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The shear-driven drainage of capillary grooves filled with viscous liquid is a dynamic
wetting phenomenon relevant to numerous industrial processes and lubricant-infused
surfaces for drag reduction and antifouling. Prior work has reported that a finite length L∞ of
the capillary groove can remain indefinitely filled with liquid even when large shear stresses
are applied. The mechanism preventing full drainage is attributed to a balance between the
shear-driven flow and a counterflow driven by capillary pressures caused by deformation
of the free surface. In this work, we examine closely the approach to the final equilibrium
length L∞ and report a crossover to a slow drainage regime that cannot be described
by conventional dynamic models considering solely hydrodynamic and capillary forces.
The slow drainage regime observed in experiments can be instead modeled by a kinetic
equation describing a sequence of random thermally activated transitions between multiple
metastable states caused by surface defects with nanoscale dimensions. Our findings provide
insights on the critical role that natural or engineered surface roughness with nanoscale
dimensions can play in the imbibition and drainage of capillaries and other dynamic wetting
processes in microscale systems.
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I. INTRODUCTION

Dynamic wetting processes such as spreading, imbibition, and drainage are ubiquitous in natural,
agricultural, and industrial processes that are crucial to modern technology. Engineering applications
ranging from oil recovery and water treatment to microfluidics and bioanalytical systems have been
enabled by a fundamental understanding of wetting that is embodied in mathematical descriptions
such as the Young-Dupre, Young-Laplace, and Lucas-Washburn equations [1,2]. These classical
wetting models are derived in the framework of continuum thermodynamics under the assumption
of perfectly smooth and homogeneous surfaces and predict dynamic behaviors that are governed by
deterministic forces due to capillary action and hydrodynamic effects. Although these assumptions
can reasonably describe wetting phenomena in macroscale systems, random thermal fluctuations and
the microscopic details of the surface must be properly considered to understand interfacial transport
processes at micro- and nanoscales. With the advent of micro- and nanofabrication techniques
a comprehensive understanding of dynamic wetting has become essential to improve traditional
industrial processes such as surface coating and spraying and to fully exploit the potential of modern
fabrication techniques such as micro- or nanolitography and additive manufacturing.

As the system dimensions shrink to micrometer scales and below, roughness and chemical
heterogeneities inherent to natural and artificial surfaces pose a major challenge in modeling wetting
processes [1,3]. Given the multiscale nature of the microscopic structure of solid surfaces it is
not always feasible to define a single characteristic dimension. Nevertheless, when modeling the
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dynamics of wetting on rough surfaces, the effects of surface roughness and heterogeneities have
been usually characterized by a “defect” size sd , determined by some relevant dimension given by the
root-mean-square (rms) roughness, height autocorrelation length, or other topographic parameter. For
“macroscopic” defect sizes sd > 100 nm, thermal fluctuations can be neglected and for low Capillary
numbers the dominant forces are due to elastic deformation of the interface and pinning at localized
defects [1,4–6]. These elastic and pinning forces are merely the consequence of changes in interfacial
energies as the contact line moves over random surface heterogeneities of physical and/or chemical
nature. When multiple nano- and/or microscale defects collectively distort and pin the contact
line, the energy barriers preventing net displacement give rise to contact angle hysteresis [7–12].
The conventional approach to consider the effects of random surface defects with macroscopic
(sd > 100 nm) or mesoscopic (sd � 10–100 nm) dimensions consists of employing receding and
advancing contact angles that are different from the Young contact angle θY , which is determined by
minimization of energy on a perfectly smooth surface. Despite available predictive models based on
the Wenzel [13] and Cassie-Baxter [14] equations, no analytical approach has been established
to quantitatively predict the degree of contact angle hysteresis from topographic parameters
characterizing the surface [3,15–17]. As a result, receding and advancing contact angles for static
and dynamic conditions for different surfaces and liquid pairs must often be determined empirically.

It is necessary to model the effects of random thermal motion when surface defects have
dimensions smaller than 100 nm and become comparable to the nanoscale thermal fluctuations
of the liquid interface [18–20]. The interplay between thermal motion and nanoscale surface
features can lead to nontrivial wetting processes that are induced by thermal fluctuations of the
contact line [21–30]. A few different approaches have been proposed to model the effects that
thermal motion and nanoscale surface defects sd � 1 nm have on the dynamics of wetting. In the
so-called molecular kinetic theory (MKT) proposed by Blake and co-workers [31–34], the effect
of atomistic and nanoscale surface defects is modeled as a frictional force that dissipates the work
required for the molecules in the contact line to “hop” over energy barriers �E between adsorption
sites separated by a distance λ � sd . The virtual frictional force proposed in MKT scales linearly
with viscosity and its magnitude is often comparable to hydrodynamic forces, which can make
it difficult to distinguish between damping due to pinning at nanoscale defects or hydrodynamic
effects [2,17,33,35]. Energy barriers �E = Wa in MKT are determined by the “work of adhesion”
Wa � γAd (1 + cos θY ) at localized sites, where γ is the liquid-vapor surface tension γ and Ad ∼ s2

d

the area of the adsorption site. Predictions from MKT show agreement with experimentally observed
displacement rates for different liquid pairs by assuming nanoscale defect sizes sd = 0.2–1 nm (e.g.,
see Ref. [17]). Predictions from MKT and other models considering thermally activated processes
are highly sensitive to the defect size sd since interfacial displacement rates are determined by an
Arrhenius factor exp(−�E/kBT ) where the energy barrier is �E ∝ s2

d ; here, kB is the Boltzmann
constant and T is the system temperature. For consistency with the model assumptions of MKT the
defect size must be smaller than 1 nm (Ad ∼ 1 nm2), which yields energy barriers �E � 10kBT .

