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Size segregation in a granular bore
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We investigate the effect of particle-size segregation in an upslope propagating granular
bore. A bidisperse mixture of particles, initially normally graded, flows down an inclined
chute and impacts with a closed end. This impact causes the formation of a shock in flow
thickness, known as a granular bore, to travel upslope, leaving behind a thick deposit.
This deposit imprints the local segregated state featuring both pure and mixed regions of
particles as a function of downstream position. The particle-size distribution through the
depth is characterized by a thin purely small-particle layer at the base, a significant linear
transition region, and a thick constant mixed-particle layer below the surface, in contrast
to previously observed S-shaped steady-state concentration profiles. The experimental
observations agree with recent progress that upward and downward segregation of large and
small particles respectively is asymmetric. We incorporate the three-layer, experimentally
observed, size-distribution profile into a depth-averaged segregation model to modify it
accordingly. Numerical solutions of this model are able to match our experimental results
and therefore motivate the use of a more general particle-size distribution profile.
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I. INTRODUCTION

Particle-size segregation occurs in granular avalanches by the two processes of kinetic sieving and
squeeze expulsion [1,2], whereby small particles preferentially percolate downward under gravity
into gaps that form as the avalanche shears, gradually pushing large particles up to balance the
pressure and the solids volume fraction. As a result, large particles tend to rise to the surface of the
flow while small particles percolate down to the bed, creating an inversely graded size distribution [3].

We study a system of bidisperse granular matter with a normally graded (small particles on top of
large) segregated inflow. Particles flow continuously down a smooth inclined chute until they reach
the closed end and impact with the wall, which leads to the formation of an upslope propagating
granular bore [4,5] that travels with constant speed until coming to rest when all of the material has
been released. Only a handful of controlled experiments that study segregation due to gravity exist
(e.g., Refs. [6–10]). Our configuration ensures that the local segregated state of the avalanche, as a
function of distance from x = 0, is frozen in the deposit.

We will analyze the particle-size distribution experimentally and derive approximate profiles for
the small particle concentration and downslope velocity as functions of height. In this manner we
aim to validate recent developments on the asymmetry of particle-size segregation, for which several
forms of asymmetric flux functions have been proposed. The models presented in Refs. [11,12]
follow from their choice of stress partitioning (the splitting up of the average, or bulk, stress into
various contributions, e.g., those of various grain sizes), and a modification thereof based on the
reported simulation data, respectively. The authors in Ref. [13] explained that many possible flux
functions give asymmetric segregation velocities and chose one of the simplest of these, which
takes a cubic form. In contrast, the authors of Ref. [10] observed asymmetric segregation velocities
experimentally and adopted this in their model. One of our aims here is to confirm experimentally
the asymmetry of the segregation rather than the underlying dominant process that causes it. Future
work using various size ratios is required to determine the dominant segregation mechanism.

The experimental particle-size distribution and velocity profiles will be assumed invariant and
incorporated in a depth-averaged granular flow model [4] with segregation [5]. Previously, S-shaped
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concentration profiles were determined by Ref. [14] as solutions to their segregation-remixing
equation for a steady uniform flow, and were also investigated experimentally [8]. However, the
form of these solutions is too complicated to incorporate into the depth-averaged model. Previous
works (e.g., Refs. [5,9,15]) tend to simply assume an instantaneously, sharply inversely graded
concentration profile in order to close the model. While this allows considerable progress to be
made once grains have become inversely graded, it is too crude an approximation for flows that
do not reach that state quickly. We therefore present an alternative closure by allowing for a range
of invariant particle-size concentration distributions that are closer to reality, as confirmed by our
experimental observations. Lastly, we will solve this system of equations numerically and compare
the results with our experiments.

