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Effect of interfacial slip on the thin film drainage time for two equal-sized,
surfactant-free drops undergoing a head-on collision: A scaling analysis
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Using a scaling analysis, we assess the impact of interfacial slip on the time required for
the thin liquid film between two drops undergoing a head-on collision to drain to the critical
thickness for rupture by van der Waals forces. Interfacial slip is included in our continuum
development using a Navier slip boundary condition, with the slip coefficient modeled
using previous theories [Helfand and Tagami, J. Chem. Phys. 57, 1812 (1972); Goveas
and Fredrickson, Eur. Phys. J. B 2, 79 (1998)]. Slip decreases hydrodynamic resistance
and speeds up film drainage. It renders the dependence of the drainage time on capillary
number stronger in the spherical-film regime, but, interestingly, this dependence is altered
only weakly in the dimpled-film regime. A subtle effect of slip is that it increases the range
of capillary numbers in which the film remains predominantly spherical in shape during
drainage (as opposed to being dimpled), leading to significantly faster drainage for these
capillary numbers. Slip also leads to an increase in the critical capillary number beyond
which coalescence is not possible in a head-collision.

DOI: 10.1103/PhysRevFluids.1.064204

I. INTRODUCTION

When two polymers are blended together to form an emulsion, the droplet size distribution
is the result of a subtle balance between flow-induced drop breakup events and droplet-droplet
coalescence events. Although the drop-breakup phenomenon has been investigated quite extensively
both experimentally and theoretically, coalescence is still poorly understood. In fact, the prediction
of the rate of coalescence for even a simple situation such as the head-on collision of two equal-sized
surfactant-free drops, the topic of this paper, has resisted a complete theoretical framework for
prediction. This is because flow-induced coalescence is a complex process that involves several
steps. First, the interfaces of the colliding drops must approach each other by squeezing out the thin
film of the suspending liquid in between them, a process called hydrodynamic drainage. When the
film thickness falls below a critical value, attractive forces such as van der Waals interactions manifest
themselves, which destabilizes the thin film. Finally, the interfaces merge due to the formation of a
hole or bridge, which opens out, and the single, large drop relaxes to a spherical shape to complete
the coalescence process. The time to coalescence is the sum of the times required for each step. For
small viscous drops, the rate-determining step for coalescence is hydrodynamic film drainage.

Significant effort has therefore been expended to understand the time scale for film drainage,
including experimental studies [1–4], numerical simulations [5,6], and scaling theory [5–8]. A
commonly used basis to compare time scales for film drainage for two equal-sized drops is to use
a drainage time td , defined as the time increment between the moment when the center-to center
distance between the drops is 2R and the instant when the film ruptures. Scaling theory shows that
the drainage time in a head-on collision between two equal-sized drops in a compressional flow
should scale as tdG ∝ Cam, where G is the strain rate of the compressional flow and Ca is the
capillary number, defined as

Ca = μGR

γ
, (1.1)
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where R is the undeformed drop radius, γ is the interfacial tension, and μ is the viscosity of the
suspending fluid. The power m depends on the shape of the thin film. A simple scaling theory that
assumes a flat film for drainage of the fluid based on the analysis of Chesters [5,6] suggests that the
drainage time should scale as

tdG ∝ Ca4/3. (1.2)

Although the scaling analysis of film drainage has been recently modified to incorporate a
dimpled-film shape instead of a flat film [7], the predicted scaling of drainage time with Ca remains
the same. On the other hand, if the film shape is spherical (i.e., the minimum film thickness occurs
on the line of centers), a modification of the same scaling theory then suggests that the drainage time
should scale as

tdG ∝ Ca. (1.3)

These predictions have been tested via the numerical simulations cited above. However, the
situation is a little more complicated than it might at first seem. The early stage of film drainage
always occurs with the film having a spherical shape, with an initial film thickness h0/R ∼ β1Ca [3].
The fact that h0 is nonzero is a consequence of the deformation of the individual drops in the flow.
However, the film continues to thin, and if it does not rupture first, there is a smaller film thickness
htrans/R ∼ β2Ca when the film undergoes a transition from spherical to the dimpled shape due to
hydrodynamic interaction between the drops. The constant β1 was shown numerically to be O(10),
while β2 was found to be O(1) [5]. It is then clear that the observable scaling for the drainage time
will depend on whether most of the drainage process occurs before the transformation to a dimpled
shape or after. This depends on the critical film thickness at the point of rupture.

In all of the numerical studies and also the experimental systems, film rupture at coalescence
is due to van der Waals attraction. The critical film thickness for rupture hcrit has been shown in
previous works to depend on both the shape of the film and the film radius a [3,5,6,8–12]. When the
film is spherical,

hcrit

R
∼ (A∗

H,eff)
2/5, (1.4)

where A∗
H,eff is a dimensionless effective Hamaker constant A∗

H,eff = A′
H,eff/γR2. The critical film

thickness for rupture when the film is dimpled, on the other hand, is

hcrit

R
∼ (A∗

H,eff)
1/3Ca1/6. (1.5)

It follows that if hcrit > htrans, the drainage time will scale as (1.3). On the other hand, if hcrit �
htrans, the observable scaling will follow (1.2). Between these limiting cases, there will be a transition
between (1.2) and (1.3). Utilizing (1.4), we see that the criterion hcrit > htrans becomes

β2Ca <

(
A′

H

γR2

)2/5

. (1.6)

We see that the scaling (1.3) is favored for small capillary numbers, with the allowable range
increasing as the drop size decreases. We can also write (1.6) in the form

R <

(
A′

H

γ

)1/2( 1

β2Ca

)5/4

. (1.7)

In other words, the scaling (1.3) is relevant for small drops and the required size goes down as
the strain rate goes up.