Notably, a series of recent experimental studies on diverse systems indicate that even larger
defect sizes of the order of 10 nm can induce wetting processes that are thermally activated. For
example, experimental observations report that single colloidal particles at water-oil interfaces
exhibit surprisingly slow adsorption rates with time scales to reach equilibrium conditions on the
order of several hours or even days [36,37]. According to conventional wetting models for perfectly
spherical particles [38,39], the adsorption dynamics of single particles is a fast monotonic decay to
stable equilibrium conditions where the system energy is a global minimum. The slow adsorption
rates observed for diverse microparticles were attributed to thermally activated processes induced
by surface defects with sizes ranging from 1 to 5 nm [36]. Studies of the spreading dynamics of low
viscosity liquids on surfaces with defect sizes of 10 nm report that the contact line displacement is
governed by thermally activated processes [23,24,40–42]. These studies [41,42] indicate that energy
barriers prescribing the displacement rate of the contact line are significantly smaller than the work
of adhesion, and thus energy barriers �E � γ s2

d induced by mesoscopic defects are smaller than
predicted from the defect size.
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The “kinetics” of contact line displacement on surfaces with nano- and mesoscopic defects
sd = 1–100 nm can be described by wetting models based on Kramers theory of thermally activated
transitions [28,43,44]. In this approach, the energy barrier �E and separation distance λ between
long-lived metastable states can have a nontrivial relation with the defect size sd since these quantities
are determined by projecting the multidimensional energy landscape parametrized by molecular
positions and velocities onto a one-dimensional energy profile along the “reaction” coordinate
describing the contact line displacement [28,30,44]. Theoretical models recently proposed by
Colosqui et al. [28] support the idea that kinetic rates determined via Kramers theory [45,46]
can predict the displacement rates of contact lines in the presence of nano- and mesoscopic defects.
According to these models [28] it is possible to observe both a fast dynamic regime, governed by
capillary forces and hydrodynamic friction, or a much slower kinetic regime governed by thermally
activated processes. The distance from equilibrium at which the regime crossover takes place is
determined by the energy barrier magnitude and defect size, as well as the length of the contact line
perimeter [28].

Previous studies by Wexler et al. [47,48] have reported the shear-driven drainage of oil-infused
microgrooves and identified conditions where a finite volume of oil is retained for indefinitely long
time. The observed steady states were analytically predicted by establishing a balance between
capillary forces and the applied shear stress [47]. The drainage dynamics far from equilibrium was
approximately described by a Lucas-Washburn-type equation where thermal motion is neglected
and the microgroove surfaces are assumed to be macroscopically smooth but having a receding
contact angle significantly different from the Young contact angle. Given that the drainage of the
microgrooves involves the displacement of a contact line perimeter of microscale dimensions, similar
phenomena observed in the adsorption of microparticles at water-oil interfaces [36,37] are expected
to affect the drainage dynamics. Indeed, experimental observations by Wexler et al. show that the
drainage dynamics close to steady-state conditions presents deviations from analytical predictions
from the proposed Lucas-Washburn-type equation [47].

In the present work we extend the Lucas-Washburn-type equation for shear-driven drainage in
order to consider thermal motion and the presence of nanoscale surface roughness, by following the
approach proposed by Colosqui et al. for microparticle adsorption [28]. Atomic force microscopy
(AFM) is employed to characterize the surface roughness and thus determine the defect dimensions
used in the proposed wetting model for thermally activated wetting. While the rms roughness seems
to determine the magnitude of the energy barriers �E, the height autocorrelation length appears
to determine the separation distance λ between metastable states. The proposed model employing
mesoscopic defect sizes (3–30 nm) determined via AFM describes the drainage dynamics observed
close to equilibrium conditions for different oil viscosities and applied shear rates. The agreement
between the observed contact line displacements and analytical predictions indicate that the drainage
close to equilibrium is dominated by thermally activated transitions between metastable states.
Moreover, we propose a criterion for estimating the crossover point where the drainage transitions
from dynamics governed by capillary and hydrodynamic forces to a kinetic regime dominated by
thermally activated processes.

II. SYSTEM DESCRIPTION

The experimental system consists of a rectangular microfluidic cell fabricated from Norland epoxy
and sealed with a transparent glass lid for visualization purposes [see Fig. 1(a)]. The microfluidic
flow cell has width Wcell = 7 mm, height Hcell = 0.18 mm, and length Lcell = 45 mm and is filled
with a 1:1 weight mixture of glycerol and water (i.e., the outer aqueous phase) with viscosity μaq =
5.4 mPa s and density ρaq = 1150 kg/m3. There is one additional port that is 10 mm downstream
of the outlet slot; this port is used for filling the oil at the beginning of the experiment, and is
closed when the experiment is performed. A syringe pump maintains constant volumetric flow rates
(Q = 1–2 mL/min) in the aqueous phase via injection of fluid through an inlet port upstream of the
microgrooves.
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FIG. 1. Experimental configuration. (a) Schematic of the microfluidic flow cell (not to scale). An array of
50 microgrooves (bottom wall) is infused with silicone oil (green) and connected to an oil reservoir at the flow
cell terminus. (b) Schematic of the geometry of a single groove. (c) Image sequence (3 min between images) of
a sample shear-driven drainage experiment (Q = 2 mL/min, μo = 42.7 mPa s). (d) Micrograph of the silicon
wafer micropattern used to mold the grooves and cross-section profile and dimensions. Grooves appear dark
gray and walls appear light gray. (e) Topographic AFM image showing the nanoscale roughness of a sample
section (2 μm × 2 μm) of the groove surface.