II. EXPERIMENTAL OBSERVATIONS

Experiments are performed on a closed chute made of smooth perspex, inclined at an angle ζ

to the horizontal. The chute has a length l = 126.5 cm in the downslope x direction, a width of
1.5 cm in the cross-slope direction, and a height of 4.5 cm in the normal z direction. A two-hopper
mechanism is used to fill the chute with material at the upslope end. Opening the hopper gate releases
particles from both hoppers simultaneously such that small 0.5- to 0.6-mm-diameter, silver ballotini
from hopper S fall on top of a layer of large 1- to 1.18-mm-diameter, red ballotini from hopper L and
merge at the inflow gate (an artificial reference point defining x = 0) to form a continuous bidisperse
flow that is, in its initial stages, segregated with a normal grading, as shown in Fig. 1. The hoppers are
manufactured so that the set flow rate is the same from both hoppers, QA = QB = 17.5 gs−1, giving
a total flow rate of Q = 35 gs−1. The particles flow continuously downslope on the smooth bed until
reaching the closed end at x = l, where impact leads to the formation of an upslope propagating
granular bore, defined as a normal (perpendicular to the flow) shock in the flow thickness [4]. The
bore propagates with constant speed vn, bringing particles to rest on its forwards (downslope) side,
until all of the material is released from the hoppers and the flow is stationary everywhere. The height
of the bore does not fill the chute in the vertical z direction. The slope inclination angle ζ = 24.3◦

L S

x

ζ

z

x = 0

x = l
xd

xl

vnh1
h2

FIG. 1. A sketch of the experimental setup, consisting of a closed, smooth chute of length 126.5 cm in the
downslope x direction from the inflow gate at x = 0, width 1.5 cm in the cross-slope y direction (into the page,
not shown) and height 4.5 cm in the normal z direction. The chute is fed by a two-hopper mechanism that
allows for the controlled release of normally graded large (L) and small (S) particles. The inflow layer has a
thickness h1 upstream of the shock, propagating upslope with speed vn, which leaves a deposit of thickness h2.
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FIG. 2. Still images taken during the experiment at two downslope positions (a) xd and (b) xl for arbitrary
times t1 > t0. The bore is seen to have a smooth, diffusive shock in flow thickness. The segregation process
occurs as the bore propagates upslope between positions xd and xl .

is chosen to coincide with the value found for the angle of repose of both large and small particles
(or the mixture thereof), so that the bore leaves a deposit which is parallel to the x axis.

An experiment is carried out and repeated so that video images are captured by a high-speed
camera with a rate of 1000 fps at two downslope positions: xd , at the front of the deposit, around
x = 28.2 cm, and xl , at the closed end, around x = 126.5 cm. Examples of these images, at two
instants for both downslope positions, are shown in Fig. 2. The inflow layer is observed to have a
thickness h1 ≈ 0.5 cm at xd that thins to h1 ≈ 0.4 cm at xl as the flow accelerates, whilst the bore
has a near constant thickness of h2 ≈ 1.7 cm. The shock speed is related to h1,2 by the hydrodynamic
jump condition [4,16],

vn = −
√

gh1(h1 + h2) cos ζ/2h2, (1)

which has a value of vn = −0.17 ms−1 at xd and vn = −0.15 ms−1 at xl , i.e., the shock speed
decreases with h1 for constant h2. These agree with the measured experimental values within ±5%.
The downslope velocity component u(x,z,t) is measured in the inflow layer by particle image
velocimetry (PIV) analysis of the high-speed still images taken during the experiment at the two
downslope positions. For modeling of the flow it is assumed that u varies linearly with depth (e.g.,
Ref. [17]), i.e.,

u = αū + 2(1 − α)ūz/h, (2)

for a parameter 0 � α � 1 that allows the profile to vary from simple shear for α = 0 to plug flow
for α = 1 and linear shear with basal slip for values in between. The shear parameter is found by
fitting the assumed velocity profile (2) to the PIV measurements with α = 0.78, ū = 0.54 ms−1 at
xd and α = 0.94, ū = 0.97 ms−1 at xl , as shown in Fig. 3. As the inflow accelerates, the shear rate
increases with x almost to a plug flow and the fast particles spray on impact with the closed end and
the bore at xl [Fig. 3(b)], making the shock appear steeper.

