line) corresponds to a product σ 	tNL = 4.3, which means that the amplitude of
the initial perturbation has grown by a factor about 105.

the thickness-based Rayleigh number Ra
√

Da only. We superimposed to the experimental data the
theoretical curve obtained by assuming that the nonlinear time tNL is proportional to the characteristic
growth time, i.e., tNL = B/σ	, where B is a fitting constant. Using B = 4.3 leads to an excellent
agreement between theory and experiment in both the Darcy and the Darcy-Brinkman regime. Such
a value corresponds to a magnification of the initial perturbation of a factor 70 between the onset
time τ 	 and the observation time (assuming tNL � τ 	).

This value of the nonlinear time is interesting because it gives the value of the saturation time
of the instability in a real experiment. This time is very close to the time at which the flux of CO2

becomes constant as shown numerically [3] and experimentally [18]. This time cannot be predicted
numerically or theoretically since it depends on the initial amplitude of the perturbation. Indeed, it
may be varied by a factor 15 if the initial amplitude of the perturbations is varied from 0.1 to the
numerical noise 10−15. It is thus important to rely on real experiments to get an approximate value
of tNL. The value estimated in this work is about twice larger than in the experiments by Slim et al.
[18]. This can be explained by an initial amplitude of the perturbations about 8 times larger in Slim
et al. [18]. Assuming that our value (resp., Slim’s value) is a lower (resp., upper) bound for the initial
amplitude of the perturbations in a real aquifer allows us to give a correct estimate (within 25%) of
the nonlinear onset time.

F. Validity of the Brinkman’s approximation

Despite the simplicity of the crossover argument σ 	η2 ∼ O(1), the theoretical results agree fairly
well with the experimental data. The general trend of the experimental growth rate is very well
reproduced by the theory. The conclusions concerning the most unstable wave number are a bit more
mitigated. At low Rayleigh numbers, the extraction of q	 is not easy, owing to the predominance
of the molecular diffusion and the disturbing effect of the remanent convection. Consequently, the
results are marred by a large uncertainty. For instance, at Ra

√
Da = 1.5, the results obtained for

each of the five runs are spread over half a decade. Conversely, results obtained for Ra
√

Da > 5 can
be considered as accurate within 15%. In the range 10 < Ra

√
Da < 1000, the difference between

theory and experiments is 30% at most. Beyond Ra
√

Da ∼ 1000 however, the gap increases to reach
a factor of 2–3 at Ra

√
Da = 4 × 104. This discrepancy cannot be explained only by the uncertainty.
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In the previous analysis, the inertia term ∂u/∂t has been neglected in the equations because it is
divided by the Schmidt number. When the growth rate is large (i.e., at large Rayleigh numbers) this
term may not be negligible. Martin et al. [25] showed that in this case, averaging the Navier-Stokes
equation over the cell width leads to 2D Navier-Stokes-Darcy equations:

DaRa2

S

∂u
∂t

= −∇‖p̄ + (DaRa2�‖ − 1)ū − c̄ ẑ. (14)

The acceleration term slightly modifies the equation for the perturbation but can still be solved
analytically. It simply introduces a factor α = 1 + σDaRa2/S, which is equal to one for small
growth rates or high Schmidt number. Solving the equations for the growth rate using the same
criterion as before leads to an improved theory, which is always close to the previous theory within
1%. To conclude, this term cannot explain the discrepancy between the theory and the experiments
at large Rayleigh numbers.

In order to understand this discrepancy, we performed a systematic PIV analysis of the transverse
flow (y direction for Ra

√
Da in the range [20, 4 × 104]. The transverse profiles observed below

Ra
√

Da = 700 are clearly parabolic all over the linear phase of the destabilization process, as
illustrated in Figs. 8(a) and 8(b). Beyond this value (Ra