Systematic experimental studies of drainage of the film between two identical drops colliding
head on in a compressional flow have been performed using the four-roll mill by Leal [1]. These
experiments [2,5] indicate that for large capillary numbers, the drainage time prior to coalescence
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FIG. 1. Variation of the normalized drainage time tdG with the capillary number Ca for two different
viscosity ratios (a) λ = 6.8 and (b) λ = 0.19. The symbols represent the experimental data of Hsu et al. [3],
while the curves are the simulations of Yoon et al. [5].

obeys the relationship (1.1) for drops above 27 μm in size. This relationship was verified for different
viscosities of the drop and suspending fluids and for different drop radii (greater than 27 μm).

At low capillary numbers, the trends from the Yang et al. [4] experiments were unclear due to
the scatter in the data. However, the simulations of Janssen et al. [6] and Yoon et al. [5] confirmed
the expectation that if the capillary numbers were small, the film would be predominantly spherical
during the drainage process up to the point of coalescence. Hsu et al. [3] set out to test the theoretical
predictions of Janssen et al. [6] and Yoon et al. [5] by performing experiments with much smaller
droplets than Yang et al. [4], ranging in size from 7 to 27 μm. They demonstrated that for these small
drops, there indeed exists a regime where the exponent m always lies in the range 1 < m < 4/3,
irrespective of the viscosity ratio. The value of m was closer to 1 for the small 7-μm drops and closer
to 4/3 for the larger 27-μm drops. However, a serious discrepancy they noted was that the measured
drainage times were shorter than the values expected from the simulations of Yoon et al. [5]. This can
be seen in Fig. 1, where we have compared the drainage times from experiment and simulations. The
discrepancy is significant for high viscosity ratios and small drops. For example, for R = 10 μm and
λ = 6.8 [see Fig. 1(a)], the experimentally measured value of tdG is about 3, while the simulations
predict a value of about 9, an error of 200%. Even for a low viscosity ratio of λ = 0.19 [see Fig. 1(b)],
the overprediction is significant for small drops. For example, the experimental data for the 7-μm
drops overlap with the theoretical prediction for 3-μm drops at high capillary numbers.

These discrepancies suggest that the theory and its underlying assumptions need to be revisited.
From the data of Yoon et al. [5] (Fig. 19 of their paper), one can see that the minimum separation
between the drops before the film becomes unstable can be over three orders of magnitude smaller
than the drop radius. Therefore, for 1-μm drops, the critical film thickness can be as low as 1 nm.
For such length scales, it is unreasonable to expect the continuum approximation, upon which the
theory is based, to remain valid. Perhaps, the first assumption that is likely to break down as the film
approaches such thicknesses is the boundary condition imposed at the interface.

In the theory, the interface is assumed to be a line of zero thickness that obeys the no-slip condition,
i.e., the tangential velocity at the boundary is assumed to be continuous across the interface. However,
the liquids employed in the experimental work cited above are polymers and it is well known that the
interface between two different polymers is diffuse in nature due to the incompatibility of the two
polymers. Furthermore, if the polymers have low entanglement densities in this interfacial region
but are highly entangled in the bulk phase, the viscosity of the interfacial region can be orders of
magnitude smaller than the bulk phase viscosities. Thus, even though the interface is extremely thin
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(∼1 nm), the large viscosity contrast ascribes to the interface a significant slip. As explained in a
previous publication [13,14], to account for interfacial slip, we continue to treat the interface as a
line of zero thickness, but replace the no-slip boundary condition at the interface with the Navier
slip boundary condition characterized by a slip coefficient α′. If the viscosity of the diffuse region is
much lower than either of the bulk viscosities, then α′ can be approximated as [13]

α′ = dI

μI

. (1.8)

Here dI and μI are the thickness and the inverse of the average mobility, respectively, of the
interfacial region and can be predicted using the theories of Helfand and Tagami [15] and Goveas
and Fredrickson [16]. Note that invoking the Navier slip condition essentially assumes that the slip
velocity is directly proportional to the shear stress. Prior experimental studies from Macosko et al.
[17] involving coextrusion of multiple alternating layers of polystyrene and polypropylene have
revealed that the slip velocity is a stronger function of shear stress, with an exponent of 6.2 for
stresses in the range of 1–10 kPa and an exponent of 1.8 for stresses exceeding 10 kPa. The stresses
corresponding to film drainage are about 100 Pa or smaller, a regime in which the Macosko et al. [17]
was unable to measure significant slip. However, recent careful measurements by Wagner [18] have
shown that the slip velocity is indeed proportional to the shear stress for low magnitudes of stresses.