As illustrated in Figs. 1(a) and 1(b), on one wall of the microfluidic cell there is a parallel array of
50 rectangular microgrooves of width w = 9 μm, height h = 10 μm, and length � = 36 mm, which
are infused with a silicone oil that is immiscible with the aqueous phase. Two different silicone oils
are used to infuse the microgrooves: (1) 1,1,5,5-Tetraphenyl-1,3,3,5-tetramethyltrisiloxane (Gelest
PDM-7040), with viscosity μo = 42.7 mPa s, density ρ = 1061 kg/m3, and interfacial tension
(with the aqueous solution) γ = 29 mN/m; and (2) 1,1,3,5,5-Pentaphenyl-1,3,5-trimethyltrisiloxane
(Gelest PDM-7050) with viscosity μo = 201 mPa s, density ρ = 1092 kg/m3, and interfacial tension
(with the aqueous solution) γ = 28.2 mN/m. The silicone oils are mixed with Tracer Products
TP-4300 UV Fluorescent Dye [cf. Fig. 1(c)] in a volume ratio of 500:1 to visualize the evolution of
the dewetting process. The system temperature in all cases is T � 24 ± 1 ◦C.

After the syringe pump starts to inject the water-glycerol mixture, a finite time tS must
elapse before reaching steady flow conditions with the prescribed volumetric rate Q. A time
tS = ρaql

2/μaq � 150 s can be estimated by considering solely diffusive effects; this time is in
good agreement with experimental observations for all of the flow rates studied in this work. As
shown in the image sequence in Fig. 1(c), the outer flow drives the gradual dewetting of the oil
infused in the microgrooves until reaching a final finite length L∞, after which the microgrooves
remain partially filled indefinitely; the time to reach the final length L∞ is on the order of thousands
of seconds under the studied conditions. Assuming plane Poiseuille flow and a large viscosity ratio
μo/μaq � 1, and given that the microgrooves are aligned with the outer flow, the shear stress
applied at the oil-water interface is estimated as τxy = 6μaqQ/WcellH

2
cell. The predicted stress τxy

is employed to describe experimental observations except for the case of low viscosity oil and high
flow rate where the shear stress employed is 15% smaller than analytically estimated; this deviation
is attributed to the finite viscosity ratio (μo/μaq = 7.9) for the latter case. The Reynolds number in
the aqueous phase is Re = (3/2)ρaqQ/Wcellμaq � 0.8–1.5, therefore small corrections (5–10%) to
the predicted stress τxy can be attributed to deviations from plane Poiseuille flow and end effects.
Since the Reynolds number in the oil phase is O(10−2) and the Bond number is O(10−4), inertial
and gravitational effects can be neglected inside the microgrooves.

The microfluidic device is molded from Norland Optical Adhesive (NOA 81) using the “sticker”
technique [47,49]. The array of microgrooves is molded from PDMS that is in turn molded from
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an etched silicon wafer with the nominal cross-section profile shown in Fig. 1(d). The cross-section
profile of the microgroove array presents micron-scale deviations from the nominal geometry that
are below 5% and can be observed by optical microscopy. This small “error of form” is expected to
cause small deviations from the flow conditions predicted for the nominal microgroove geometry [see
Fig. 1(d)]. Analysis of the microgroove surfaces is performed with a scanning probe microscope
(Bruker Dimension Icon) operating in AFM tapping mode (PeakForce Tapping R©) with a height
resolution of 0.1 nm and lateral spatial resolution of 2 nm. Topographic imaging via AFM [see
Fig. 1(e)] reveals a complex random topography with nanoscale physical features resembling peaks
and valleys with maximum heights and depths on the order of 3 nm and lateral dimensions reaching up
to 50 nm. As discussed in detail in the next section, the presence of nanoscale roughness is expected to
cause pinning of the contact line and thermally activated processes that lead to significant deviations
from the dewetting dynamics predicted for a perfectly smooth surface.

III. THEORETICAL MODELING

As in previous work by Wexler et al. [47], we begin by assuming unidirectional creeping flow in
the oil inside the microgrooves so that the streamwise fluid velocity u(y,z,t) satisfies the governing
equations ∂u/∂x = 0 and μo∇2u − dp/dx = 0 for mass and linear momentum balances; here, μo

is the dynamic viscosity of the oil and p(x,t) is the pressure in the oil phase. For the studied
experimental configuration and given that the oil is much more viscous than the aqueous solution we
will assume a constant pressure po in the external aqueous phase. Under the assumed incompressible
flow conditions the pressure inside the microgroove must vary linearly (dp/dx = const) and so must
the curvature of the top free surface κ = 1/r(x) since a pressure drop �p = −γ /r(x) (for r � L)
is induced by capillary effects. Hence, the pressure inside the oil is p(x,t) = p0 + (γ /rmin)(x/L)
where [47]

rmin =
{

w/(2 cos θ ) for w
h

� 2(sec θ + tan θ )

h
2 [1 + (w/2h)2] for w

h
> 2(sec θ + tan θ )