√
Da > 700) the transverse profile is not

parabolic anymore, but shows some recirculating zones (violation of Brinkman’s assumption) as
if there were more than one unique finger in the thickness. As shown by Zeng et al. [20], this
is due to the fact that the wavelengths of the flow are not large enough compared to the cell
thickness, which introduces corrections to the velocity profile. An intuitive correction may be
added to the theory by considering the three-dimensional situation with a wave number qy in the
y direction. In this case, the Rayleigh number is connected to the value of a three-dimensional
most unstable wave number q	 = (q2

x + q2
y )1/2. At low Rayleigh numbers, the profile in the gap

direction is parabolic which can be modeled as a sine profile with a dimensional wave number Qy

equal to π/E (i.e., with half a wavelength in the cell thickness). At larger Rayleigh numbers, we
can suppose that when the theoretical wave number Q	 becomes greater than π/E, the system is
able to accept a larger wave number Qy while keeping the same modulus of the three-dimensional
wave number (Q2

x + Q2
y)1/2 = Q	. It first means that the y velocity profile will contain more than

one half-wavelength in the transverse direction, as observed in Fig. 8(c). It also means that the wave
number Qx will be smaller than the theoretical value Q	, which may explain the discrepancy at large
Rayleigh numbers in Fig. 6 between experiments and theory.

In nondimensional units, the criterion Q	 > π/E for the breakdown of the parabolic profile
becomes q	 > (π/

√
12)/(Ra

√
Da). Using the asymptotic solution (B5) for the most unstable wave

number q	, we can deduce that the y-velocity profile can accept more than half a wavelength for
Ra

√
Da > 296. This explains the fact that the experimental measurements of q	 depart from the

theory by more than 30% above Ra
√

Da ∼ 300. It is also consistent with the PIV measurements
which indicate that the flow ceases to be parabolic for Ra

√
Da > 700.

In the literature, the breakdown of the Brinkman instability has been studied for a mean flow
within a Hele-Shaw cell or a capillary tube [37,38] on one hand. The breakdown was obtained at
smaller values of the Rayleigh number (Ra

√
Da of the order of 10 to 100 at most). However, such

flows contain a strong mean flow which accelerates the tilting of the isoconcentrations and the failure
of the Brinkman’s model. On the other hand, for the Rayleigh-Taylor instability, Fernandez [23]
showed numerically that the isoconcentrations are 2D (i.e., independent of y) at Ra

√
Da = 7 and

three-dimensional at Ra
√

Da = 700 (see their Fig. 16). It tends to indicate that the failure of the
Brinkman’s approximation takes place slightly below Ra

√
Da = 700, which is consistent with our

findings. It should be noted that their three-dimensional iso-concentrations at Ra
√

Da = 700 is not
in disagreement with our parabolic profiles obtained at Ra

√
Da = 700 since the velocity profile may

remain close to parabolic even if the isoconcentrations become three dimensional.
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FIG. 8. (a) PIV transverse profile of the vertical velocity obtained for Ra = 105, Da = 7.5 × 10−5 (E =
1.5 mm, PCO2 = 5 bar) at t = 3.7 × 104, t = 4.2 × 104, and t = 4.8 × 104, t = 5.2 × 104, t = 5.8 × 104, t =
6.4 × 104, t = 6.8 × 104, and t = 7.4 × 104. (c), (d) PIV transverse profile of the vertical velocity observed for
Ra = 9.3 × 105, Da = 1.3 × 10−3 (E = 5 mm, PCO2 = 5 bar) at t = 8 × 106 and t = 11 × 106 respectively.
(e), (f) Visualization of the corresponding flows obtained by superimposing 20 successive images. Between
panels (e) and (f) the two rolls located closest to the vertical walls have shrunk and eventually disappeared. For
convenience, the Y coordinate is dimensionalized using E instead of L.

IV. CONCLUSION

The present work was dedicated to the experimental study of the onset of the gravitational
instability triggered by the dissolution of carbon dioxide in an aqueous solution. The interest of the
paper is mainly experimental since the theoretical technique—i.e., quasi-steady-state approximation
to assess the growth rate σ 	—that we used as an attempt to interpret the experimental results is
classical material. We report an exhaustive exploration of the range [102, 106] in Rayleigh number
allowed by varying the partial pressure of carbon dioxide and the thickness E of the Hele-Shaw cell.
Because the gravitational instability is sensitive to small temperature changes, we had to eliminate
the temperature rise due to adiabatic intake of the gas. This difficulty was circumvented by means
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of a buffer reservoir which initially contained carbon dioxide at the same pressure as the one in the
cubic cell, in which pure nitrogen was initially injected.