After the experiment, an image of the static deposit, shown in Fig. 4, is captured through the
glass sidewall by traversing a camera parallel to the x axis. The small particle concentration φ is
then measured by analyzing the colors in the image to count particles. This is normalized to ensure
that there is an equal volume of small and large particles, i.e., the mean concentration in the whole
deposit is 0.5, assuming that the chute is sufficiently thin that cross-channel variation is negligible.
The small particle concentration is seen to vary linearly between a purely small particle phase,
φ = 1, of thickness η above the base and a layer with constant φ = φ0 of thickness h − ψ below the
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FIG. 3. Measured downslope velocity component u in the inflow layer (dots and illustrative arrows) using
PIV analysis at the two downslope positions (a) xd and (b) xl . The measurements are averaged over time with a
typical standard deviation of 5% (no greater than 8%) from the mean. Data are fitted (solid lines) to the assumed
velocity profile (2) by determining the shear rate α, whose value is shown.

free surface. That is, the concentration profile may be written

φ =

⎧⎪⎨
⎪⎩

φ0, ψ � z � h,

(1 − φ0) ψ−z

ψ−η
+ φ0, η � z � ψ,

1, 0 � z � η.

(3)

The depth-averaged small-particle concentration φ̄ (as calculated in the following section) and
φ0 are both increasing upslope, as the segregation process causes large particles to rise to the
surface of the inflow layer, where the downslope velocities and resulting propagation distances are
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FIG. 4. (a) A still image of the deposit at the end of an experiment, divided into sections (dashed lines)
over each of which (b) the measured average small particle concentration φ profiles is plotted as a function
of z (markers) and fitted (solid lines) to the (c) general profile given in Eq. (3). The image is split into
(i) 28.2 cm � x � 81.5 cm and (ii) 81.5 cm � x � 126.5 cm (zigzagged lines) and the downslope positions
xd and xl are shown. A full-length horizontal version of this figure is available in the online Supplemental
Material [18].
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FIG. 5. Comparison between numerics (i) and experiments (ii) at two downslope positions (a) xd and (b)
xl , both shown with a 1:1 aspect ratio of the x and z axes. In (i), the small particle layer is colored silver and
the constant concentration layer is colored red, with a linear transition in between.

greater. Meanwhile, the constant concentration layer thickness h − ψ is decreasing upslope and
the transition region thickness is increasing, as a result of the segregation process occurring over a
shorter time and distance. This suggests that the constant concentration layer contains more small
particles the further the bore propagates upslope, as time elapses. However, the thickness of the
small-particle layer η remains roughly constant. Together these observations imply that the flux of
small particles downwards occurs faster than the flux of large particles upwards and therefore that
the size segregation process is asymmetric, as found in Refs. [10–13].

The concentration distribution (3) is more complex than the existing theory [5] that makes the
simplest possible assumption that the particle-size distribution is sharply inversely graded, i.e., there
is a sharp interface between a bottom layer of purely small particles and a top layer of purely large
particles, which was based on observations of stratification experiments [6,7]. The form used here
instead is a good fit with the experimentally observed concentration profile, whilst still allowing
progress to be made in a depth-averaged segregation model. Our profile (3) resembles the S-shaped
small particle found experimentally by [8] for a continuous, rough-bedded chute flow with an initial
normal grading of particle sizes, which they compared to the theoretical steady-state concentration
determined by Ref. [14]. Note, however, that such exact theoretical solutions have only been shown to
exist [e.g., Ref. [14], their Eq. (3.4)] for symmetric flux models with diffusion. As such, Ref. [13], for
example, considers the nondiffuse limit for an analytical solution of their asymmetric flux function.

Furthermore, our experimental findings are supported by those of Ref. [10], who also observe (in
their Fig. 5, around t̂ = 30) a layer of small particles, a transition region, and a constant concentration
layer, which develops during the segregation process.