, (1)

is the minimum radius of curvature at the downstream end [x = � − L(t)] determined by the receding
contact angle θ [see Fig. 1(b)]. A receding contact angle θ = 56 ± 4◦ has been previously determined
from experimental measurements [47] and since w/h = 0.9 we have rmin = w/(2 cos θ ) according
to Eq. (1). For the assumed curvature profile of the oil-water interface the oil volume inside the
microgroove is V (t) = cdwhL(t) where [47]

cd = 1 − rmin

h

(
1 −

√
1

4
− w2

16r2
min

)
+ r2

min

wh
arcsin

(
w

2rmin

)
. (2)

Conservation of mass determines that the rate of change of oil volume

cdwh
dL

dt
= −(qs + qp) (3)

inside the grooves is determined by the volumetric flow rates qs driven by the applied shear force
Fs = τxywL, and qp induced by the force Fp = −(γ /rmin)wh due to capillary pressure. Assuming
creeping flow conditions and a rectangular cross section for the liquid-filled region, analytical
solution of the momentum conservation equations gives the corresponding volumetric rates and
conductivities:

qs = csh
2

μoL
Fs with cs = 1

2
− 4h

w

∞∑
n=0

(−1)n

b4
n

tanh

(
bnw

2h

)
, (4)
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and

qp = cph2

μoL
Fp with cp = 1

3
− 4h

w

∞∑
n=0

(−1)n

b5
n

tanh

(
bnw

2h

)
. (5)

Here, bn = (n + 1/2)π are the eigenvalues for each Fourier mode in the analytical solution of
the momentum equation. For the nominal microgroove height and width in the experiments of
Wexler et al. [47] we have cd = 0.96, cs = 6.34 × 10−2, and cp = 4.84 × 10−2. Combining volume
and momentum conservation laws embodied in Eqs. (3)–(5) we arrive to a Lucas-Washburn (LW)
equation [47]

dL

dt
= − 1

cdμo

(
csτxyh − cpγ h2

rminL

)
. (6)

This equation was derived in prior work by Wexler et al. [47] and predicts that for t → ∞, for
which dL/dt = 0, the system reaches a stationary or final length L∞ = (cphγ )/(csrminτxy). For
a given value of the applied shear stress the equilibrium length L∞ is prescribed by the infused
liquid surface tension and geometry of the groove. Introducing the final length in Eq. (6) the
equation for the displacement rate takes the simple form dL/dt = −ULW (1 − L∞/L), where ULW =
(cs/cd )(τxyh/μ) determines the maximum displacement rate attained for L/L∞ � 1. Integrating
the displacement rate dL/dt in Eq. (6) leads to an implicit expression for the column length:

t = tS + L∞
ULW

[
ln

(
L(t) − L∞
L(tS) − L∞

)
+ L(tS) − L(t)

L∞

]
, (7)

where tS is the time after which stationary flow conditions are attained in the aqueous phase.
A few comments are in order about the derivation of Eqs. (6) and (7). Predictions from Eqs. (6)

and (7) are valid for a constant shear stress τxy assuming Poiseuille flow in the aqueous phase, and thus
tS � 150 s in Eq. (7) is the finite time required to reach steady state conditions in the outer phase
(as discussed in Sec. II). The derivation assumes a contact line perimeter of length s = 2h + w

that is uniform and has a constant receding contact angle θ , which implies the assumption of a
perfectly flat surface with constant and spatially homogeneous contact angle hysteresis. Nanoscale
surface roughness and/or chemical heterogeneities induce spatial fluctuations of the contact line
position and local contact angle that are associated with “pinning” at localized surface defects.
Thermally activated depinning becomes the dominant mechanism inducing contact line displacement
as the system approaches the equilibrium length L → L∞ where the effective driving force Fd =
−csFs + cpFp → 0 in Eq. (6) vanishes. In the following section we proposed an extension of the
LW approach in Eqs. (6) and (7) that considers the interplay between nanoscale surface defects and
thermal motion so as to better characterize the drainage dynamics near equilibrium.

A. Surface heterogeneities and thermal motion

The LW equation [Eq. (6)] describes a one-dimensional model of drainage dynamics characterized
by a single variable L(t) when considering deterministic forces due to hydrodynamic and capillary
effects on a macroscopically smooth surface. As shown in Fig. 2(a), two-dimensional (2D)
topographical imaging via AFM of a microscale section of the surface reveals a random distribution
of surface defects with a maximum (peak-to-peak) height of about 6 nm. Analysis of the surface
topography reveals a nearly Gaussian probability distribution of defect heights hd [Fig. 2(b)] that is
commonly observed for random (nonpatterned) surfaces. The surface height presents a small rms
roughness hrms = 0.85 nm; the height distribution skewness is 0.3 and its kurtosis is 3.3, which are
very close to the values expected for a Gaussian distribution. The height autocorrelation is isotropic
and presents a nearly Gaussian decay [Fig. 2(c)] with the radial distance r and a radial correlation
length rd = 26.5 nm computed from AFM data. Given the nearly Gaussian height profile reported

064101-6



CROSSOVER FROM SHEAR-DRIVEN TO THERMALLY . . .