Besides the argument in the previous paragraph of breakdown of the continuum approximation,
there have already been studies that indicate that slip increases the rate of drainage of the fluid.
In a careful investigation, Park et al. [12] showed that for fixed capillary number, viscosity ratio,
and drop radius, increasing the molecular weight of the fluids leads to a decrease in the normalized
drainage time, particularly for large molecular weight fluids. They also showed that the reduction
in the drainage time at high molecular weights was suppressed when a diblock copolymer was
introduced at the interface as a compatibilizer, due to the fact that the copolymer spans the diffuse
region and mitigates the incompatibility. However, in the Park et al. [12] and Hsu et al. [3] studies,
the exact mechanisms of how interfacial slip affects the drainage process, and the parameter regimes
where the effect of slip is maximized, were not identified.

In this paper we show that interfacial slip can account not only for the reduced drainage time
observed in the experiments for the small viscous drops, but also for the observation in Fig. 1 that
the power-law index of the tdG vs Ca behavior for higher Ca is reduced for smaller drops. We revisit
the earlier analyses of Park et al. and Hsu et al. to identify the expected scaling of the drainage
time with capillary number in the slip-dominant regime. The important change we introduce to their
analysis is the employment of the correct scaling for the film pressure gradient in the dimpled-film
regime, as suggested in Ref. [7]. The analysis elucidates six modes of drainage of the film, with the
drainage times and critical capillary numbers for transition from one mode to another. The scaling
analysis eventually leads to the drainage time vs capillary number relationships in the limits where
slip is important, along with the combinations of Ca, slip coefficient, and dimensionless Hamaker
constant where these regimes exist.

II. SCALING ANALYSIS

In this section we implement a scaling analysis for the drainage time for a spherical or dimpled
film between two drops of radius R undergoing a head-on collision. As shown in Fig. 2, the drops
are pushed against each other by an ambient, uniaxial compressional flow characterized by strain
rate G,

u∞ = [
1
2x, 1

2y,−z
]
. (2.1)

We assume that the suspending and drop fluids are two Newtonian fluids, with viscosities μ

and μ̂ = λμ, respectively, and that they are separated by a deformable interface with an interfacial
tension γ .
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FIG. 2. Schematic of the axisymmetric head-on collision between two drops of the same radius R. The
suspending fluid viscosity is μ, while the drop viscosity is λμ, where λ is the viscosity ratio. The ambient
velocity field u∞ is a uniaxial compressional flow.

The rate of thinning of the film of thickness h between the drops is given by a mass balance

dh

dt
∼ −h

a
u, (2.2)

where a is the radius of the film and u is the characteristic velocity of efflux of fluid (at r = a) in the
region of thickness h, as depicted in Fig. 2. The efflux velocity comprises two parts, a pressure-driven
parabolic component up and a tangential component ut ,

u = ut + up. (2.3)

The parabolic component is estimated using lubrication theory as

up ∼ h2

μ

γ/R

lc
. (2.4)

Here lc is the length scale over which the pressure drop occurs in the film and depends on the
shape of the film.

To determine the tangential velocity, we equate the tangential stress τ at the interface between
the drop and the fluid inside the drops:

τ ∼ μup

h
∼ μ̂ût

lc
, (2.5)

where ût is the tangential velocity of the drop fluid. This stress balance assumes that the flow in the
drop is influenced only by the film drainage process and is unaffected by the external flow (see, e.g.,
[19]). The tangential velocity within the thin film and inside the drop are related by the Navier slip
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condition

ut ∼ ût + ατ ∼ ût + α′
(

μup

h

)
. (2.6)

Substituting for ût from Eq. (2.5) we have

ut ∼ ût + ατ ∼ lcup

λh
+ α′

(
μup

h

)
= up

(
lc

λh
+ α′μ

h

)
. (2.7)

The total velocity in the film can be obtained by substituting Eq. (2.7) into Eq. (2.3),

u ∼ up

(
1 + lc

λh
+ α′μ

h

)
. (2.8)

The length scale lc for both spherical (see, e.g., [3,6]) and dimpled films [7] can be shown to scale
as

lc ∼
√

hR. (2.9)

The adoption of
√

hR as the length scale for the gradient of the pressure difference in the
dimpled-film regime, rather than the film radius a ∼ R Ca1/2 as has often been done in the past by
assuming a flat film [3–6,8–12], is a key difference between this and prior analyses of the drainage
process. As we will see later, it not only leads to the experimentally observed scaling for the drainage
time in the dimpled-film regime (as also noted by Frostad et al. [7]), but also the correct scaling for
the critical capillary number for hindrance of coalescence in a head-on collision. Substituting for lc
in Eq. (2.8) yields

u ∼ up

(
1 + 1

λ

√
R

h
+ α′μ

h

)
. (2.10)

The above expression can be substituted back into Eq. (2.2) to get the film drainage rate

dh

dt
∼ −h

a
up

(
1 + 1

λ

√
R

h
+ α′μ

h

)
, (2.11)

which, using Eqs. (2.4) and (2.9), can be further simplified to

dh

dt
∼ −h3/2

λμ

γ

aR1/2

(
λ

h

R
+

√
h

R
+ α′λμ

R

)
, (2.12)

where the terms in parentheses denote the parabolic, tangential, and slip components, respectively.
Equation (2.12) is the basic equation of film drainage. In the above equation, the shape of the

film appears only in the form of the film radius a in the prefactor. One immediately notes that any
nonzero value of the slip coefficient leads to an increase in dh/dt . Thus, slip always accelerates the
drainage process. The expression in the parentheses is comprised of three terms: the pressure-driven
parabolic component, the tangential component, and the slip component. The relative magnitude of
these terms depends on the dimensionless film thickness h/R but not the shape of the film.