III. DEPTH-AVERAGED SEGREGATION MODEL

Variations in the cross-slope y direction are assumed negligible due to the thinness of the chute
and the free surface of the flow at z = h(x,t) is taken to be a measure of the flow thickness normal
to the x axis. The downslope velocity u is integrated through the flow thickness as

ū(x,t) = 1

h

∫ h

0
u(x,z,t)dz (4)

and the shallowness of the flow is exploited to give the one-dimensional depth-averaged mass and
momentum balance equations [4]

∂h

∂t
+ ∂

∂x
(hū) = 0, (5)

∂

∂t
(hū) + ∂

∂x
(hū2) + ∂

∂x

(
1

2
h2g cos ζ

)
= S, (6)
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where the source terms

S = hg cos ζ (tan ζ − μ), (7)

are composed of a balance between gravitational acceleration g and a coefficient of basal friction μ.
A Savage-Hutter theory [19] is adopted, in which the friction coefficient is simply μ = tan δ, for a
basal angle of friction δ. It is assumed that basal friction angle is equal to the slope inclination angle,
δ = ζ , which allows for a one-dimensional solution consisting of a traveling discontinuity in flow
thickness with constant uniform states on either side [4], as observed experimentally.

The depth-averaged segregation equation may be derived as [see Ref. [5], their Eq. (2.14)]

∂

∂t
(hφ̄) + ∂

∂x
(hφu) = 0, (8)

where 0 � φ � 1 is the volume fraction of small particles per unit volume and φ, φu are depth-
averaged quantities.

The model is closed by incorporating the experimentally observed downslope velocity profile
(2) and the small-particle concentration profile (3). The depth-averaged small particle concentration
may then be integrated to find

hφ̄ =
∫ h

0
φdz = 1 − φ0

2
(ψ + η) + φ0h. (9)

The depth-averaged flux of small particles can then be calculated as

hφu =
∫ h

0
φudz = (1 − φ0)

[
αūη + (1 − α)ū

η2

h
+ αū

2
(ψ − η) + (1 − α)ū

3h
(ψ − η)(ψ + 2η)

]

(10)

Substituting (9) and (10) into the segregation equation (8), rearranging, and using the mass
balance equation (5) transforms it into equations for the evolution of the small-particle and constant
concentration layer thicknesses,

∂η

∂t
+ ∂(ηū)

∂x
− ∂

∂x

[
(1 − α)ūη

(
1 − 2η

3h
− ψ

3h

)]
= 0, (11)

∂ψ

∂t
+ ∂(ψū)

∂x
− ∂

∂x

[
(1 − α)ūψ

(
1 − 2ψ

3h
− η

3h

)]
= 0. (12)

The equations have been separated by assuming that the interaction between η and ψ is apparent only
through the sole cross-product term, whose magnitude is shared equally between them. Each of these
are similar to the evolution equation for the inversely graded interface depth in an instantaneously,
sharply segregated bidisperse flow [5] that is recovered when ψ = η in (11) or (12).

IV. NUMERICAL SIMULATIONS

The standard depth-averaged avalanche equations [4] represent a system of hyperbolic equations
that require high-resolution shock capturing numerical methods [20] to solve them. This work uses
the closely related semidiscrete high-resolution nonoscillatory central schemes of Ref. [21], together
with the third-order Runge-Kutta adaptive step method [22], for their time evolution.
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In order to solve the system, the depth-averaged equations (5)–(8) are written in terms of conserved
variables h(x,t), m(x,t) = hū, η(x,t), and ψ(x,t) as

∂w

∂t
+ ∂ f (w)

∂x
= 0, (13)

where w = (h,m,η,ψ)T is the vector of conserved variables. The resulting convection flux function
is

f =

⎛
⎜⎜⎜⎜⎜⎝

m

m2

h
+ h2

2 g cos ζ

ηm

h
− (1 − α) ηm

h

(
1 − 2η

3h
− ψ

h

)
ψm

h
− (1 − α)ψm

h

(
1 − 2ψ

3h
− η

h

)

⎞
⎟⎟⎟⎟⎟⎠

. (14)

The computational domain is one dimensional and defined in the region between the inflow gate
at x = 0 and the closed end at x = l = 126.5 cm. That is 0 cm � x � 126.5 cm and the domain is
discretized over 1265 grid points. The initial conditions are of an empty chute,

h(x,0) = m(x,0) = η(x,0) = ψ(x,0) = 0. (15)