We measured the growth rate of the instability and the corresponding wave number by means of
laser-induced fluorescence. Three regimes in terms of Rayleigh number have been observed: a Darcy
regime, the upper bound of which is Ra

√
Da ∼ 10, where the most unstable wavelength and the

growth rate are independent of the Rayleigh number; a so-called Brinkman regime, which lies in the
range Ra

√
Da ∈ [10, 103], where Brinkman’s approximation is valid; and a high-Rayleigh-number

regime, where our theoretical approach seems sufficient to render properly the growth rate of the
instability but fails to reproduce the experimentally most unstable wavelength. Such a discrepancy
is not rigorously explained, but PIV measurements in the transverse thickness of the cell show that
the transverse profile of the convective flow is no longer parabolic beyond Ra

√
Da ∼ 700.

The careful comparison between experimental results and theoretical analysis done in this paper
indicates that the quasi-steady-state approximation (QSSA) is valid within a choice of the one
disposable constant A. This permits us to predict the growth and saturation of the instability with
a simple analytic formula. It is true that this semiquantitative theory is not able to predict exactly
the critical time at which the gravitational instability starts. However, this may be sufficient for
most applications since the transport of CO2 is probably weakly sensitive to the early stages of the
instability and to the exact value of the critical time. The transport of CO2 may be more affected by
the late stages of the instability which are governed by the growth rate and the nonlinear saturation
time of the instability.

In the future, it would be interesting to study how this Darcy-Brinkman regime modifies the
advection and the mixing of a scalar such as CO2 in a Hele-Shaw cell or in a porous medium.
Another interesting extension of this work would be to consider the three-dimensional case of the
gravitational instability of a diffusing layer, either in a porous medium or in a simple fluid. Indeed,
the structure of the boundary layer could be closely related to the structure of the boundary layer
in classical Rayleigh-Bénard convection. Although the Rayleigh number is much smaller in these
experiments than in classical thermo-convection, the Schmidt number is much larger, which may
give useful information for convection models.

APPENDIX A: GRAVITATIONAL INSTABILITY IN BRINKMAN’S APPROXIMATION

This section is dedicated to the derivation of the growth rate equation (dispersion equation) in
the scope of Brinkman’s approximation. The situation of two semi-infinite media considered by
Fernandez et al. [19] is adapted to a denser layer of finite thickness. Taking twice the curl of Eq. (7)
yields

− �‖(Ra2Da�‖ − 1) ū = (∂xz x̂ − ∂xx ẑ)c̄. (A1)

Now, all first-order quantities are sought in the form of a harmonic function of x multiplied by
an exponential function of the time and a still undetermined function of z, that is to say ū, w̄, c̄ ∝
f (z) exp (iqx) exp(σ t). In the previous form, q is the dimensionless wave number and σ is the
growth rate of the instability. For sake of simplicity, the z-dependent part of the previous functions
are denoted by the same notations as the ones used for the initial [(x,z,t)-dependent] quantity.

Introducing Eq. (8) in the z component of [σ − (D2
z − q2)] (A1) yields the general equation

which rules the evolution of the z component of the velocity:
(
D2

z − q2)[σ − (
D2

z − q2)][Ra2Da
(
D2

z − q2) − 1
]
w̄ = q2w̄ Dzc

(0), (A2)

where Dz stands for the differential operator with respect to the variable z. This equation is completed
by a suitable set of boundary conditions at the free surface and at z → ∞. First, all the perturbative
quantities are expected to vanish at infinity

w̄ → 0 for z → −∞. (A3)
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At the free surface, the vertical velocity w̄ vanishes since the interface is motionless. Moreover, the
second derivative of w̄ also vanishes due to the incompressibility and the slip boundary condition
(Dzū = 0). Finally, the first-order concentration c(1) vanishes at the interface such that the fourth
derivative of w̄ must also vanish in order to satisfy (A1). The boundary conditions at z = 0 are then

w̄ = D2
z w̄ = D4

z w̄ = 0 at z = 0. (A4)