We can identify three critical values for h/R. The first is

hc1

R
= λ−2. (2.13)

The critical film thickness hc1/R marks the point where the tangential contribution to (2.12)
exceeds the parabolic contribution. In particular, if

hc1

R
� h

R
� 1,
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the parabolic component of the velocity profile is dominant over the tangential component, whereas
if

h

R
� hc1

R
,

the tangential component is dominant. Of course, we assume in all cases that h/R � 1 is consistent
with the fact that we have a thin film. However, hc1/R is only small if λ 	 1. Hence, the parabolic
contribution to the film drainage process can only play a significant role if λ 	 1. More often (i.e.,
when λ is not very large), the tangential component in Eq. (2.12) will be larger than the parabolic
component.

The other critical values for h/R are

hc2

R
= α,

hc3

R
= α2λ2 = h2

c2

hc1R
, (2.14)

where α is the dimensionless slip coefficient

α = α′μ
R

. (2.15)

These two values for the critical film thickness demarcate the points when the slip component in
Eq. (2.12) is comparable to the other two terms. Specifically, hc2/R is the film thickness when the
slip component has the same magnitude as the parabolic component and hc3/R is the film thickness
when the slip component has the same magnitude as the tangential component.

For purposes of future discussion, we will identify the situation in which h0 > hc1 as case 1
and that in which h0 < hc1 as case 2. It is further convenient to identify the regimes where one of
the three terms in Eq. (2.12) is dominant: We will refer to the regime where the parabolic term is
dominant (h 	 hc1 ) as limit 1, the regime where the tangential term is dominant (hc3 � h � hc1 )
as limit 2, and the regime where the slip component is dominant as limit 3. In the latter case, we
may also wish to distinguish case 1, where h > hc1 and the transition to dominant slip occurs when
h � hc2 , from case 2, where h < hc1 and the transition occurs when h � hc3 . We will refer to the
former case as limit 3a and the latter as limit 3b.

For case 1, we introduce the dimensionless ratio of the critical film thicknesses hc2 and hc1 :

δ = hc2

hc1

= αλ2.

The magnitude of δ determines when the slip term comes into play relative to the transition from
the parabolic to the tangential velocity component in Eq. (2.12). If δ � 1, which occurs for small slip
coefficients and large drop radii, drainage initially occurs in limit 1 since h0 > hc1 , then transitions
to limit 2 when hc3 � h � hc1 , and finally ends up in limit 3b for h � hc3 . On the other hand, if
δ 	 1, drainage occurs first in limit 1, but then transitions directly to limit 3a when h � hc2 . Limit
2 is absent in this case. These two possibilities are schematically represented in Fig. 3.

In the more common situation, which we termed case 2, h0 < hc1 , the tangential term is dominant
over the parabolic term throughout the drainage process. We note that this will always be the case
when λ � O(1) since then hc1/R > O(1), while the condition that the film is thin requires h/R � 1.
In case 2, the drainage process generally starts in limit 2 (assuming h0 > hc3 ) and then proceeds to
limit 3b when h � hc3 .

The drainage regimes, as discussed above, represent only the fluid dynamic picture. Furthermore,
they are independent of the shape of the film, i.e., whether it is spherical or dimpled. However,
the modes that will actually manifest in either case 1 or case 2 depend on the initial film thickness
at contact h0 and the critical film thickness hcrit for film rupture, which serve as a start and a
stop, respectively, for the drainage process, as well as the slip coefficient α′, which is needed
to determine when slip is important. As noted earlier, we can use the theories of Helfand and
Tagami [15] and Goveas and Fredrickson [16] to evaluate the slip coefficient. If we focus on the
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FIG. 3. Schematic representation for case 1 (h0 > hc1 ) of the various limits of the drainage process for
(a) δ � 1 and (b) δ 	 1 (δ = αλ2): limit 1, the fluid efflux in the film is dominated by the Laplace pressure
difference component; limit 2, the film efflux is dominated by the contribution of the tangential velocity of the
interface; and limit 3, the film efflux is dominated by the interfacial slip component. Limit 1 will be observed
for thin films only for viscosity ratios much greater than unity.

combination of polymers polydimethylsiloxane (PDMS) and polybutadiene (PBd), which was used
in the experiments of Park et al. [12] and Hsu et al. [3], we can show that dI and μI are 0.564 nm
and 0.02 Pa s, respectively (see [12] for details). The slip coefficient α′ = dI /μI for the PDMS-PBd
combination is therefore 2.5 × 10−8 SI units. If we consider suspending fluid viscosities ranging
from 1 to 100 Pa s and drop radii ranging from 1 to 100 μm (see, e.g., [13]), the dimensionless slip
coefficient (2.15) can vary from about 10−4 to 1.