There is supercritical inflow (Froude number, Fr > 1), which requires three boundary conditions [23],
while a no-normal-flux condition is applied at the end wall. The prescribed inflow boundary values
of η(0,t) and ψ(0,t) are the mean observed experimental values. The value of the depth-averaged
velocity at the inflow, ū0, is chosen to allow ū to accelerate to the experimentally measured value of
ū = 0.54 ms−1 at xd , where the fit to the velocity profile α = 0.78, prior to further acceleration, is
used here as the assumed constant shear rate to be representative of the whole flow. This gives the
set of boundary conditions

h(0,t) = h0 = 5 mm, η(0,t) = 0.13h0, ψ(0,t) = 0.40h0,

m(0,t) = ū0h0 = 0.4 ms−1h0, m(L,t) = 0. (16)

An equal volume of large and small particles is enforced by setting φ̄ = 0.5 in (9) to give

φ0 = (h − ψ − η)/(2h − ψ − η), (17)

which has a value of φ0 = 0.32 here.
The high-speed experimental images are compared with the numerical simulation at xd and xl in

Fig. 5. It is shown that, using the same inflow thickness, the numerics are able to produce a thinning,
accelerating inflow layer and a bore with a quantitatively comparable flow thickness and particle
layer thicknesses to the experiments. The slope of the shock in the numerics is a result of the grid
resolution and the diffusivity of the numerical scheme, and as such it differs from the viscosity of
the experimental system.

The numerical results along the whole chute are shown in Fig. 6. The small-particle layer is
colored silver, the constant concentration layer is colored red, and there is a linear grading between
the two colors in the region in between. As in the experiments, the inflow layer accelerates and thins
before it reaches the closed end and the upslope propagating bore is formed, with an increasing
thickness that tends to a steady state. There are three distinct regions where the flow thickness and
particle-size distributions vary; the inflow layer that, up to thinning, has the same form as the inflow
boundary conditions, the main bore region on the downstream side of the shock and an end region
that contains an imprint of a jump in ψ where the thin flow front meets the bore. The numerical results
are in good agreement with the experimental small particle concentration profile at xd [Fig. 6(b),
ii], where the values of η, ψ , and φ0 are within 2%, 10%, and 5%, respectively, of the experimental
observations.
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FIG. 6. Results from a numerical simulation for (a) flow thickness h (solid line), small particle η (dash-dotted
line), and constant concentration ψ (dashed line) layer heights at t = 8.5 s. The small-particle layer is colored
silver and the constant concentration layer is colored red, with a linear transition in between. (b) The small
particle concentration φ (solid lines) is plotted for three distinct regions i–iii (dashed white lines). In region
ii, numerics are compared with experiments (markers and dashed line) for 46.3 cm � x � 55.1 cm. A movie
showing the time-dependent evolution of (a) is available online.

V. CONCLUSIONS

We have performed laboratory experiments in a closed chute to study the particle-size segregation
process that occurs in an upslope propagating granular bore. Analysis of the deposit along the entire
length of the chute reveals that the particle-size distribution consists of a linear transition between
a small-particle layer at the base and a constant concentration layer below the surface. The form
of this profile, and the way it develops as the bore propagates upslope, give support to the recent
developments on the asymmetry of particle-size segregation [10–13,24]. The increase in the value
of the constant concentration φ0 in a layer of decreasing thickness h − ψ as the bore propagates
upslope means that there are more small particles in a thinner constant concentration layer as the bore
propagation distance increases, since traveling further upslope allows for a shorter time and distance
for segregation to occur. The small-particle layer height η remains approximately constant, however,
while the depth-averaged small-particle concentration φ̄ decreases with increasing downslope
position. These observations together imply that the size segregation process is asymmetric, with a
greater flux of small particles than large.

Most existing works simply adopt an instantaneously sharply inversely graded profile for the
small-particle concentration in a depth-averaged segregation model [5,9,15], which does still allow
for considerable progress to be made. S-shaped concentration profiles have also been observed
experimentally [8] that are comparable to steady-state concentrations [14], but these are solutions to
a symmetric flux model with diffusion and are also mathematically too complicated to include in the
existing depth-averaged segregation model [5]. However, by including our experimentally observed
particle-size concentration distribution into the depth-averaged segregation model, we have devel-
oped a model which allows for more general particle-size distribution profiles. Furthermore, numeri-
cal simulations of this model are able to capture the behavior of the experiments with good agreement.
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