1. Steplike profile

We now solve the system composed of Eq. (A2) and boundary conditions (A3) and (A4) in the
case of a steplike initial profile. For a steady homogeneous layer of finite thickness η, the profile is
given at order zero by

c(0) = 1 for −η < z < 0, (A5)

c(0) = 0 for z < −η. (A6)

such that Dzc
(0) is now a Dirac δ function. In this case, the equation is solved separately in each layer

and the system must be completed by additional boundary conditions on w̄ at the altitude z = −η.
Integrating Eq. (A2) leads to a discontinuity condition on the fifth derivative of w̄:

Ra2Da
[
D5

zw
]−η+

−η− = −q2 w̄(−η). (A7)

From the latter equation, we deduce that all the derivative of w̄ from the fourth order down to the
zeroth one are continuous at the border z = −η:

[
Dn

z w
]−η+

−η− = 0, (n = 0, . . . ,4). (A8)

In each domain (the border being excluded), Eq. (A2) takes on the simple following form:(
D2

z − q2
)[

D2
z − (q2 + σ )

][
D2

z − (q2 + Ra−2Da−1)
]
w̄ = 0, (A9)

and the solution w̄1,2 relative to the top and bottom domains can be written as

w̄1 = Aq sinh qz + Aξ sinh ξz + Aχ sinh χz, (A10)

w̄2 = Bqeqz + Bξ eξz + Bχeχz, (A11)

where

ξ 2 = q2 + Ra−2Da−1 and χ2 = q2 + σ. (A12)

The solution w̄1 satisfies the boundary conditions (A4) at the free interface and the solution w̄2

satisfies the condition (A3) at infinity. Then, introducing (A10) and (A11) in the remaining boundary
conditions (A7) and (A8) leads to a 6 × 6 linear system on Aq, . . . ,Bl . The vanishing determinant
of that system corresponds to the nonzero solution and provides the equation which links the growth
rate σ to the wave number q:

Ra2Da σ = Ra2Da q

(
1

cq

− q

ξ cξ

)
+ 1 − q

σ

(
1

cq

− q

χ cχ

)
, (A13)

where

cq = 1 + coth qη, cξ = 1 + coth ξη and cχ = 1 + coth χη. (A14)

This formula is equal to Eq. (7) of Fernandez et al. [19] in the limit of large thickness η (with
cq = cξ = cχ = 2).
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FIG. 9. Growth rate as a function of the wave number (a) for different values of the Rayleigh number (b) for
Ra

√
Da = 100 and different values of η. Results provided by the shooting method are plotted using symbols.

Results for the formula (A17) adjusted from the steplike profile with λ = 0.46 are plotted with lines.

2. Steady diffusion-like profile

We now want to deal with a more realistic zeroth-order profile c(0) which is continuous.
Considering the characteristic quantities used to make the problem dimensionless, the nonconvective
diffusive profile has a classic form:

c(0)(z,t) = 1 − erf(z/η) with η = 2
√

t . (A15)

As time derivative of the zeroth-order profile is not explicitly involved in the first-order system, we
numerically solved Eq. (A2) completed by boundary conditions (A3) and (A4) using a numerical
shooting method. The solution is searched as the linear combination of three solutions w̄q(z), w̄ξ (z),
and w̄χ (z), which scale as eqz, eξz, and eχz at z = −∞ and which are obtained by numerical
integration of (A2) until z = 0. A nonzero solution exists, which respects the boundary conditions
at the interface, if and only if the determinant∣∣∣∣∣∣∣

w̄q(0) D2
z w̄q(0) D4

z w̄q(0)

w̄ξ (0) D2
z w̄ξ (0) D4

z w̄ξ (0)

w̄χ (0) D2
z w̄χ (0) D4

z w̄χ (0)

∣∣∣∣∣∣∣
(A16)

vanishes. Since these solutions depend implicitly on the growth rate, the searched growth rate
is obtained by searching the zero of the determinant. It should be mentioned that the numerical
integration is difficult to achieve for a large thickness η (characteristic of large Rayleigh numbers).
This is why this method only works for moderate Rayleigh numbers (up to Ra

√
Da = 1000).