We can see that the drainage regime will depend on whether h0 > hc1 or h0 < hc1 , i.e., whether
we follow the drainage protocols of case 1 or case 2. In case 1, h0 > hc1 and the basic question is
the magnitude of hcrit compared to hc1 and hc3 for δ � 1 and compared to hc2 for δ 	 1. If we refer
again to Fig. 3, we can see that hcrit determines where in the transition from one limit to another
the film ruptures. For case 2, on the other hand, the film is dominated by the tangential velocity
component from the beginning and the slip transition occurs for h = O(hc3 ). The magnitude of hcrit

then determines whether the film ruptures before this transition or after. If hc3 < hcrit the film will
rupture before the slip component becomes significant, while if h0 > hc3 the film will drain for some
time without slip before the slip component comes into play.

With knowledge of the film radius, the critical film thickness, and the capillary number, we can
calculate the drainage time, assuming that drainage takes place entirely within one of the limiting
cases when (2.12) is dominated by one of the three components of the velocity profile, from some
initial film thickness for that regime until rupture. These results are presented in Table I. The table
presents six different possible regimes of drainage: S1, S2, and S3 corresponding to the spherical
film in limits 1, 2, and 3 respectively, and D1, D2, and D3 for dimpled films in the same three limits.

Several features of the drainage process are elucidated by Table I. First, we observe that for
drainage in any one of the limits 1–3, for fixed capillary number, the spherical film drains faster
than the dimpled film. Although lc and thus the pressure gradients in the two cases are similar, the
rate of decrease of the film thickness is smaller in the case of the dimpled film simply because a
larger volume of fluid needs to be removed in order for the film to thin. Second, for fixed initial and
final film thicknesses hi and hf , respectively, the capillary number dependence of the drainage time
depends only on the film shape: Ca1 for spherical films and Ca3/2 for dimpled films. In particular,
we observe that for the dimpled film, the exponents for the cases where slip is absent (D1 and D2)
is the same as for the case where slip is dominant (D3) (an index of 3/2). This is in contrast with
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TABLE I. Results of the scaling analysis for spherical and dimpled films.

Spherical film Dimpled film

shape

lc
√

hR
√

hR

a
√

hR R Ca1/2

hcrit hcrit ∼ R(A∗
H,eff )

2/5 hcrit ∼ R(A∗
H,eff )

1/3Ca1/6

Regime S1 Regime D1
tdG in limit 1 (film

drainage is
dominated by the
pressure-driven

component)

(tG)S1 ∼ Ca
[( hf

R

)−1 − (
hi

R

)−1
]

(tG)D1 ∼ Ca3/2
[( hf

R

)−3/2 − (
hi

R

)−3/2
]

For hf = hcrit � hi , For hf = hcrit � hi ,
(tdG)S1 ∼ Ca(A∗

H,eff )
−2/5, or

(tdG)S1 ∝ R4/5Ca
(tdG)D1 ∼ Ca3/2(A∗

H,eff )
−1/2, or

(tdG)D1 ∝ R Ca3/2

Regime S2 Regime D2
tdG in limit 2 (film

drainage is
dominated by the

tangential velocity)

(tG)S2 ∼ λ Ca
[( hf

R

)−1/2 − (
hi

R

)−1/2
]

(tG)D2 ∼ λ Ca3/2
[( hf

R

)−1 − (
hi

R

)−1
]

For hf = hcrit � hi , For hf = hcrit � hi ,

(tdG)S2 ∼ λ Ca (A∗
H,eff )

−1/5, or
(tdG)S2 ∝ λR2/5 Ca

(tdG)D2 ∼ λ Ca4/3 A∗
H,eff

−1/3, or

(tdG)D2 ∝ λR2/3 Ca4/3

Regime S3 Regime D3
tdG in limit 3 (film
drainage is dominated

by interfacial slip)

(tG)S3 ∼ 1
α

Ca ln
(

hi

hf

)
(tG)D3 ∼ 1

α
Ca3/2

[( hf

R

)−1/2−(
hi

R

)−1/2
]

For hf = hcrit, For hf = hcrit � hi ,

(tdG)S3 ∼ 1
α

Ca ln

(
hi

R(A∗
H,eff )2/5

)
(tdG)D3 ∼ 1

α
Ca17/12(A∗

H,eff )
−1/6, or

(tdG)D3 ∝ R4/3Ca17/12

the scaling analysis of Hsu et al. [3], which predicts a significantly different exponent of 2 in the
slip-dominant case. The change has come about due to the employment of the correct scaling for the
pressure gradient in the dimpled film, as elucidated by Frostad et al. [7]. This would imply that if
the dominant shape of the film during the drainage process remains dimpled, there should not be a
significant change in the exponent m as one transitions from the no-slip regime to the slip-dominant
regime, by increasing, for example, the slip coefficient. Although the Ca dependence is the same
for the same film shape, the functional dependence of the drainage time on the film height becomes
weaker, i.e., the film drains faster, as one progresses from limit 1 to limit 3.