FIG. 2. Nanoscale roughness and energy barriers. (a) Two-dimensional AFM image of a sample section
of the microgroove surface. (b) Local defect height hd distribution computed from AFM data, showing a
nearly Gaussian distribution (hrms = 0.85 nm). (c) Autocorrelation function computed from AFM data (radial
correlation length rd = 26.5 nm, defect size sd � 37.5 nm). (d) Hypothesized contact line motion induced by
nanoscale defects with a projected area Ad � πs2

d . (e) Energy profiles Eo(L) for hrms = 0 (dashed red line)
and E(L) for hrms > 0 (solid line). (f) Modeled conical defect inducing an energy barrier �E � γ sdhrms |1 −
(π/2) cos θ | = 3.4kBT .

in Figs. 2(b) and 2(c) we estimate a characteristic defect size sd = √
2rd � 37.5 nm, which gives a

projected defect area Ad = πs2
d = 4.4 × 10−3 μm2.

As illustrated in Fig. 2(d), we will consider that the path x(σ,t) (0 � σ � s) defined by the local
streamwise position of the contact line along its perimeter s is distorted by the surface defects
detected in the AFM topographic image [Fig. 2(a)]. The average streamwise position of the contact
line x̄(t) = (1/s)

∫ s

0 x(σ,t)dη determines the (projected) surface area A = (l − x̄)s wetted by the
liquid and thus the liquid column length L(t) = A/s. Hence, the wetting or dewetting of a single
surface defect with (projected) surface area Ad increases or reduces the liquid column length by
an amount λ = Ad/s [see Fig. 2(d)]. For simplicity we assume that the arclength s � 2h + w of
the contact line is approximately constant; assuming negligible variations of s implies neglecting
contributions to the system energy due to line tension [50]. We will further consider that surface
defects with a finite height hd � hrms > 0 induce spatial fluctuations of characteristic magnitude
�E in the energy E(L) required to vary the liquid column length L, as illustrated in Figs. 2(e)–2(f).
The energy fluctuation magnitude �E is determined by complex morphological changes of the
liquid-liquid and liquid-solid interfaces that are induced by surface defects. Moreover, adsorption
of water or oil molecules at mesoscopic voids created by the substrate topography and interfacial
phenomena induced by steric effects and long-range interactions (e.g., Coulomb, van der Waals)
are likely to cause significant variations of the local surface energies. Given this complexity, the
magnitude of the characteristic energy barrier �E induced by surface defects will be considered as a
model parameter that can be obtained by fitting experimental observations. Nevertheless, modeling
surface defects as cones with base area Ad = πsd and height hd = hrms determined by AFM imaging
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we can analytically estimate an energy barrier of magnitude �E � γ sdhrms |1 − (π/2) cos θ | =
1.4 × 10−20J = 3.4kBT ; as illustrated in Fig. 2(f) the motion of the contact line over a modeled
defect involves changes �Awo = sdhrms in the water-oil interfacial area and �Aod = (π/2)sdhrms

in the surface area wetted by the oil phase. As expected the analytically estimated energy barrier
vanishes for a perfectly flat surface with hrms = 0.

In order to incorporate the effects of nanoscale surface defects and thermal fluctuations of the
contact line we will begin by considering L(t) as a generalized coordinate, or reaction coordinate,
determined by the surface area wetted by the oil. Accordingly, we can recast Eq. (6) as dL/dt =
−(1/ξ )(dEo/dL) where ξ = cdμos is an effective resistivity and

Eo(L) = s

[
csτxyhL − cpγ h2

rmin
ln

(
L

L0

)]
(8)

is the energy required to change the liquid column length for the case of a smooth groove with
hrms = 0 [L0 is an arbitrary reference length, which results in the addition of an arbitrary constant in
Eq. (8)]. The energy profile Eo has a global minimum when the stationary length is reached and thus
dEo/dL → 0 as L → L∞. For analytical simplicity, the effect of heterogeneities or localized surface
defects will be modeled by adding a single-mode perturbation to the smooth-surface energy Eo so that
the energy to vary the liquid column length is E(L) = Eo(L) + (�E/2) sin[2π (L − L∞)/λ + ϕ];
the arbitrary phase ϕ = −π/2 is chosen so that the global energy minimum remains at L = L∞.
Given that λ � L, multiple local energy minima will exist at Lo � L∞ ± nλ (n is an integer)
when the system is sufficiently close to equilibrium (L → L∞) where dEo/dL → 0. Therefore,
for L → L∞ the system exhibits multiple metastable configurations separated by different energy
barriers �E± = E(Lo ± λ/2) − E(Lo) in the forward or backward (+ or −) directions and thermal
motion becomes the dominant effect inducing transitions between neighboring metastable states.

To consider thermally activated processes, we incorporate in the LW equation [Eq. (6)] for the
column length dynamics a stochastic thermal force Fth = √

2kBT ξη(t), where η(t) is zero-mean
and unit-variance Gaussian noise; this thermal force Fth is determined by means of the fluctuation-
dissipation theorem. Including energy fluctuations caused by surface defects and stochastic forces
induced by random thermal motion in Eq. (6) the drainage dynamics is described by a Langevin-type
equation

dL

dt
= −1

ξ

d

dL

[
Eo + �E

2
sin

(
2π

λ
(L − L∞) − π

2

)]
+

√
2Dη(t), (9)

where D = kBT /ξ is the (long-time) diffusivity along the “reaction coordinate” defined by the liquid
column length L.