In Fig. 9(a) is plotted the growth rate σ as a function of the wave number q, for two different
values of the Rayleigh number. The presence of molecular diffusion introduces a cutoff at large wave
numbers. This cutoff increases with the Rayleigh number, as already shown by Fernandez et al. [19].

Figure 9(b) displays the growth rate as a function of the wave number, but for a fixed value of
the Rayleigh number Ra

√
Da = 100 and different values of the layer thickness η. The finiteness of

the thickness η introduces a cutoff at low wave numbers. Moreover, this cutoff changes the scaling
of σ at small wave number (see Appendix B).

The curves provided by the shooting method for the so-called real diffusive profile (A15) are
plotted with symbols in Fig. 9. The results provided by the semianalytical model of Eq. (A13) for
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a steplike profile differ from these numerical results. However, they may be adjusted to fall on the
same curve by modifying Eq. (A13) into

Ra2Da σ = λRa2Da q

(
1

1 + coth qη
− q

ξ + ξ coth ξη

)
+ 1

− qλ

σ

(
1

1 + coth qη
− q

χ + χ coth χη

)
, (A17)

with λ = 0.46.
This fitting of the analytical curves to the numerical curves is very efficient for all layer thicknesses

and Rayleigh numbers since the maximum of the growth rate, its corresponding wave number, and
the width of the curves are then identical for the numerical and the analytical results. This analytical
prediction is used in the paper to deduce a prediction of the most unstable growth rate and its
corresponding wave number in both the Darcy and the Darcy-Brinkman regimes.

APPENDIX B: SCALINGS AT LARGE RAYLEIGH NUMBERS

We explain here the theoretical scalings observed for the growth rate and the wave number at
large Rayleigh number. At large Rayleigh numbers (actually for Ra1/3 � q, the growth rate equation
(10) simplifies to

σ = λq

(
1

cq

− q

ξ cξ

)
. (B1)

When the wave number vanishes (limit q → 0), a Taylor expansion of equation (B1) gives

σ = λq2η2

Ra
√

Da
, (B2)

which corresponds to approximation 1 in Fig. 10.
The large wavenumber regime can also be studied by assuming that qRa

√
Da tends to +∞ while

qη remains finite. In this case, a Taylor expansion of Eq. (B1) gives

σ = λ

2qRa2Da

sinh2(qη) + sinh(qη) cosh(qη) − qη

[sinh(qη) + cosh(qη)]2 , (B3)

This asymptotic solution can be further simplified in the limit of small qη, leading to σ =
λqη2/(2Ra2Da) which is plotted as the approximation 2 in Fig. 10. Finally, in the limit of large qη,
this asymptotic solution leads to σ = λ/(4qRa2Da) which is plotted as approximation 3 in Fig. 10.

The maximum growth rate is obtained at the transition between approximations 2 and 3 and is
equal to

ση ∼ 0.1492λη

Ra2Da
at qη ∼ 0.897

η
. (B4)

Then, the condition σ 	η	2 ∼ 1 clearly indicates that the maximum growth rate σ 	 and its
corresponding wave number q	 scale as (Ra

√
Da)−4/3 and (Ra

√
Da)−2/3 respectively. Introducing

these scalings together with the condition σ 	η	2 = 1 into (A17), doing a Taylor expansion at
large Ra

√
Da, and maximizing over q leads to the asymptotic value of the growth rate and of its

corresponding wave number,

σ 	 ∼ 0.1061(Ra
√

Da)−4/3 and q	 ∼ 0.1361(Ra
√

Da)−2/3, (B5)

observed on the theoretical curves presented in Figs. 5 and 6, respectively.
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FIG. 10. Growth rate as a function of the Rayleigh number plotted for η = 2 × 108 and Ra
√

Da = 1010.
Scaling laws are valid for large values of the Rayleigh number and fixed value of the thickness η. The maximum
growth rate ση is defined by the crossover between approximations 2 and 3 (see text). Beyond a cutoff value
qc, no unstable wave numbers exist.
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