In the following section we will employ the results in Table I along with the various critical
heights pointed out in this section to elucidate various modes of drainage with interfacial slip.

III. MODES OF FILM DRAINAGE

The scaling analysis presented in the previous section revealed five critical values of the film
thickness: hc1 , h0, htrans, hcrit, and either hc2 or hc3 , the latter depending on whether the parabolic
or tangential component of velocity is dominant when the transition to the slip component takes
place. Out of these various film thicknesses, only two depend on the imposed strain rate G: the
initial thickness h0 and the spherical-dimple transition thickness htrans [ hcrit depends on the capillary
number in the dimpled-film regime, but only very weakly (1/6 power)]. As G (or Ca) is increased,
both h0 and htrans increase proportionately and h0 > htrans for all Ca. The values of these two film
thicknesses relative to the other critical film thicknesses determine the dynamics of the drainage
process as a function of the capillary number. Here we will consider some asymptotic limits to
elucidate the various modes of drainage. However, for brevity, we restrict ourselves to the case when
the initial film thickness h0 is small enough to avoid case 1 (i.e., h0 < hc1 ); this is generally valid for
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FIG. 4. The two drainage modes (a) S2 and (b) S2 → D2 for situation A for h0 < hc1 .

the small capillary numbers and is always true if the viscosity ratio λ = O(1). In this case, we need
only concern ourselves with hc1 , h0, htrans, hcrit, and hc3 . It is straightforward to extend the analysis
below to include case 1.

A. Situation A: h0 > hcrit > hc3

This asymptotic limit is essentially that of no slip, because the critical film thickness for rupture
is greater than the height hc3 , below which the effects of slip (limit 3) can be observed. As shown
schematically in Fig. 4, two modes of drainage can be observed as the strain rate is increased.
For small strain rates h0 > h � hcrit > htrans, the film is purely spherical in shape (S2) throughout
the drainage process. However, for higher strain rates h0 > h � htrans > hcrit, the film is spherical
initially (h > htrans), but transitions to a dimpled shape when h � htrans (S2 → D2) before finally
rupturing when h = hcrit. (Due to our restriction on h0, both modes occur in case 2; case 1 is
not approached.) These two limits have been observed in both theoretical calculations [5,6] and
experiments [2–4]. The transition from the S2 mode to the S2 → D2 mode occurs when htrans ∼
hcrit. We have previously seen that hcrit ∼ R(A∗

H )2/5 for spherical films (also see Table I), while
htrans = β2R Ca. It follows that the capillary number that separates the S2 and S2 → D2 modes is

Cac ∼ (A∗
H )2/5. (3.1)

An alternative way of estimating this transition condition is to compare the drainage times in the
two modes. For the mode S2, the drainage time is

(tG)mode S2 ≈ λ Ca(A∗
H,eff)

−1/5, (3.2)

while for the mode S2 → D2,

(tG) mode S2→D2|Ca	1 ≈ λ Ca4/3(A∗
H,eff)

−1/3. (3.3)

In the asymptotic limit of small capillary numbers, the film drainage time is dominated by (tdG)S2

(see Table I), while for higher capillary numbers, it is controlled by the time (tdG)D2, corresponding
to the D2 phase, since dimpled films drain slower than spherical films in the same limit. These two
limits will overlap at that capillary number for which (tdG)S2 ∼ (tdG)D2 and this condition, using
the results in Table I, yields the capillary number for transition, once again, as Ca ∼ (A∗

H )2/5.
These results suggest that if we plot the drainage time data using the normalized coordinates

Ca/(A∗
H,eff)

2/5 and tdG/(A∗
H,eff)

1/5, the data belonging to these two modes will collapse onto a
single master curve. In Fig. 5 we show the raw data of tdG vs Ca from the simulations of Yoon
et al. [5] in the left column for three viscosity ratios λ = 0.19, 1.2, and 6.8 and the same data in the
normalized coordinates in the right column. We see that the data for each viscosity ratio fall on a
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FIG. 5. (a), (c), and (e) Variations of the dimensionless drainage with the capillary number (tdG vs Ca)
and (b), (d), and (f) the normalized drainage time with the normalized capillary number [ tdG/(A∗

H,eff )
1/5 vs

Ca/(A∗
H,eff )

2/5] for three different viscosity ratios (a) and (b) λ = 0.19, (c) and (d) λ = 1.2, and (e) and (f)
λ = 6.8: circles, R = 1 μm; crosses, R = 3 μm; squares, R = 10 μm; diamonds, R = 27 μm; and triangles,
R = 70 μm. The interfacial tensions used in these calculations were γ = 4.6, 4.8, and 5.0 mN/m for λ = 0.19,
1.2, and 6.8, respectively. The Hamaker constant was taken as AH,eff = 3.199 × 10−21 J.
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FIG. 6. The three possible drainage modes (a) S2 → S3, (b) S2 → S3 → D3, and (c) S2 → D2 → D3
for situation B for h0 < hc1 .

single master curve. There are some deviations from the master curves for higher capillary numbers
of each data set, because, for these capillary numbers, the drainage process enters a different regime,
where the flow induced within the drop by the external flow starts to affect film drainage; this effect
is not captured in our scaling analysis.