B. Near equilibrium dynamics

The smooth-surface energy in Eq. (8) has a global minimum at L = L∞ and can be accurately
approximated by a second-order Taylor expansion Eo(L) = 1

2 (d2Eo/dL2)|L=L∞ × (L − L∞)2 for
L − L∞ < (3/2)L∞. Hence for L/L∞ < 5/2 we have

E(L) = K

2
(L − L∞)2 + �E

2
sin

(
2π

λ
(L − L∞) − π

2

)
, (10)

where

K ≡ d2Eo

dL2

∣∣∣∣
L=L∞

= c2
s τ

2
xyrmins

cpγ
. (11)

According to Eq. (9), as L → L∞ and dEo/dL → 0 the column length L undergoes a random
walk in a periodic potential with multiple minima (i.e., metastable states) located at Lo � L∞ ±
nλ. Near equilibrium the column length L(t) will fluctuate around the local minima Lo and will
suddenly transition, or “hop,” to neighboring minima if crossing over the neighboring maxima at
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L± = Lo ± λ/2 [cf. Fig. 2(e)]. Following Kramers theory for thermally activated transitions [28,45],
the forward or backward (+ or −) transition rates [cf. Fig. 2(e)] are given by

�±(L) = 1

2πξ

√
d2E(Lo)

∂L2

∣∣∣∣d2E(L±)

∂L2

∣∣∣∣ exp

[
− [E(L±) − E(Lo)]

kBT

]
(12)

for |L − Lo| < λ/2. When “hopping” between metastable states at rates given by Eq. (12) the
average drainage speed can be estimated by a rate equation dL/dt = λ(�+ − �−) and thus we have
[28]

dL

dt
= −UH sinh

(
L − L∞

LH

)
, (13)

where the characteristic “hopping” velocity is

UH = λ

√
4(π/λ)4�E2 − K2

2πξ
exp

[
− (�E + Kλ2/8)

kBT

]
, (14)

and the “hopping” length is

LH = 2kBT

Kλ
. (15)

Integration of Eq. (13) leads to

L(t) = L∞ + LH arctanh

[
exp

(
− UH

LH

(t − to)

)]
, (16)

where to is an initial time arising from the integration constant. Equation (16) is valid for times t � tc
where tc is the crossover time after which the drainage dynamics is dominated by thermally activated
processes. As elaborated in the next section, one can analytically estimate a critical crossover length
Lc below which forces resulting from surface heterogeneities and thermal motion are larger than
forces due to hydrodynamic shear and capillary pressure. Accordingly, the initial to in Eq. (16) is
determined to match the experimental condition L(tc − to) = Lc, where the crossover time tc in each
experiment corresponds to the time elapsed to reach the analytically estimated length Lc.

C. Regime crossover

Far from equilibrium conditions where the liquid column length is much larger than the
equilibrium length L(t) � L∞, the drainage dynamics is dominated by hydrodynamic shear and
capillary forces, and can thus be described with the LW approach in Eqs. (6) and (7) [47]. As
mechanical equilibrium is approached, L → L∞ and dEo/dL → 0, hydrodynamic and capillary
forces balance out and the drainage of the microgrooves becomes a thermally activated process
described by Eqs. (13)–(16).

Here, we aim to develop a criterion for predicting the crossover from shear-driven to thermally acti-
vated drainage for different geometries and physical conditions. For this purpose we will analytically
estimate a critical column length Lc below which the dynamics is dominated by random forces due
to spatial fluctuations of surface energy and thermal motion. For overdamped systems, the frictional
force is equal to the sum

∑
F of all other (nonfrictional) forces and thus ξ (dL/dt) = (

∑
F ).

While according to Eq. (9) the displacement rate is dL/dt = −(1/ξ )(dEo/dL) when hydrodynamic
and capillary forces dominate, Eq. (13) determines that dL/dt = −UH sinh[(L − L∞)/LH ] near
equilibrium conditions where surface energy fluctuations and thermal motion dominate. Hence, there
must be critical column length Lc for which

sinh

(
Lc − L∞

LH

)
= 1

ξUH

dEo

dL
(Lc), (17)
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and forces resulting from random surface energy fluctuations and thermal motion are approximately
equal to the sum of hydrodynamic and capillary forces. Once the critical length Lc is obtained
by solving Eq. (17) one can employ Eq. (13) to determine a critical displacement rate magnitude
Uc = |UH sinh[(Lc − L∞)/LH ]| below which the drainage process is thermally activated.

It is worth remarking that the crossover between regimes is actually a gradual process and takes
place over a range of lengths L(t) � Lc. For the sake of simplicity, however, we will assume the
transition to thermally activated drainage occurs at a “crossover” point determined by the critical
length Lc implicitly defined by Eq. (17). The integration constant in Eq. (16) will be determined to
match the critical length L(tc) = Lc that is experimentally observed at a time t = tc for each studied
condition, and thus to = tc + (LH/UH )ln{tanh[(Lc − L∞)/(2LH )]}.

In prior work [28] a simple explicit expression alternative to Eq. (17) was proposed to estimate the
critical distance from equilibrium below which the final relaxation regime is dominated by thermally
activated transitions between metastable states. According to Eq. (10), metastable states induced
by local energy minima where dE/dL = 0 can only exist for sufficiently small column lengths
L � L∞ + (π�E)/(Kλ). Hence, the approach to equilibrium is dominated by thermally activated
transitions below a crossover length Lc given by [28]

Lc − L∞
LH

= α
π

2

�E

kBT
, (18)

where α < 1 is a scaling factor smaller than unity. As shown in the next section, the simple crossover
criterion in Eq. (18) yields agreement with Eq. (17) and experimental results for α = 0.2–0.25.

IV. RESULTS

The length of the wetted portion of a groove is determined by using automated image analysis
on macroscale photographs with a pixel size of 12.5 μm. The pixel intensity is high in places that
are wetted with oil (due to fluorescence) and low elsewhere. The upstream limit of the wetted length
is determined by plotting the pixel intensity along the length of a groove, and finding the location
where the slope changes most rapidly by applying a third-order Savitzky-Golay filter with a window
size of 50–70 pixels. These images are taken every 10 s, yielding a limit to the resolvable velocity
of approximately 10−6 m/s.

Three different experimental conditions are studied where the outer flow rate and viscosity
of the infused oil are varied: (i) Q = 2 mL/min and μo = 201 mPa s [cf. Figs. 3(a) and 3(b)],
(ii) Q = 2 mL/min and μo = 42.7 mPa s [cf. Figs. 3(c) and 3(d)], and (iii) Q = 1 mL/min and
μo = 42.7 mPa s [cf. Figs. 3(e) and 3(f)]. The displacement rate dL/dt and time evolution of the
column length L(t) measured experimentally are compared in Fig. 3 against analytical predictions
from the LW approach [Eqs. (6) and (7)] and the theory based on thermally activated transitions
between metastable states [Eqs. (13)–(16)].

As discussed in Sec. II, a finite time tS = 150 s is employed in Eq. (7) to consider the time
elapsed before steady flow is attained in the aqueous phase; this is in agreement with experimental
observations for the displacement rate magnitude reported in Fig. 3. For case (ii) where the highest
volumetric rate (Q = 2 mL/min) is employed and the liquid phase has the lowest viscosity (μo =
42.7 mPa s), the shear stress value τxy = 4.04 Pa employed in Eqs. (6) and (7) was 15% lower than
predicted by assuming plane Poiseuille flow and a large viscosity ratio. For the other experimental
conditions the shear stress employed in Eqs. (6) and (7) was the one predicted by assuming plane
Poiseuille flow; i.e., τxy = 4.75 Pa for case (ii), and τxy = 2.38 Pa for case (iii). After steady flow
conditions are attained for t � tS , there is good agreement between experimental observations and
analytical predictions from LW equations [Eqs. (6) and (7)] during the initial stages of drainage
where L(t) < Lc and hydrodynamic shear and capillary forces are expected to dominate.

As the system approaches the final equilibrium length L∞ there is a crossover to a slower
drainage process predicted by Eqs. (13)–(16), which are valid when the dynamics are dominated
by thermally activated processes. In all studied cases, the period between metastable configurations
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FIG. 3. Displacement rate magnitude |dL/dt | and column length L(t) vs time for three different
experimental conditions. (a),(b) Case (i): Q = 2 mL/min and μo = 201 mPa s. (c),(d) Case (ii): Q = 2 mL/min
and μo = 42.7 mPa s. (e),(f) Case (iii): for Q = 1 mL/min and μo = 42.7 mPa s. Markers: experimental
results. Dashed lines: analytical predictions from Eqs. (6) and (7) adopting tS = 150 s. Solid lines: analytical
predictions for drainage dominated by thermally activated processes [Eqs. (13)–(16)] using λ = 0.15 nm and
�E = 3.4kBT (T = 24 ◦C). Dashed-dotted (horizontal) lines: predictions from Eq. (17) for the crossover
length Lc. The initial time to = tc + (LH /UH )ln{tanh[(Lc − L∞)/(2LH )]} in Eq. (16) is determined to match
the experimentally observed length at the crossover point L(tc − to) = Lc.

λ = πs2
d/(2h + w) = 0.15 nm was determined by the defect size sd � 37.5 nm obtained from

AFM surface imaging [cf. Fig. 2(c)]. In order to fit experimental results reported in Figs. 3 and
4 an energy barrier magnitude �E � 3.4kBT (T = 24 ◦C) is employed for all cases. Notably, the
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FIG. 4. Approach to final equilibrium length L∞ for three different experimental conditions: Case (i):
Q = 2 mL/min, μo = 201 mPa s, LH /UH = 1087 s (UH = 3.44 × 10−6 m/s, LH = 3.74 × 10−3 m). Case
(ii): Q = 2 mL/min, μo = 42.7 mPa s, LH /UH = 261.1 s (UH = 1.61 × 10−5 m/s, LH = 4.21 × 10−3 m).
Case (iii): Q = 1 mL/min, μo = 42.7 mPa s, LH /UH = 1029 s (UH = 1.65 × 10−5 m/s, LH = 1.7 × 10−2

m). (a) Normalized displacement rate magnitude |dL/dt |/UH vs normalized distance from equilibrium length
[L(t) − L∞]/LH . (b) Distance from equilibrium L(t) − L∞ vs normalized time (length shown in logarithmic
scale). A nearly exponential decay with a characteristic time TH = LH /UH is observed for all studied cases.
Markers: experimental results for cases (i)–(iii). Solid lines: analytical predictions from Eqs. (13)–(16) using
λ = 0.15 nm and �E = 3.4kBT (T = 24 ◦C). Dashed-dotted (horizontal) line: analytical estimation for the
crossover length Lc from Eq. (18).