Our normalized coordinates differ slightly in the exponents of A∗
H,eff when compared to the

simulation results of Janssen et al. [6], who used Ca/(A∗
H,eff)

0.3 and tdG/(A∗
H,eff)

0.15. They obtained
these exponents by fitting the drainage time data for a single viscosity ratio λ = 1. However, we
have deduced the exponents from a scaling analysis and, as is evident from Fig. 5, these coordinates
work for all three viscosity ratios.

B. Situation B: h0 > hc3 > hcrit

This asymptotic limit represents the case when slip can influence the drainage process. We must
always begin with a spherical-film shape since h0 is always larger than htrans. Furthermore, since
h0 > hc3 , all of these cases begin in the regime S2. This regime corresponds to capillary numbers
satisfying

Ca >
(αλ)2

β1
. (3.4)

There are three modes of drainage that can be observed in this case: S2 → S3,S2 → S3 → D3,
and S2 → D2 → D3. These are shown schematically in Fig. 6.
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FIG. 7. The two possible drainage modes (a) S3 and (b) S3 → D3 for situation C for h0 < hc3 .

In the first case (S2 → S3), h0 > hc3 > hcrit > htrans and the film retains its spherical shape
throughout the drainage process. However, in the other two cases, htrans > hcrit and there is
a transition to a dimpled-film shape during the drainage process. In the case S2 → S3 → D3,
the transition to slip occurs before the transition to a dimpled shape, i.e., h0 > hc3 > htrans > hcrit.
On the other hand, in the case S2 → D2 → D3, the transition to a dimpled shape occurs prior to
the onset of slip, i.e., h0 > htrans > hc3 > hcrit. The transition between these latter two cases occurs
when htrans ∼ hc3 . This corresponds to a critical capillary number

Ca ∼ (αλ)2

β2
. (3.5)

For the highest viscosity ratio λ = 6.8 and the smallest drop size R = 7 μm employed in our prior
experiments, which would maximize the right-hand side of (3.5), this transition capillary number is
about O(10−3). This transition may be accessible in careful experiments.

C. Situation C: hc3 > h0 > hcrit

In this situation, one can see that the entire drainage process will occur in limit 3. This situation
can exist provided h0 < hc3 , i.e., when

Ca <
(αλ)2

β1
. (3.6)

Given the estimate above for (3.5) and the fact that β1/β2 = O(10), we can see that this regime
will exist only for extremely small capillary numbers, less than O(10−4), making its capture unlikely
in the four-roll-mill experiments from our laboratory due to the extremely short drainage times.

There are two distinct cases, as shown in Fig. 7. In the first, where hcrit > htrans, the drops remain
spherical for the whole drainage process (i.e., drainage occurs in the limit S3), and in the second,
where htrans > hcrit, there is a transition (S3 → D3) from a spherical-film shape to a dimpled one
prior to rupture. The drainage time in mode S3 is (see Table I)

(tdG)S3 ∼ 1

α
Ca ln

(
β1Ca

(A∗
H,eff)

2/5

)
. (3.7)

We note that this is a stronger scaling with respect to Ca than the one derived for spherical films
with no slip, where tdG ∝ Ca [Eq. (1.3)].

The drainage process will transition from S3 to D3 with an increase in the capillary number
so that htrans is increased (see Fig. 8). As before, the transition between the two modes can be
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obtained by equating the scalings for the drainage times in the S3 and D3 modes. Thus, by setting
(tdG)S3 ∼ (tdG)D3 and using hi = h0 = β1R Ca, the critical capillary number marking the shift
from mode S3 to mode D3 is

Cac ∼ (ln β1)12/5(A∗
H,eff)

2/5. (3.8)

Interestingly, we see that the critical capillary numbers that mark the shift from a purely spherical
mode to a purely dimpled mode of drainage in the no-slip limit [Eq. (3.1)] and the slip-dominant
limit [Eq. (3.8)] scale exactly the same way with respect to the dimensionless Hamaker constant:
(A∗

H,eff)
2/5. However, since β1 = O(10), the transition occurs at a higher value of capillary number

in the slip-dominant case. Therefore, when comparing the tdG vs Ca curves for the no-slip and
slip-dominant cases, all else remaining the same, we should anticipate a range of capillary numbers
(A∗

H,eff)
2/5 < Ca < (ln β1)12/5(A∗

H,eff)
2/5 in which drainage occurs predominantly in the dimpled-

film configuration for the no-slip case and predominantly in the spherical-film configuration for the
slip-dominant case. We can also compare the drainage times in the slip-dominant regime and no-slip
case for Ca 	 Cac. This ratio is

(tdG)D3

(tdG)D2
∼ 1

αλ
Ca1/12(A∗

H,eff)
1/6, (3.9)

which is a very weak function of Ca (Ca0.083). Therefore, curves of tdG vs Ca with different slip
coefficients should be nearly parallel to each other in the regime Ca 	 Cac.