value of the energy barrier employed to fit experimental observations can be predicted via simple
geometric arguments (cf. Fig. 2) for the three studied conditions where the flow rate, viscosity, and
surface tension are varied. This finding indicates that for the studied surfaces physical roughness has
more significant effects than chemical heterogeneities on the thermally activated drainage process.
Moreover, the crossover criterion in Eq. (17) (see dashed-dotted horizontal lines in Fig. 3) can be used
to estimate the critical lengths Lc below which the drainage becomes a thermally activated process
and L(t) is governed by Eq. (16). For the experimental conditions in case (i) [cf. Figs. 3(a) and
3(b)] the crossover to thermally activated drainage occurs for tc � 2000 s when the column length is
L(tc) = 11.2 mm, which is about two times larger than the expected equilibrium length (i.e., Lc =
1.9L∞). In agreement with experimental observations for cases (ii) and (ii) [cf. Figs. (3(c)–3(f)],
Eq. (17) predicts an increase in the crossover length and an earlier transition to thermally activated
drainage when the liquid viscosity is reduced. In particular, the crossover criterion [Eq. (17)] indicates
that for the lower flow rates employed in case (iii) [cf. Figs. 3(e) and 3(f)] the crossover length is
larger than the microgroove length and the entire drainage dynamics may be thermally activated.

According to the theoretical model leading to Eqs. (13)–(16), all experimental observations near
equilibrium conditions can be collapsed to a single curve when normalizing with the characteristic
“hopping” velocity UH and length LH defined by Eqs. (14) and (15), respectively. Indeed,
Figs. 4(a)–4(c) report that the displacement rate magnitude closely follows the single curve predicted
by Eq. (13) for all studied cases (i)–(iii). Similarly, the distance L(t) − L∞ between the column
length and the expected equilibrium length follows the single trajectory predicted by Eq. (16) when
normalized by the corresponding values of UH and LH for each case [Fig. 4(d)]. The linear decay
in the displacement rate magnitude for (L − L∞)/LH < 1 indicates an exponential relaxation,
L(t) − L∞ ∝ exp(−t/TH ), near equilibrium conditions with a relaxation time TH = LH/UH
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varying from about 200 to 1000 s [cf. Fig. 4(b)]. In addition we observe that the simple crossover
criterion in Eq. (18) can predict the crossover length Lc for scaling factors α � 0.2–0.25.

V. CONCLUSIONS

The analysis and experimental observations in this work indicate that the interplay between
nanoscale surface roughness and thermal motion needs to be carefully considered in order to describe
the dynamics of drainage and imbibition in microscale capillaries. In the presence of significant
energy barriers induced by nanoscale surface defects, the interface displacement is dominated by
random thermally activated transitions between metastable states. These random transitions give rise
to a “kinetic” regime in the evolution of the surface area wetted by one or another phase that cannot
be described by conventional (continuum-based) wetting models (e.g., LW equations) considering
solely deterministic forces due to hydrodynamic and capillary effects. Therefore we have proposed
a stochastic Langevin equation that can be used to describe both the (far-from-equilibrium) dynamic
and (near-equilibrium) kinetic regimes observed in the shear-driven drainage of microcapillaries
infused with viscous liquid. The proposed model can be adopted to describe numerically diverse
wetting processes, such as spreading of microdroplets or colloidal particle adsorption, where thermal
motion and nanoscale surface roughness give rise to the same fundamental phenomena considered
in this work.

To describe analytically the kinetic regime dominated by thermally activated processes, we have
employed a rate equation where transition rates are predicted by Kramers theory. Furthermore,
we have considered an energy profile exhibiting multiple metastable states with a characteristic
period λ = 0.15 nm and separated by a characteristic energy barrier �E � 3.4kBT . In the model
proposed in this work, both the period and energy barrier are determined by nanoscale defects
with characteristic size sd � 37.5 nm and rms height hrms = 0.85 nm that are observed in AFM
topographic images. It is worth noticing that an energy barrier of magnitude 3.4kBT corresponds to
the work of adhesion Wa = γ (1 + cos θ )Aa on a molecular adsorption site of area Aa = 0.32 nm2.
Thus, fitting experimental results by using an alternative wetting model such as MKT would
have led us to infer that the drainage dynamics near equilibrium is caused by surface defects
of molecular dimensions sd � √

Aa = 0.6 nm. Notably, AFM imaging of the studied surfaces
reported the presence of mesoscale defects with much larger dimensions (sd > 10 nm) and areas
[Ad > 100 nm2)]. The model employed in this work determines that the very small separation
between metastable states [λ ∼ O(10−10 m)] is given by the ratio of the surface defect area
[Ad ∼ O(10−15 m)] to the contact line perimeter [s ∼ O(10−5 m)], i.e., it is not directly prescribed
by the physical distance between surface defects. The proper definition of model parameters made
it possible to predict both the crossover to the kinetic regime and the kinetic relaxation rate for all
of the studied experimental conditions.

The analysis in this work shows that it is feasible to characterize the nanoscale surface topography,
using AFM or alternative approaches, and then determine the system dimensions (e.g., capillary
height and width) that will produce a desired drainage dynamics. While the final retention length
L∞ is prescribed by specific geometric and physical parameters, the time to reach the final length
can be significantly reduced or increased by (i) reducing or increasing the crossover length Lc to the
kinetic regime and (ii) decreasing or increasing the kinetic relaxation time TH = LH/UH , which
varies exponentially with the energy barrier �E prescribed by the surface defect area Ad . The models
employed in this work could aid the design of nanostructured surfaces to control the dynamics of
drainage of capillaries as well as other wetting processes in microscale systems.
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