IV. DISCUSSION

In the Introduction we noted two discrepancies between experiment and theory based on the
no-slip boundary condition (see Fig. 1). First, the experimental drainage times are less than the
theoretical ones and the difference becomes greater as the drops become smaller and more viscous
relative to the suspending fluid. A more subtle difference is that while tdG vs Ca follows the
expected 4/3 power-law index based on the no-slip condition for large drops, this index becomes
weaker for small drops and at high viscosity ratios [3]. The inclusion of slip can qualitatively account
for both types of discrepancies. Slip makes the drainage process faster and the magnitude of the
reduction depends on αλ = α′λμ/R [see Eq. (2.12)]. For a given polymer-polymer combination
(i.e., a fixed α′), large viscosity ratios and small drop radii will lead to an increased slip contribution
to the total drainage rate, which is in agreement with the experimental trend. Examination of the
experimental data, Table I, and the various regimes outlined in Sec. IV suggests that the regime that
is likely observed for the capillary numbers explored in the experiments is S2 → S3 or the transition
between the S2 → S3 and S2 → S3 → D3 regimes, for which the index of tdG with Ca is weaker
than 4/3.

The scaling analysis here is based on the case when the two drops are identical in radius. For
two unequal drops of radii R1 and R2, there is a simple modification to the results presented in this
paper based on the work of Davis et al. [20]: replacement of drop radius R with the harmonic mean
R1R2/(R1 + R2).

In this scaling analysis, we have ignored the effect of the external flow on the flow inside the drop
and in turn on the flow in the thin film. Prior work [5,17] has shown that for high capillary numbers,
the drop-scale flow can arrest the drainage process, leading to hindrance of coalescence. For the
drop scale flow to influence the flow within the film, the drop scale tangential stress τd imposed on
the thin film should scale as the tangential stress τ in the film arising from the drainage process. The
drop-flow-induced tangential stress τd imposed on the scale of the film radius is [17]

τd ∼ λμG

(
a

R

)
. (4.1)

The usual values of the Hamaker constant, drop radius, and interfacial tensions typically lead
to the drop-scale stress becoming important only in the dimpled regime. Therefore, employing
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a ∼ R Ca1/2 (see Table I) in the above equation yields

τd ∼ λμG Ca1/2. (4.2)

From Eqs. (2.4), (2.5), and (2.9) we can show that the stress in the film due to drainage τ scales
as

τ ∼
√

h

R

γ

R
. (4.3)

Equating (4.1) and (4.2), we get the critical film thickness for transition into this regime as

h

R
∼ λ2Ca3. (4.4)

In order for this regime to be observed, this thickness must be greater than the critical thickness
of the film at rupture, which, from Table I, scales as

hcrit

R
∼ (A∗

H,eff)
1/3Ca1/6 (4.5)

for dimpled films. Thus, the critical capillary number for transition into the regime where coalescence
is hindered in a head-on collision is

Cac ∼ λ−12/17(A∗
H,eff)

2/17 ≈ λ−0.71(A∗
H,eff)

0.12. (4.6)

This scaling is nearly identical to the analytical result derived by Yoon et al. [5] based on the
work of Nemer et al. [17] [in fact, it would have been identical had we chosen the critical rupture
thickness to be h ∼ R(A∗

H,eff)
1/3 ]. This correct scaling has materialized due to the employment of

the proper scaling for the pressure gradient length scale lc ∼ √
h/R.

With the introduction of interfacial slip, the drop-scale flow-induced tangential stress τd is
expected to decrease to [21]

τd ∼ λ

1 + kαλ
μG

(
a

R

)
. (4.7)

This will increase the critical capillary number to

Cac ∼ (1 + kαλ)12/7λ−12/17(A∗
H,eff)

2/17. (4.8)

For large values of the slip coefficient, the critical capillary number becomes

Cac ∼ α12/7(A∗
H,eff)

2/17, (4.9)

which is independent of the viscosity ratio λ. Thus, while the critical capillary number for
noncoalescence scales in exactly the same way with the dimensionless Hamaker constant as the
no-slip case, the dependence on the viscosity ratio becomes weaker with an increase in α and the
critical capillary number increases.

V. CONCLUSION

The scaling analysis based on the thin film approximation reveals that the introduction of
interfacial slip will affect the curve of drainage time vs capillary number in five ways, which
are summarized in Fig. 8. First, it will lead to a reduction in the drainage time. Second, it will
result in a stronger scaling of tdG vs Ca in the spherical regime. Third, the scaling of tdG vs Ca
in the dimpled regime will not be affected significantly. Fourth, slip will cause an increase in the
magnitude of the critical capillary number for transition from the spherical to dimpled regime, but
without a change in the scaling. Finally, slip is predicted to increase the critical capillary number
for suppression of coalescence in a head-on collision; however, the scaling with the dimensionless
Hamaker constant remains the same.
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FIG. 8. Schematic of the variation of the drainage time with capillary number in the no-slip limit (top curve)
and in the slip-dominant limit (bottom curve). (The changes in the slopes of the lines are exaggerated.)
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